e-POSIX

The definitive and complete
Eiffel to Standard C and
POSIX 1003.1 binding

e-POSIX

written by Berend de Boer

1 Requirements and installation
1.1 Requirements

1.2 Compiling the C code

1.2.1 Compiling on Unix

1.2.2 Compiling on Windows
123 Library naming conventions

2 Using ePOSIX

2.1 Usinglibrary.xace

2.2 Vendor specific notes
2.2.1 ISE Eiffel

222 SmartEiffel

2.2.3 Visual Eiffel

2.3 Platform specific notes

2.3.1 Linux
2.3.2 FreeBSD
2.3.3 Cygwin
2.3.4 BeOS
2.35 QONX
2.3.6 Solaris
2.3.7 Win32

3 Design notes

3.1 Why an entire reimplementation?
3.2 Goals and guidelines

3.3 Class structure

3.4 Clients of this library

3.5 Forking
3.6 Books
4 Layers

4.1 Layers architecture

4.2 Standard C

4.3 Windows

4.3.1 Writing portable programs

4.3.2 Compiling POSIX programs in Windows
4.3.3 Native Windows

4.4 Introduction to the next chapters

5 Working with memory
5.1 Introduction

5.2 Allocating memory
5.3 Allocating memory

Contents

5.4 Using shared memory
55 Memory maps

6 Working with files

6.1 Introduction

6.2 Standard C notes

6.3 Compatibility with Gobo

6.4 Working with streams

6.5 Working with streams using Standard C only

6.6 Working with file descriptors

6.7 Windows systems: binary mode versus text mode

7 Working with files: advanced topics
7.1 Redirecting stderr to stdout

7.2 Talking to your modem

7.3 Non-blocking I/0

7.4 Asynchronous I/O

8 Working with the file system
8.1 Portability

8.2 Standard C

8.3 POSIX

9 Working with processes

9.1 Introduction

9.2 Executing a child command

9.3 Reading stdout of a child process
9.4 Catching a signal with Standard C
9.5 Catching a signal witlrosix

9.6 General wait for child handler

9.7 Forking a child process

10 Querying the operating system
10.1 Currenttime

10.2 Accessing environment variables
10.3 Capabilities

11 Working with the network
11.1 MIME parsing

11.2 Sockets

11.3 Echoclient

11.4 Echo client and server

12 Working with the network: advanced topics
12.1 Introduction

12.2 FTP client

12.3 HTTP client

12.4 HTTP server

12.5 IMAP4 client

20
21

23
23
23

23

23

28
29
32

34
34
34
36
36

38
38

38
40

45
45

45
45
48

49
50
51

54
54

55
56

57
57
57
57
59

62
62
62
63
64
68

12.6 IRC client

12.7 SMTP client

12.8 Sending plain text email

12.9 SendingdTML emalil

12.10 Sending both text andTML email
12.11 LDIF parser

13 Writing daemons

13.1 Introduction

13.2 Windows

13.3 Creating a daemon

13.4 Logging messages and errors
13.5 ULM based logging

14 Writing CGI programs

15 Error handling
15.1 Error handling with exceptions
15.2 Manual error handling

16 Security
16.1 Denial of service attacks
16.2 Authorization bypass attacks

17 Accessing C headers

17.1 Making C Headers available to Eiffel

17.2 Distinction between Standard C ardsix headers
17.3 C translation details

A Posix function to Eiffel class mapping list

To do
ABSTRACT_DIRECTORY
EPX FILE_SYSTEM
STDC_FILE
STDC_LOCALE_NUMERIC
STDC_PATH
STDC_TIME
POSIX _DAEMON
POSIX EXEC_PROCESS
POSIX_ FILE_DESCRIPTOR
POSIX_MEMORY_MAP
POSIX_SEMAPHORE
POSIX_SIGNAL
POSIX_STATUS
POSIX_MQUEUE
Security
Windows code
Other

69
70
71
72
73
75

76
76
76

76
77
78

81

89
89
91

94
94
95

96

96
97
98

99

105
105
105
105
105
105
105
105
105
106
106
106
106
106
106
106
107
107

Known bugs 107
Bibliography 108

Index 109

Introduction

It has been a great pleasure for me when | could announce the first public alpha release of this
manual. And then came the betas and the first release. Writing libraries like this is boring stuff.
Every Eiffel programmer should have had access to all those Standard Ebamnxdoutines long

ago. Anyway, now you and me have. Whatever a C programmer can do, you can. And even more
safe as this library protects you of inadvertently calling routines that are not portable (because
they’re simply not there :-)).

Writing libraries like this also seems to be a never ending story, as we now are at version 3.0. And
my to do list hasn’t shrinked, so stay tuned!

| actively support this library, so bug reports and wishes are gladly accepted. Planned extensions
are 64 bit integer support in every place, so you won't be limited to files of 2GB in size. And of
course, more and more support for the remaining functions in the Single Unix Specification not yet
covered, such apoll . On the protocol side | like to have NNTP server support. And perhaps
one day we’ll have native SSL!

Have fun using this library and | like to hear about applications!

Licensing

This software is licensed under the Eiffel Forum Freeware License, version 2. This license can be
found in theforum.txt file. Basically this license allows you to do anything with it, i.e. use it

for commercial or Open Source software without restrictions. But don’t sue me if something goes
wrong. And give me some credits.

Also explicitly allowed is copying parts of this library to your own, for example copying certain
Standard C or POSIX header wrappings. | prefer linking, but you don’t have to retype everything
if you don’t want to link.

Support

ePosIx is a fully supported program. You can send requests for help directly to me. But to
help others profit from the discussion, and perhaps to get feedback when I’'m short on time, it is
suggested that support messages are sepdsix@yahoogroups.com

Latest versions and announcements are availablelfittp//groups.yahoo.com/group
leposix/

Commercial support

I’'m available to give companies or organisations a one or two day coursergangand in partic-
ularly this library. Prices are $1000 NZD a day, excluding VAT, travel and hotel expenses. Contact
me atberend@pobox.com

mailto:eposix@yahoogroups.com
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
mailto:berend@pobox.com

Vi

Acknowledgements

| like to thank people who, one way or another, have helped me in creating this library. They're
listed in order they have been involved with this library or manual:

Eugene Melekhov<eugene_melekhov@object-tools.cam compiled it with Visual Eiffel.

As Visual Eiffel is the most strict compiler, he found a great many oversights that SmallEiffel
didn’t catch.

mico/E team | got many ideas for my C interface from the mico/E project. Sometime ago
Andreas Schulzwrote me that the micoe team wanted to usesixin mico/E. Andreas also
reportexd problems and suggested improvements, especially iERKe CGlclass. Andreas
and Robert Switzer, thanks for the bug reports!

Ida de Boer <ida@gameren.nk: it was she who provided you with tirsix to Eiffel map-

ping table inappendix A.

Steve Harris<scharris@worldnet.att.net>: suggested improvements, found a CAT call prob-
lem and we had an interesting discussion about forking.

Jorgen Tegnér <teg@post.netlink.sexeported a problem with an example, and a bug in
POSIX _EXEC _PROCESS

Marcio Marchini <mgm@magma.ca> contributed a lot to e0osix. He gave very useful ad-
vice, submitted code, and supplied patches to compHesx better on Windows. | think it is

fair to say that you thank the Windows support ir@sixto Marcio.

Eric Bezault: I've had some insightful discussions with Eric regarding architecture of libraries
such as eosix. | think we never agreed :-), but the alternative error handling is due to his
comments!

Andreas Leitner: Discussions about usingresix which will lead to even closer integration
with Gobo in subsequent releases.

[sven] :various comments and suggestions.

Colin Paul Adams: contributed classes such as the resolvers and fixes.

Till G. Bay: contributed multiplexing support foreesiXs socket class.

Colophon

The text of this manual was entered with GNU Emacs 21.4.2 on BLinux. It was typeset with
pdfTeX using the ConfXt macro package, seettp://www.pragma-ade.com . BON
diagrams were created withETAPOGST.

mailto:eugene_melekhov@object-tools.com
mailto:eugene_melekhov@object-tools.com
mailto:eugene_melekhov@object-tools.com
http://www.math.uni-goettingen.de/micoe/
http://www.math.uni-goettingen.de/micoe/
mailto:ascholz@math.uni-goettingen.de
mailto:ascholz@math.uni-goettingen.de
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:scharris@worldnet.att.net
mailto:scharris@worldnet.att.net
mailto:scharris@worldnet.att.net
mailto:teg@post.netlink.se
mailto:teg@post.netlink.se
mailto:teg@post.netlink.se
mailto:mqm@magma.ca
mailto:mqm@magma.ca
mailto:mqm@magma.ca
mailto:ericb@gobosoft.com
mailto:ericb@gobosoft.com
mailto:nozone@sbox.tugraz.at
mailto:nozone@sbox.tugraz.at
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com

1
Requirements
and installation

1.1 Requirements

e-PosIx has three requirements:

1. ePosix requires Gobo release 3.4 or higher. You can download Goltpt/Www.

gobosoft.com/ . Gobo must be installed.

2. ePosixrequires that the environment varialtl® OSI1Xis set to the root directory where the
e-PosIxare unpacked.

3. On Windows, erosix requires that the environment varialil©BO_CG set to the name of
the C compiler you are using. Failure to do so will result in link errors. Perhaps in a future
geant release this will be set automatically.

1.2 Compiling the C code

Before eposixcan be used, a few C files need to be compiled into a library. The steps differ if you
are using a Unix derivative, or a Windows based system.

1.2.1 Compiling on Unix
Before the C files can be compiledpesixmust be configured. If you have just one Eiffel compiler
on your system, this should be sufficient:

Jconfigure --prefix=3EPOSIX
make

If you have multiple Eiffel compilers, you can specify the compiler with:
Jconfigure --with-compiler=ve --prefix=$EPOSIX

The--prefix switch is a trick to make sure that you can type:
make install

after the make was successful. With this step the library is installed intdBEOSIX/lib
directory. This is the location wherermsixs src/library.xace expects it. Without the
--prefix switch the library will usually be installed itusr/local/lib

More information abouconfigure options can be displayed with:
Jconfigure --help

http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/

Requirements and installation 2

1.2.2 Compiling on Windows
For Windows system, I've supplied a tool —build withresix— that can build the necessary
e-Posixlibrary for your Eiffel and C compiler.
Type:
makelib
to get help. Type:
makelib -ise -msc
to compile the C code with Microsoft’s Visual C compiler targeting the ISE Eiffel compiler.
Only the Microsoft supplied library did work, i.e. link, with VisualEiffel:
makelib -ve -msc
Type:
makelib -se -bcb

to compile the C code with Borland’s C compiler targeting SmartEiffel. It was tested with the free
Borland C version 5.5 compiler.

Type:
makelib -se -lcc
to compile the C code with elj-win32’s Icc C compiler.

If you have both the Borland C compiler and Icc installed, make surmihlkee.exe in your path
is the correct one!

The generated library will have the name of the C compiler in its path. MakeGBO_CGBas
the correct value when compiling arpesix program, se¢able 1.1

bcb Borland C compiler.
msc Microsoft C compiler.

Icc Icc-win32 compiler.

Table 1.1 Possible values fortteOBO_CC
environment variable

If you want to compile the eosix library for use in a multi-threaded application, pass -thd
switch tomakelib.exe

makelib -ise -msc -mt
You must pass themt flag for ISE Eiffel 5.6 if you are using the Microsoft Visual C compiler.
You also will have to copy the multi-threaded library to the single-threaded library:

cd lib

copy libmteposix_ise_msc.lib libeposix_ise_msc.lib

This is only supported for the ISE Eiffel compiler. Pe@six is not specifically written for use
in multi-threaded programs nor tested much in such environments. There are certain areas (exit
handling, signal handling) that are not multi-thread safe.

3 Compiling the C code

1.2.3 Library naming conventions

The name of this library starts witlbeposix . On Unix the name of the Eiffel vendor is
appended, shbeposix_se.a is the library for SmartEiffel. On Windows systems the name

of the Eiffel vendor and the C compiler are appended. On Windows different C compilers have
incompatible libraries, so they need to be distinguished. On Windows tlasieibrary for ISE

Eiffel compiled with the Microsoft Visual C compiler is callditheposix_ise_msc.lib

The vendor names are derived from the names the Gobo Eiffel package uses G@Bi@ EIFFEL
environment variable.

The C compiler is derived from th e OBO_ C@nvironment variable.

2
Using ePOSIX

2.1 Usinglibrary.xace

Since Gobo 3.0 Eiffel library writes have a new great tool at their dispgerace . Eiffel library
writers have to write and maintain just a single fiiérary.xace . You can this file file in
the epOsSIXSIC subdirectory.

Typically, alibrary.xace is included in asystem.xace . A typical example, including
all required Gobo files, is:

<?xml version ="1.0"7?>

<system nhame="eposix_test ">
<description >

system : "eposix example program "

author : "Berend de Boer [berend@pobox.com] "

copyright " Copyright (c) 2002-2007, Berend de Boer "

license " Eiffel Forum Freeware License v2 (see forum.txt) "
date : "$Date : $"

revision "$Revision : $"

</ description >
<root class ="${ROOT_CLASS} creation ="make"/>

<option unless ="${DEBUG}" >

<option name="assertion " value ="none"/>

<option name=" garbage_collector " value ="internal "/>

<option name="finalize " value ="true " unless ="${GOBO_EIFFEL}=ve"/ >

</ option >

<option if ="${DEBUG}" >

<option name="assertion " value ="all "/>

<option name=" garbage_collector " value ="internal "/>
<option name="finalize " value ="false "/>

</ option >

<cluster =~ name="example " location ="${EPOSIX}/doc " unless ="${GOBO_EIFFEL}=

<mount location ="${EPOSIX}/src/library.xace ">
<mount location =" ${GOBO}/library/xml/library.xace ">
<mount location ="${GOBOY}/library/parse/library.xace ">

5 Vendor specific notes

<mount location ="${GOBOY}/library/lexicalllibrary.xace ">
<mount location ="${GOBO}/library/structure/library.xace ">
<mount location ="${GOBO}/library/kernel/library.xace ">
<mount location ="${GOBOY}/library/string/library.xace ">
<mount location ="${GOBO}/library/time/library.xace ">
<mount location ="${GOBOV}/library/utility/library.xace ">
<mount location ="${GOBOY}/library/kernel.xace ">

</ system >
2.2 Vendor specific notes

2.2.1 ISE Eiffel

e-PosIxsupports ISE Eiffel 5.6 and higher.resixhas been tested under the following conditions:

1. | used Microsoft Windows 2000, Service Pack 2.
2. lused the Borland C 5.5 and Microsoft Visual C++ 6.0 compiler.

Note that you need the multithreaded version of the C binding library if you use ISE Eiffel 5.6
and the Microsoft Visual C compiler. Else you will get a linker message complaining about the
unresolved external symbokrrno

If you use ISE Eiffel 5.7, you can use the suppliggiosix.ecf which will make inclusion of
eposix in your projects much easier. However, the library path when you usptsix.ecf
is slightly different.

After generation ofibeposix , seesection 1.2 do this on Unix:
cp lib/libeposix_ise.a ${ISE_LIBRARYY}/Iib/${ISE_PLATFORM}/libeposix.a
And on Windows:
copy lib\libeposix_ise.a ${ISE_LIBRARYNIb\${ISE_PLATFORMN\${ISE_C_COMPILER}NIibeposix.li

2.2.2 SmartEiffel

e-PosIxwas tested with SmartEiffel 1.2r7 on FreeBSD, Linux, QNX, Solaris and Windows.

Because SmartEiffel has a tendency to provide lots of non-ELKS routines in its kernel classes —a
bad thing in my opinion— | had to write a ne&NY. My ANYrenamesGENERAL. remove
_file , solwouldn't get a conflict witlPOSIX FILE SYSTEM. remove _file

There is no reason for the presenc&ENERAL. remove _file , | expect this to be removed
soort, so myANYcan be deleted when this has happened.

If you use Icc-win32 as your C compiler, note that for the Godd UNICODE _ CHARACTER
_CLASSESclass SmartEiffel generates code that does not compile with Icc-win32 due to some

1 I wrote that two years ago.

Using ePOsSIX 6

line length limit. This problem was still present with the latest Icc-win32 compiler, version 3.8,
compiled on December 23.

If you use SmartEiffel and if you don’t use Gobo’s gexace tool to generate SmartEiffel's Ace file,
you might see a complaint about a routstelc_signal_switch_switcher not being
found when linking. In that case you will need to putecil.se file in your directory. The
contents of this file should be:

-- The name of our include C file:

cecil.h

-- The features called from C:

stdc_signal_switch_switcher STDC_SIGNAL_SWITCH switcher
stdc_exit_switch_at exit STDC_EXIT_SWITCH at_exit

But | strongly suggest to make the switch to Gobo’s gexace tool as this tool makes compilation for
different Eiffel compilers a lot easier.

2.2.3 Visual Eiffel

e-PosiIxhas been tested with ObjectTool’s free VisualEiffel 5.0b for Linux. VisualEiffel 4.1 might
still work but is no longer tested.

Follow these steps to compile with VisualEiffel 5 on Windows:

1. Make sure the VE_BIN environment variable is set to the Bin directory in the VisualEiffel
subdirectory. On my system it is set M:/Program Files/ObjectTools/Vi-
sualEiffel/Bin

2. Create thdéibeposix_ve msc.lib library using the Microsoft Visual C compiler:

makelib -ve -msc

Usegexace to generate aresd file.

4. Make sure to set the linker supplier option to Microsoft in yeystem.xace file! So an
option like this should be present:

<option name="linker" value="microsoft" if="\${GOBO_EIFFEL}=ve"/>

w

2.3 Platform specific notes

Although eprosix should, in principle, run on every platform that supports Standardrosix, it

cannot be tested on every platform by me alone. This section gives details about the platforms I've
used. The main thing you might need to do is to editesixs src/library.xace to the

proper libraries for your platform are linked. The defasic/library.xace is suited for
Windows and Linux only. If you use any other platform, you will have to sdi/library.

xace .

2.3.1 Linux

The latest version of eosixwas tested with kernel 2.6.20.1 and glibc 2.4.

7 Platform specific notes

2.3.2 FreeBSD

The latest version of eosix was tested with FreeBSD 6.2-STABLE. FreeBSD doesn't support
fdatasync , sowe do dsync there. Cases like that are automatically detected bgdie
figure script.

You have to edifsrc/library.xace to link the proper library for FreeBSD. Look at the
comments.

Afteramake clean you have to use gmake instead of make.

2.3.3 Cygwin
The latest version of eosixwas tested with Cygwin 1.3.x. Some remarks:

1. Locking doesn’t seem to be supported.
2. fifo’s (mkfifo) are not supported.
3. No support fofdatasync , so we do dsync there.

2.3.4 BeOS

The latest version of eosix was tested with BeOS 5.03. BeOS has a miosix compatibility
layer. Some remarks:

Locking doesn’t seem to be supported.

fifo's (mkfifo) are not supported.

Hard links are not supported, only symbolic links.

No support fofdatasync , so we do dsync there.

Sockets work in BeOS, but they are not file descriptors. Stick t&cth¥ SOCKETlasses
like EPX _TCP _CLIENT _SOCKET Never pass a socket to #%BSTRACT _FILE
_DESCRIPTORas that will not work.

The trick is thatread andwrite in EPX SOCKETallrecv andsendmsg. If you
pass a socket to aABSTRACT _FILE DESCRIPTORhe POSIXread andwrite
routines will be called.

6. BeOS does not support non-blocking i/o on file descriptors or socketssi@-says it does if
you askABSTRACT _FILE DESCRIPTOR. supports _nonblocking _io , but
it doesn't.

BeOS has some options for non-blocking sockets, but they're very primitive and it seems you
can't turn blocking off once it has been turned on for example.

aprwbdpE

2.3.5 QNX

The latest version of eosixwas tested with QNX 6.2.1.

You have to edifsrc/library.xace to link the proper library for QNX. Look at the com-
ments.

Using ePOsSIX 8

2.3.6 Solaris
e-PosIx was tested against Solaris 10 for Intel. Make sure to add-sbd=c99 option to
CFLAGS Solaris seems to require this if the POSIX-1.2001 define is set.

You have to edit'src/library.xace to link the proper library for Solaris. Look at the
comments.

2.3.7 Win32

The latest version of eosixwas tested with Windows 2000, Service Pack 2. On Win32, Standard
Cis fully supported. With e0siXs abstract layer, parts ebsixand the Single Unix Specification
are also supported. Support isn’t as extensive as using the Cygwin tools.

3
Design notes

3.1 Why an entire reimplementation?

One might wonder why | reimplemented the entire Standard Craxstk library when most ven-

dors also have classes that deal with files, the file system, signals and such. Unfortunately, these
classes are nor complete nor very portable between vendors. For someone who wants to com-
pile against all the major vendors —and there are good reasons to do this— there is currently no
portable solution. That's why many portable Eiffel programs more or less contain the same code
again and again. There are some attempts to write more portable libraries, for exampiexthe
File/Directory Handling Cluster by Friedrich Dominicus, but they also are not complete nor is

the implementation satisfactory. For example they usually have much logic at the C level. | wanted
only C glue code: all intelligence should be in the Eiffel code.

Another attempt is done by the Gobo cluster: it attempts to provide users with a set of classes that
work accross all Eiffel vendors by using only the native facilities offered by each implementation.
This approach has the advantage that no C compilation is necessary. The disadvantages are:

1. The contract for these classes is probably not specifiable: for which platforms and which as-
sumptions are the contracts valid? Are these contracts the same in all implementations?
2. ltisincomplete, i.e. it doesn’t cover most of thesixroutines.

That's why | started to make the entire Standard C aodix routines available to Eiffel pro-
grammers. All these routines are nicely wrapped in classes. | spend a lot of time designing and
refactoring these, comments and improvements about its structure are very appreciated.

The advantage of makingpsix available to Eiffel programmers is that someone doesn’t need to
think about creating a set of portable file and directory classes that work on every known operating
system.POSIXis available on many platforms and for other systems there either is an emulation or
a POSIX mapping available. It's better to reuse that, instead of reinventing work that took years to
complete.

3.2 Goals and guidelines
The goals and guidelines for this library were:

A complete Standard C implementation for those who didn't have accessboroutines.

A completerosiximplementation.

Do the job in such a way that it will become the official Eiffelsix mapping.

All classes should satisfy the demands posed by the query—-command separation principle.

PwONPE

http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm

Design notes 10

5. The native Standard C amdsix routines should be available to those who don’t want to go
through a certain class layer.

6. The namesin use in tm@sixworld like file descriptor or memory map are used as class names.
This should make it easy to find a class if one knowsAhsix name.

7. Ifacommand fails, an exception code is raised. This differs frorrdisex routines where one
is expected to test for error and query #¥no variable. The only exception ignlink
when the file does not exist, no exception is raised.

8. posixassumptions should be made explicit. For Eiffel this means specifying explicit pre- and
postconditions.

9. Use of constants to influence the way a method should be avoided by providing clearly named
methods. So instead of passing a constants t€fB&IX FILE. open function to open a
file read—only, one can also calpen _read .

10. Attempt to create non-deferred class that refer to an entity that existsrosineworld. Cre-
ation of an object is binding to that entity, or creation of that entity.

11. Names should be clear, and Eiffel-like. They should not differ in just one char&csrx
names are also made available to ease use of this library for programmers thardsiow
well.

3.3 Class structure

e-Posix makes available all the Standard C awbix headers in classes likeAPI _STDIO and
PAPI _UNISTD. More details about the header translation arehiapter 17.

However, making the plain C API available is not a very interesting addition to an Eiffel program-
mer’s toolkit. Therefore, this library’s second attempt was to make an effective OO-wrapper, while
making a careful distinction between what is available in the Standard C and what is available in
POsIX. This distinction is reflected in posiXs directory structure, sefigure 3.1

4
o

goon?!

oogesooed?
LEERS b

q

%

> &yspec
se

oge

20000000

Figure 3.1 e-POSIX
directory structure

The raw Standard C APl is availablesnc/capi , the OO-wrapper is available grc/stan-
dardc . The rawpPosix APl is available insrc/papi , the OO-wrapper is available i#rc
/posix

Every Standard C anmebsixwrapper is derived from a common root, see digare 3.2

1. If a class builds upon facilities available on Standard C, its name starts with the prefix STDC_

and it inherits fromSTDC _BASE
2. If aclass builds upon facilities availablerosix, its name starts with the prefix POSIX_and it

inherits fromPOSIX BASE

11 Class structure

3. If a class builds upon facilities available in the Single Unix Specification, its name starts with
the prefix SUS_and it inherits fro@US _BASE The support for the Single Unix Specifica-
tion is not yet complete, but is continually enhanced.

4. Because we live in a world dominated by Microsoft Windows, and Microsoft Windows does
not doposix, this would mean that many users only could usestXs Standard C facilities.
These facilities are extremely limiting, for example there is no change directory command in
Standard C. Therefore mesix makes available an abstraction layer that covers routines that
have an equivalent irosix and the Single Unix Specification. These classes start with the
name EPX_. They always inherit from classes starting with ABSTRACT . These abstract
classes implement the common code. Seapter 4.3.3for more details.

Note that by using Cygwin you have a felbsix emulation layer on Windows. In that specific
environment you can usem®sixXs entireposixand Single Unix Specification layer.

*

STDC_BASE

* * *
STDC_BASE ABSTRACT ABSTRACT
name: dummy
. * * *
file: abcdef
state: unknown POSIX_BASE POSIX_BASE POSIX_BASE

Figure 3.2 Inheritance structure

The wrapper classes should be fully command-query separated and use clear names. Often the
POSIX name, if applicable, is also made available as an alias. If this is a good thing, I'm not sure. |
hope it facilitates working with the wrapper classes if you already kpogix.

Besides these directoriespesix provides a number of extensions to the pure StandardrO®ix
routines. These can be found in the subdirectories that startssitlepx . A single letter
indicates if the classes only built upon routines available in Standard>Ox

1. epxc : Standard C based extensions like URI resolving, a MIME parsexksndyeneration.
2. epxs : Single Unix Specification based extension like an HTTP client.

Design notes 12

3.4 Clients of this library

For client classes, two important classes@ifdDC _CONSTANT&HdPOSIX CONSTANTS
seefigure 3.3 The wrapper classes tend to avoid having routines whose behavior drastically de-
pends on passed constants. But if you need to use constants, your client class can just inherit from
these classes and every Standard Crarglx constant is available.

STDC_-CONSTANTS

POSIX_CONSTANT,

Figure 3.3 Standard
C andpPosix constants

3.5 Forking

Implementing forking posed some interesting challenges. | started with the basic idea that every
process has a pid:

class PROCESS
feature
pid: INTEGER

end
| wanted to be able to write two kinds of forking. The first one is forking a child as in:
class PARENT

inherit
POSIX_CURRENT_PROCESS
feature

makeis
local

13 Forking

child: POSIX_CHILD_PROCESS
do

print ("My pid: ")

print (pid)

print ("%N")

fork (child)

print ("child’s pid ")

print (child.pid)

print ("%N")

child.wait_for (True)
end

end
However, | also wanted to fork myself, because that basically is what forking is!
class PARENT

inherit
POSIX_CURRENT_PROCESS
POSIX_CHILD_PROCESS
feature

makeis
do
fork (Curreni
wait
end

executeis
do
-- forked code
end

end

The above code gives a name clash, becR@B&8IX CURRENT _PROCESS. pids a call to
theposixroutinegetpid , while the child’s pid is a variable, which gets a variable after forking.
You can solve this name clash yourself, but it is most easy to inheritR@8IX _FORK ROQT

a clash which has solved this clash already.

If you fork a child, you must wait for it. For a child process, you can B€SIX CHILD.
wait _for , if you fork yourself, you must usPOSIX CURRENT _PROCESS. wait
The variablewaited _child _pid will be set with the pid of the child process thagit
waited for.

Design notes 14

3.6 Books

Books that have been helpful during the developmentrdsxwhere (ANSI/IEEE, 1996), (Plauger,
1991)and (Lewine, 1994), see the biography sectigrage 108

4
Layers

4.1 Layers architecture

e-PosIX is written in such a way that it is possible to write a pure Standard C based application
(ANSI/ISO IS 9899: 1990), a pureosix application (Standard ISO/IEC-9945-1: 1990), or a
pure Single Unix Specification version 3 applicatitritp://www.unix-systems.org
/single_unix_specification/). AlthoughpPosix and the Single Unix Specification
merged there specifications, they are still kept separaterinses because the merge happened
relatively recently and the purosixfunctions are more very widely supported.

Based on these standards@six offers a compatibility layer. This layer offers a common frame-
work for people that want to write code that works on both Unix and Windows systems. The
compatibility layer uses all features that an operating system offers. If you use the network com-
patibility layer for example, you need a system that supports the Single Unix Specification.

4.2 Standard C

All Standard C classes start wiitbc_. They are:

1. STDC _TEXT _FILE: access text files.
2. STDC _BINARY _FILE: access binary files.

3. STC _TEMPORARY _FlLEcreate a temporary file, a file that is removed when it is closed
or when the program terminates.

4. STDC _CONSTANTS&ccess Standard C constants like error codes and such.

5. STDC _BUFFERallocate dynamic memory.

6. STDC ENV _VARaccess environment variables.

7. STDC _FILE _SYSTEMdelete and rename files.

8. STDC _SHELL _COMMANiass an arbitrary command to the native shell.

9. STDC _SYSTEMWNhccess information about the system the program is running on.

10.STDC _CURRENT _PROCESScess to current process related information like its stan-
dard input, output and error streams.
11.STDC _TIME access current time. Also can format a given time in various formats.

4.3 Windows

4.3.1 Writing portable programs

e-posixoffers three alternatives to writing programs that run on both Unix and Windows platforms:

http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/

Layers 16

1. Write programs that only rely on Standard C. If you use only Standard C classes your program
is probably quite portable. Standard C doesn't offer that much however.

2. Write programs that are based posix. You use aPosIx emulator to compile and run your
program unchanged on Windows. The only thing you have to be aware of is the distinction
between binary and text files.

3. Write programs that are based uponasiXs EPX_XXXX layer. This layer is based on e-
POsSIXs ABSTRACT_XXXX classes, that covers code that is common between Windows and
aPosixplatform.

Previous versions of eosixused a factory class approach to access this common code. This is
no longer needed. The ABSTRACT_XXXX are maded effective through EPX_XXXX classes
when compiling for Windows or foposix.

The following sections offer more details about the last two approaches.

4.3.2 Compiling POSIX programs in Windows

You can also use a very large subsebofix under Windows with a&osix emulator. I've tested
this using SmartEiffel and Cygwin’s freely available emulator. Here the steps:

1. Download the Cygwin toolkit fronittp://sources.redhat.com/cygwin .
2. Setthe compilericompiler.se togcc . Leave the system igystem.se to Windows.
3. Configure erosixas described id.2 and creatdibeposix_se.a

A few things are not available under Cygnesisix emulation:

1. POSIX FILE SYSTEM. create _fifo is not supported. Any attempt to use it will
returnENOSY SI'm not sure if returning an error is the correct solution for applications that
requireposix compatibility, because you are only warned at run-time. Another solution would
be to include a call tonkfifo and if you use it, let the linker complain.

2. There is no locking, so calls 80SIX FILE DESCRIPTOR. get _lock and such
will fail.

3. Certainposixtests assume that a more Unix like environment is available, so not all tests will
run. For example the standard Cygwin distribution doesn’t havee utility. If you make a
symbolic link fromless to more the child process test will run.

4. The current list ofimplemented functions is available fiottp://sources.redhat.

com/cygwin/fag/fagq_3.htmI#SEC17

4.3.3 Native Windows

Previous versions of eosix used a factory class approach to access Windowsoerx specific
code. This is obsolete.

If you want to write code that is portable between Windows padix use the EPX_XXXX class
layer. For example you can use B®X _FILE DESCRIPTORo use file descriptors that are
completely portable between these two OSes. EBX FILE _SYSTEMto have access to file
system specific code to change directories or get the temporary directory.

In general you can replace the POSIX_ prefix with EPX_ to compile most of the examples pre-
sented in the previousosix specific chapters. The classes currently available in the EPX_XXXX
layer are:

http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17

7 Windows

[EEN

EPX_CURRENT PROCESS
EPX _EXEC _PROCESS
EPX _FILE _DESCRIPTOR
EPX FILE _SYSTEM

EPX _PIPE.

Figure one shows hoe tHePX _FILE _DESCRIPTORCclass is derived frorABSTRACT
_FILE_DESCRIPTOR Both Windows aneosixhave an effectiv&EPX _FILE _DESCRIPTOR
class. Classes &0SIX _FILE DESCRIPTORIiImplementrosix specific functionality for a

file descriptor.

*

POSIX_BASE ABSTRACT_FD WINDOWS_BASE

I*
I*

b o
00

Figure 4.1 How EPX_XXXX classes are related to thesix and Windows classes

An example of using th&EPX FILE SYSTEMclass is shown below:
classEX_EPX1

inherit
EPX_FILE_SYSTEM
creation

make

Layers 18

feature

makeis

local
dir: STRING

do
print ("Current directory ")
dir := current_directory
print (dir)
print ("%N")
change_directory("..")
change_directory(dir)
make_directory("abc’)
rename_to("abc’, "def")
remove_directory("def")

end

end

In all abstract classes are listed. There deferred features are made effectivepx tiass for
the operating system you're compiling for.

4.4 Introduction to the next chapters

The following chapters are topic based: they discuss how to work with files for example and show
examples for all layers and give hints what is and what isn't supported in each layer.

Instead of describing every class and every feature, | decided to show short and simple examples of
common ways to use the variousgesix classes. Most examples assunmosix or Single Unix
Specification environment. If you don’'t hapesix available, you can try to replace tREOSIX

prefix by STDC . Most of the time theosix classes are based on the Standard C classes.

If you are looking for more examples, you might take a look at the classes teshesuite
directory. These classes should demonstrate and test almost every feature availabkogixhe
classes.

5
Working with
memory

5.1 Introduction

e-PosIx has several classes that allocate memory. The main clé&8§BC _BUFFERor the
equivalentPOSIX BUFFER. This class allocates a memory block that isn't moved by the
garbage collector. This is very useful for an Eiffel compiler that has a moving garbage collector.

You can also get access to shared memory uBIB$HIX SHARED _MEMORY

5.2 Allocating memory

You can dynamically allocate memory wiRTDC _BUFFERwvhich works just likePOSIX
_BUFFER

class EX_MEM2
creation

make
feature

makeis

local
mem STDC_BUFFER
byte INTEGER

do
create mem.allocate_and_clegi128
mem.poke_uint§2, 57)
byte := mem.peek_uint§2)
mem.resizg256)
mem.deallocate

end

end

Working with memory 20

With the featureSTDC _BUFFER. allocate _and _clear memory is allocated and
cleared to all zeros.

STDC _BUFFERontains many routines to read bytes and strings from the memory it man-
ages likepeek _intl6 ,peek uintlé ,orpeek int32 . It supports reading and writ-

ing 16 and 32 bit integers in little and big endian order with routinepeak _int16 _big

_endian , peek _int16 _little _endian ,andpoke _int32 big _endian

5.3 Allocating memory
Allocating dynamic memory is very useful, but not portably available for Eiffel programmers. With
POSIX _BUFFERmemory can be allocated, read and written to.

classEX_MEM

creation
make
feature

makeis

local
mem POSIX_BUFFER
byte INTEGER

do
create mem.allocate(256)
mem.poke_uint§2, 57)
byte := mem.peek_uint§2)
mem.resizg512)
mem.deallocate

end

end

For more information about the dynamic memory classssetion 5.2

5.4 Using shared memory

You can use shared memory to exchange data between different processes. It's dependent on your
posixversion if this is supported, so check for this capability explicitly!

classeEX SHARED MEM1
inherit
POSIX_SYSTEM

POSIX_CURRENT_PROCESS

21 Memory maps

POSIX_FILE_SYSTEM
creation

make
feature

makeis
local
fd: POSIX_SHARED_MEMORY
do
if not supports_shared_memory_objetien
stderr.puts("Shared memory objects not supported.9N
exit_with_failure
end
create fd.create_read_writg"/test.berent)
fd.put_string("Hello world.%N?")
fd.close
unlink_shared_memory_obje€Vtest.berent)
end

end

Make sure you always start a shared memory object with a slash. Else the behaviour is undefined
or processes might not be able to find your shared memory.

There is not yet an abstract layer implementing shared memory, but you caVidBOWS
_PAGING _FILE _SHARED _MEMOFRY Windows to get a similar effect.

5.5 Memory maps

You can map a file to memory usiiOSIX _MEMORY _MAP
class EX_MEMORY_MAP1

inherit
POSIX_SYSTEM
POSIX_CURRENT_PROCESS
creation
make

feature

Working with memory

22

makeis
local
fd: POSIX_FILE_DESCRIPTOR
map POSIX_MEMORY_MAP
byte INTEGER
correct BOOLEAN
do
if supports_memory_mapped_filden

-- Open a file.
create fd.open_read_writg"ex_memory_mapZl)e

-- Create memory map.
create map.make_share¢fd, 0, 69

-- Read a byte from the mapping.
byte := map.peek_uint§2)

correct := byte = ('a’).code

if not correct then

print ("Oops.%N)

end

-- Cleanup.
map.close
fd.close
end
end
end

There is no equivalent abstract layer class for memory mapping to support Windows yet.

6
Working with
files

6.1 Introduction

e-Posixoffers two different file classes: Standard C stream base@asifile descriptor classes.
The main difference between stream and descriptor based classes is that the stream classes offer
read and write caching. Output is not immediately written to disk or network for example.

6.2 Standard C notes

If you don’t have access to RosIX compatible system, you can use the underlying Standard C
classes. Standard C is quite restricted in certain respects: you cannot change directories for ex-
ample. On the other hand, this library gives you access to all Standard C routines, so you can use
what'’s there and write an extremely portable program.

6.3 Compatibility with Gobo

Since version 2.0 eosixis built upon foundations laid in Gobo.resE STDC _FILE/POSIX
_FILE andABSTRACT _FILE _DESCRIPTORre implementations ¢l _CHARACTER
_INPUT _STREAMandKI _CHARACTER _OUTPUT _STREAM

The eprosix classABSTRACT _FILE _DESCRIPTORas support for non-blocking i/o, see
section 7.3 Gobo'sKlI _CHARACTER _INPUT _STREANXpects blocking i/o however.
If you call ABSTRACT _FILE DESCRIPTOR. read _string you will call the rou-
tine that has support for non-blocking i/o. Due to Eiffel's renaming mechardsB5 TRACT
_FILE _DESCRIPTORwill behave blocking whenit is called as if it wakd _ CHARACTER
_INPUT _STREAM

6.4 Working with streams

The basic class for working with files, or streams as they are also calR@®&X FILE . There

are two kinds of filesPOSIX _TEXT _FILE andPOSIX _BINARY _FILE . According to

the posix standard, there is no distinction between binary and text files. But on certain systems
you must use@osix programs through an emulation layer. For example, on Windows Cygwin is
a well-knownrosix emulator. To maintain compatibility with other Windows programs, Cygwin

Working with files 24

distinguishes between text and binary files. If you use Cygwin to compile BOSiIx programs,
this distinction is therefore still important.

The first example shows how to open a text file, see also the corresponding BON diagram in
figure 6.1

--

Figure 6.1 BON diagram of opening a text file.

classEX_FILE1
creation

make
feature

makeis
local
file: POSIX_TEXT_FILE
do
create file.open_read"/etdgroup’)
from
file.read_line
until
file.end_of_input

25 Working with streams

loop
print (file.last_string
print ("%N")
file.read_line
end
file.close
end

end

It simply opens a file for reading and prints every line in it. Note that the line readrdii@sclude
the end-of-line character. This is a change in behaviour from pre edsecversions.

[POSIX_FILE] has two functions that read strings. These@aal _line andread _string

read line only returns when it has read an end-of-line character. It it has to read a 2GB char-
acters to reach that, it will return a 2GB stringgad _string returns a string with the given
number of characters, or less if the end of the file is reached. These two functions have one other
difference as wellread _line removes the end-of-line character(s), whigad _string

returns the raw string, including end-of-line characters and such.

At the end of the example, the file is closed. You don't need to explicitly close a file as it will be
closed when your object is garbaged collected. But | think it's a good thing not to rely or depend
on this, but to close your external resources as soon as you're done using them. For example many
systems have easily reached limits on the number of files a process can have open.

Reading binary files is almost the same loop, only you read it in chunks:
classEX_FILE2

creation

make

feature
chunk_sizeINTEGERIs 512

makeis
local
file: POSIX _BINARY_FILE
buffer. POSIX_BUFFER
do
create file.open_read"/bin/sh’)
create buffer.allocate(chunk_sizp
from
file.read_buffer(buffer, 0, chunk_sije
until
file.end_of_input
loop
file.read_buffer(buffer, 0, chunk_size

Working with files 26

end
file.close
end

end

This example uses a more safe version of buffer read®@SIX FILE. read _buffer
There is an untyped variaR®OSIX _FILE. read which accepts a pure pointer. There is no
need to mention that you need to watch buffer overflows carefully with this last one!

Correctly looping through files, takes care. For example the following loop is wrong:
classEX WRONG1

creation
make
feature

makeis
local
file: POSIX_TEXT_FILE
do
create file.open_read"/etdgroug’)
from
until
file.end_of_input
loop
file.read_string(256)
print (file.last_string
end
file.close
end

end

After POSIX TEXT _FILE. read _string ,end _of input might be True. But
the precondition fotast _string is thatend _of input s false. You will make an
unnecessary extra loop. The correctly coded variant is:

class EX_ WRONG2
creation
make

feature

27 Working with streams

makeis
local
file: POSIX_TEXT_FILE
do
create file.open_read"/etdgroup’)
from
until
file.end_of _input
loop
file.read_string(256)
if not file.end_of_inputhen
print (file.last_string
end
end
file.close
end

end
I myself prefer the first example, as the check is only inuhgl part, and not repeated in the loop.
The following examples shows how a binary file is created and a string is written to it.
classEX_FILE3

inherit
POSIX_FILE_SYSTEM
creation
make
feature

makeis

local
file: POSIX_BINARY_FILE

do
create file.create_write(expand_path("$SHOME/myfile.tmp))
file.put_string("hello world.%N)
file.close

end

end

Depending on the platform you are running a backslash is turned into a slash or vice versa.

This example also demonstrates how path names —file and directory names— can be expanded: if
you callPOSIX _FILE SYSTEM. expand _path , any environment variables in the path

Working with files 28

are expanded. Backslashes and slashes are always translated, but environment variable expansion
has to be done explicitly.

You can move the file pointer with two different method30OSIX _FILE. seek andset
_position . Theseek works with files up to 2 GBset _position has no such limits.
Usetell to get a position that can be passedégk . Useget _position to get a position
that can be passed g®t _position

class EX_FILE5
creation

make
feature

makeis

local
file: POSIX_BINARY_FILE
post INTEGER
pos2 STDC_FILE_POSITION

do
create file.create_read_writg"test.birt)
file.put_string ("one")
pos1 := file.tell
pos2 := file.get_position
file.put_string("twa")
file.seek(pos)
-- or file.set_position (pos2)
file.read_string(3)
if not file.last_string.is_equa("twa") then

print ("unexpected read.%M\

end
file.close

end

end

6.5 Working with streams using Standard C only

Working with text files is equal to theosix classes, only you use tlsgDcC prefix.
classEX_FILE4

creation
make

feature

Working with file descriptors

29
makeis
local
file: STDC_TEXT_FILE
do
create file.open_read"/etdgroup’)
from
file.read_line
until
file.end_of input
loop
print (file.last_string
print ("%N")
file.read_line
end
file.close
end
end

Its BON diagram, sefigure 6.2is therefore quite equal to threosix one, sedigure 6.1

Figure 6.2 BON diagram of
opening a Standard C text file.

6.6 Working with file descriptors

The file descriptors classes are quite equal to the file classes. The following example opens a file

usingPOSIX _FILE _DESCRIPTORand reads the first 64 bytes.

classeEX_FD1
creation

make

Working with files 30

feature

makeis
local
fd: POSIX_FILE_DESCRIPTOR
do
create fd.open_read("/etdgroup")
fd.read_string(64)
print (fd.last_string
fd.close
end

end

Unlike POSIX _TEXT _FILE, there is no easy way to detect end of line and end of file condi-
tions. However, a file descriptor can easily be turned into a file as the following example demon-
strates.

classeX_FD2
creation

make
feature

makeis
local
fd: POSIX_FILE_DESCRIPTOR
file: POSIX_TEXT_FILE
do
create fd.open_read("/etdgroup")
create file.make_from_file_descriptdfd, "r")
from
file.read_string(256)
until
file.end_of_input
loop
print (file.last_string
file.read_string(256)
end
file.close
fd.close
end

end

A file descriptor can also be used to lock, unlock or test for locks on a given file as the following
example demonstrates. See also the accompanying BON diagfayarm6.3.

31 Working with file descriptors

classEX_FD4
creation

make
feature

makeis

local
some_lock,
lock: POSIX_LOCK
fd: POSIX_FILE_DESCRIPTOR

do
create fd.create_read_writg"test.tmp)
fd.put_string ("Test)

create lock.make
lock.set_allow_read
lock.set_start(2)
lock.set_length(1)
some_lock= fd.get_lock(lock)
if some_lock/= Void then
print ("There is already a locRoN")
end

-- create exclusive lock
lock.set_allow_none
lock.set_start(0)
lock.set_length(4)
fd.set_lock(lock)

fd.close
end

end

POSIX FILE DESCRIPTOR. get lock is command—-query separated, that is why it
returns a new lock when gueried and there is a lock. If there is nogetk lock returns Void.
The passed lock is not modified.

A file descriptor also gives you access to the attached terminal, if any. The following example
demonstrates how to read a password without the password appearing on the screen.

classeX _FD3
inherit

POSIX_CURRENT_PROCESS

Working with files 32

*
POSIX_BASE

Figure 6.3 BON diagram of locking a portion of a file.

creation
make
feature

makeis
do
print ("Password ")
stdout.flush

-- turn off echo
fd_stdin.terminal.set_echo_inp(false
fd_stdin.terminal.apply_flush

-- read password
fd_stdin.read_string256)

-- turn echo back on
fd_stdin.terminal.set_echo_inp(true
fd_stdin.terminal.apply_now
print ("%NYour password was')
print (fd_stdin.last_striny

end

end

6.7 Windows systems: binary mode versus text mode

If you are using Unix exclusively, you can skip this section.

33 Windows systems: binary mode versus text mode

Independent of what layer you use to write Windows programs, you have to deal with binary and
text modes. And if you usually write Unix programs and want them to work on Windows too, you
have to bother with it too.

On Windows, each line of a text files ends with a carriage return character followed by a line
feed character. If you use a C text stream to read a file on Windows, a trick is employed: every
occurrence 0f%R%N'ls replaced by a singl&oN". If The same happens when writing to a text
stream: you just have to write a singN" and the C run-time code replaces this by

So make sure you are using the proper classes if you use streamSTO$e TEXT FILEif
you want to read and write text files and US€DC _BINARY _FILE to read and write binary
files.

File descriptors are binary only. So any descendant ifd@STRACT FILE DESCRIPTOR
treats input and output as binary and does no translation whatsoever. If yQABSERACT
_FILE DESCRIPTOR. read _line to read lines, the end-of-line character may either
be a"%R%N"or just a end-of-line characters regardless of the platform. So reading a file with
Windows end-of-line characters on Windows or Unix will work exactly the same.

There is no explicit support for creating text files using file descriptors with the proper Windows
end of file characters. Use eitt el DC _TEXT _FILEto create platform dependent end-of-lines
or write the proper end-of-line characters yourself.

This discussion also applies to standard input and output. If you want to use binary standard input
or binary standard output, use the file descriptors availableRX CURRENT _PROCESS

fd _stdin andfd _stdout . Ifyouusestdin andstdout you can handle text files only

on Windows. On Unix it does not matter.

For Cygwin users the story is somewhat more difficult it seems. File descriptors can be text or
binary. The default is binary however. The following information can be helpful to get the binary
versus text file distinction correct:

e Mount the volume in binary mode.
e Set the environment variable CYGWIN to ‘binary’.

More information about Cygwin and CR/LF handling can be fountht§jp://sources.
redhat.com/cygwin/fag/fagq_toc.html#TOC62

http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62

7
Working with
files: advanced

topics

7.1 Redirecting stderr to stdout

If you want to redirect all output written by your program or any child you spawn to stdout, you
can use th€®OSIX _FILE DESCRIPTOR. make _as _duplicate call:

classEX_REDIRECT1
inherit
POSIX_CURRENT_PROCESS
creation
make
feature

makeis
do
-- flush stream buffers, else output may be in wrong order
stdout.flush
stderr.flush

fd_stderr.make_as_duplica{éd_stdou}
-- all output written to stderr goes to stdout now
end

end

It's a good idea to call this at the beginning of your program, before you have written anything to
stderr or stdout. If you do that, you don't have to flush the stream buffers.

7.2 Talking to your modem

With e-Posixyou can talk to your modem. The implementation contains not all the details to write
a full-featured program as minicom, but they will be added upon request.

35 Talking to your modem

The following example tries to talk to your modem —which is expected to ldeat/modem —
and queries its manufacturer.

class EX_MODEM
inherit
POSIX_CURRENT_PROCESS
creation
make
feature

makeis

local
modem POSIX_FILE_DESCRIPTOR
term POSIX_TERMIOS

do
-- assume there is a /dev/modem device
create modem.open_read_writ€/devmodent)
term := modem.terminal
term.flush_input
print ("Input speed")
print (term.speed_to_baud_rafgerm.input_speéedl
print ("%N")
print ("Output speed")
print (term.speed_to_baud_rafgerm.output_spegll
print ("%N")

term.set_input_spee(B9600
term.set_output_speg@9600
term.set_receivgTrue)
term.set_echo_inputFalse
term.set_echo_new_ling-alse
term.set_input_contro(True)
term.apply_flush

-- expect modem to echo commands
modem.put_strind"AT%N")
modem.read_string64)

print ("Command ")

print (modem.last_string
modem.read_string64)

print ("Responsdexpect ok ")

print (modem.last_string
modem.put_strind"ATI0%N")

Working with files: advanced topics 36

modem.read_string64)
print (“Command ")
print (modem.last_string
modem.read_string64)
print ("Response")
print (modem.last_string
modem.close

end

end

*
POSIX_BASE

POSIX_FILE_DESCRIP —» POSIX_-TERMIOS

Figure 7.1 BON diagram of talking to a modem.

7.3 Non-blocking 1/0O

e-PosIxsupports non-blocking i/o on its file descriptor classes, i.e. the descend&BSHFRACT
_FILE DESCRIPTOR Useis _blocking _io to query if the descriptor blocks on
read orwrite if thereis no data. Usset blocking io to change the behavior.

Usesupports _nonblocking _io to query if the behavior with respect to blocking i/o
can be changed. On Windows file i/lo must be blocking. Only sockets on Windows can be non-
blocking. On Unix all descriptors support non-blocking i/o.

See alsaection 6.3for non-blocking i/o when @osixis used as a plugin for classes that expect
aKl _CHARACTER _INPUT _STREAMN such cases eosix reverts to blocking i/o, even
when non-blocking i/o has been enabled.

7.4 Asynchronous I/O
e-PosIX supports the asynchronous i/o featureso$ix. Not all Free Unices seem to support this
feature, nor does their support seems to be error free.
Take a look at the following example:
classEX_ASYNC1

37 Asynchronous I/0O

creation
make
feature

makeis

local
fd: POSIX_FILE_DESCRIPTOR
request POSIX_ASYNC_IO_REQUEST

do
create fd.create_read_writg"test.tmp)
create request.makefd)
request.set_offsdD)
request.put_string"hello world:")
request.wait_for
fd.close

end

end

The basic idea is that each asynchronous request is a separate object, moBéDsly ASYNC
_1O _REQUEST You prepare it through calls likeet _buffer , set _count andset
_offset . You execute the request by callingad or write

You can wait for the request to be complete by callimgit for . It should be possible to force

open requests to be synchronized to the disk ®ithchronize , but this does give strange
results on Linux. So far | haven't got access to a machine that also implements asynchronous i/o to
test if my code is correct.

8
Working with
the file system

8.1 Portability

Use theEPX_classes to write code that is portable betweenix systems and Windows.

8.2 Standard C

Standard C doesn't offer much for file systems. You can only delete and rename files.
classEX_DIR5

inherit
STDC_FILE_SYSTEM
creation
make
feature

makeis
do

rename_to("qqtest.abc.tmp "ggtest.xyz.tnip)
remove_file("qqtest.xyz.tmp
end
end

The BON diagram is shown ifigure 8.1

But you can manipulate filenames including directories, although technically they’re not part of
Standard C. The following example shows how filenames can be manipulate8 T PATH

class EX_FILENAME1
creation
make

feature

39 Standard C

*

STDC_BASE

Figure 8.1 BON diagram of deleting and
renaming files with Standard C.

makeis
local
path STDC_PATH
do
create path.make_from_string'/tmpg/myfile.&)
path.parse(<<".e'>>)
print_path (path

create path.make_expan' SHOME/myfile.&)
path.parse(<<".e'>>)
print_path (path)

end

print_path (a_path STDC_PATH is
do

print ("Directory: ")

print (a_path.directory

print (", basename")

print (a_path.basenane

print (", suffix ")

print (a_path.suffix

Working with the file system 40

print ("%N")
end
end

The parse feature is used to parse a path into its components. Give it a suffix list to remove
any matching suffices. Suffix matching is case-insensitive. If the suffix list is empty, no suffix
matching will be done. This follows standard unix behaviour: if a filename has a dot in it, it does
not necessarily mean that what follows after that dot is a suffix.

Create a path wittmake _expand to expand any environment variables in the given string to
their values.

8.3 POSIX

posix defines many commands to navigate a file system. They're made available BO&GEX
_FILE _SYSTEM The following example navigates to the user’s home directory, create a direc-
tory and removes it.

classEX_DIR1
inherit
POSIX_FILE_SYSTEM
creation
make

feature

makeis
do
change_directoryexpand_path("~"))
make_directory("qqtest.xyz.tmp
remove_directory("qqtest.xyz.tmp
end

end
To get access to the file system, inheriting fromB@SIX FILE SYSTEMclass is easiest.

There are also lots of functions to test for existence, readability or writability of files. idJse
_modifiable to testif afile is readable and writable.

classEX_DIR2
inherit

POSIX_FILE_SYSTEM

41 POSIX

creation
make
feature

makeis

local
perm POSIX_PERMISSIONS

do
print_info (is_existing("/tmp"), "existing)
print_info (is_executablg"/bin/Is"), "executabl§)
print_info (is_readable("/etdpasswd), "readabl€)
print_info (is_writable ("/etdpasswd), "writable")
print_info (is_modifiable("/etdpasswd), "readable and writabl§

perm := permissiong’/etdpasswd)

if perm.allow_group_readhen

print ("Group is allowed to readetdpasswd.%N)
else

print ("Group is not allowed to readetdpasswd.%N)
end

if perm.allow_anyone_read_writdhen

print ("Anyone is allowed to read file.tmp.%N
else

print ("Anyone is not allowed to read file.tmp.%jN
end

end

print_info (okt BOOLEAN what STRING is
do
print ("is_")
print (whaf
print (* returned")
print (ok)
print (".%N")
end

end

Be aware thaPOSIX FILE SYSTEM. is _readable uses the real user and group IDs
instead of the effective ones.

As can be seen in the above example, one can test for the permissions of a file usgShe
_PERMISSIONSclass. A new permissions class is created for el D5IX FILE _SYSTEM.

Working with the file system 42

permissions call, so it is best to cache this object. If the permissions change on the file sys-
tem, this class does not reflect reality anymore, because it caches the permissioROSlse
_PERMISSIONS. refresh to update the contents. Uset _allow _group _write
set _allow anyone read and such to set permissions.

e-Posixalso gives you access to tetat function using thd?OSIX _STATUSclass.
classEX_DIR4

inherit
POSIX_FILE_SYSTEM
creation
make
feature

makeis

local
stat POSIX_STATUS

do
stat := status("/etdpasswd)
print ("size ")
print (stat.size.oyt
print (".%N")
print ("uid: ")
print (stat.permissions.ujd
print (".%N")

end

end

The POSIX _STAT, and through iPOSIX PERMISSIONS are also returned by OSIX
_FILE _DESCRIPTOR. status

Browsing a directory can be done by allocatdé@SIX _DIRECTOR¢lass through thPOSIX
_FILE _SYSTEM. browse _directory feature:

class EX_DIR3

inherit
POSIX_FILE_SYSTEM

creation

make

43 POSIX

feature

makeis
local
dir: POSIX_DIRECTORY
do
from
dir := browse_directory(".")
dir.start
until
dir.exhausted
loop
print (dir.item)
print ("%N")
dir.forth
end
dir.close
end

end
As can be seelROSIX DIRECTOR Yollows EiffelBase conventions.

When browsing a directory, all entries in that directory are returned. You might want to be inter-
ested only in certain files. eosixhas the ability to define arbitrary filters. Standarelasix comes
with an extension filter that only shows files with a certain extension:

classEX_DIR6
inherit
POSIX_FILE_SYSTEM
creation
make
feature

makeis
local
dir: POSIX_DIRECTORY
do
from
dir := browse_directory(".")
dir.set_extension_filte(".€")
dir.start
until
dir.exhausted

Working with the file system

44

loop
print (dir.item)
print ("%N")
dir.forth
end
dir.close
end

end

9
Working with
processes

9.1 Introduction

This chapter discusses starting processes, either by executing new ones or forking the current one.
It also describes support for process communication using signals.

9.2 Executing a child command

Any command line can be executed by using®@SIX SHELL COMMANIss. Just pass
a command line andxecute it.

classeEX_CMD
creation

make
feature

makeis
local
command POSIX_SHELL_COMMAND
do
create command.maké"/bin/ls *")
command.execute
print ("Exit code ")
print (command.exit_codle
print ("%N")
end

end

9.3 Reading stdout of a child process

It is possible to read the standard output of a child process or write to its standard input. This
is one of the easiest ways to communicate with child processesEPile_ EXEC _PROCESS

Working with processes 46

class makes this possible both under Windows and Unix. For example the creation fealge
_capture _output makes the standard output of the child available, wiigke _capture
_input makes the standard input available.

classEX_EXEC1
inherit
EPX_CURRENT_PROCESS
creation
make
feature

makeis
local
Is: EPX_EXEC_PROCESS
do
-- list contents of current directory
create Is.make_capture_outputls”, <<"-1", ".">>)
Is.execute
print ("Is pid: ")
print (Is.pid)
print ("%N")
from
Is.fd_stdout.read_string512)
until
Is.fd_stdout.end_of_input
loop
print (Is.fd_stdout.last_string
Is.fd_stdout.read_string512)
end

-- close captured io
Is.fd_stdout.close

-- wait for process
Is.wait_for (True)
end

end

The three features that give access to the child’s standard input, standard output and standard error
pipes are nameftl _stdin ,fd _stdout andfd _stderr

It is important to wait for the child that has been executed at some point in time, just like any
Posix aplication would have to do. If you do not wait for a child process, memory in the kernel

47 Reading stdout of a child process

is not released and eventually you would run out of processes. Also only afteiPfife EXEC
_PROCESS. wait_for command is the exit code of the process available.

It is possible to write to standard input and read standard output and standard error at the same
time, but this requires extreme care. It usually leads to code that deadlocks, because the parent
process is reading the standard output of the child and the child is waiting for the parent to write to
its standard input. Or the child is blocked while writing to its standard output, because its output
buffer is full. But the parent process isn't reading the child’s standard output, because it is trying
to write to the child’s standard input.

UnderPosix it is possible to use the buffered featurstslin , stdout andstderr . The
following example is the same as the previous example, but us€IdX EXEC PROCESS
class:

classEX_EXEC2
inherit
POSIX_CURRENT_PROCESS
creation
make
feature

makeis
local
Is: POSIX_EXEC_PROCESS
do
-- list contents of current directory
create |Is.make_capture_outpytls", <<"-1", ".">>)
Is.execute
print ("Is pid: ")
print (Is.pid)
print ("%N")
from
Is.stdout.read_string512)
until
Is.stdout.end_of _input
loop
print (Is.stdout.last_string
Is.stdout.read_strind512)
end

-- close captured io
Is.stdout.close

Working with processes 48

-- wait for process
Is.wait_for (True)
end

end

Itis possible to check if a child process has terminated or not. Pass False to the suspend parameter
of theEPX _EXEC _PROCESS. wait _for feature and checis _terminated to see
if the child process has stopped or not.

9.4 Catching a signal with Standard C
You can catch signals with Standard C. The following example demonstrates a program that can be
safely interrupted by pressing Ctrl+C:

class EX_SIGNAL3

inherit
EPX_CURRENT_PROCESS
STDC_CONSTANTS
STDC_SIGNAL_HANDLER
creation
make
feature
handled BOOLEAN

makeis
local
signat STDC_SIGNAL
do
create signal.make(SIGINT)
signal.set_handlefCurreni)

signal.apply

print ("Wait 10s or press CtHC.%N")
sleep (10)

if handledthen

print ("Ctrl+C pressed.%N

else

print ("Ctrl+C not pressed.%N

49 Catching a signal withPosix

end
end

signalled (signal_value INTEGER is
do

handled:= True

end

end

As Standard C doesn't have a sleep command, this prograntlid¥s CURRENT _PROCESS
to get either thesleep from Posix or from Windows.

More explanation about the program itself can be founskiction 9.5

9.5 Catching a signal withPosix

Every class can become a signal handler by inheriting fROSIX _SIGNAL _HANDLER
Implement thesignalled method as that is the function that is called when the signal occurs.
UsePOSIX _SIGNAL. set _handler to make your class a signal handler and eglply

to start receiving signals when they occur.

The following examples demonstrates a program that can be safely interrupted by pressing Ctrl+C:
class EX_SIGNAL1

inherit
POSIX_CURRENT_PROCESS
POSIX_CONSTANTS
POSIX_SIGNAL_HANDLER
creation
make
feature
handled BOOLEAN
makeis
local
signat POSIX_SIGNAL
do

create signal.make(SIGINT)
signal.set_handle(Curren?

signal.apply

Working with processes 50

print ("Wait 30s or press CtHC.%N")
sleep (30)
if handledthen
print ("Ctrl+C pressed.%RN)
else
print ("Ctrl+C not pressed.%N
end
end

signalled (signal_value INTEGER is
do
handled:= True
end

end

All precautions and warnings when handling signals in C apply equally well in Eiffel of course.
While in a signal handler, the signal will not be delivered again. SaIDC _SIGNAL _HANDLER.
reestablish to make your signal handler interruptable.

You can write a single signal handler, that handles multiple signals. This makes it possible to
have signal handling code in just one place. Create a class that inherit®fodshX SIGNAL
_HANDLERPass this class to tiROSIX _SIGNAL. set _handler for every signal you

want to catch. The signal value is passed as parameteQ81X _SIGNAL _HANDLER.
signalled , so you can write ainspectstatement based on the value.

9.6 General wait for child handler

If you do not want to wait for every child process explicitly, you can write a simple SIGCHLD
handler that just does a wait (I found this idea in (Stevens, 1998)):

class EX_SIGNAL2

inherit
POSIX_CURRENT_PROCESS
POSIX_CONSTANTS
POSIX_SIGNAL_HANDLER

creation
make

feature

makeis
local

51

Forking a child process

signat POSIX_SIGNAL

do
create signal.make(SIGCHLD
signal.set_handle(Curren)

signal.apply

-- spawn child processes here
-- you dont have to wait for them
end

signalled (signal_value INTEGER is
do
wait
end

end

In Unix 98 you should be able to set the ignore handler for this signal. Inpose systems the

behaviour of the ignore handler is unspecified.

9.7 Forking a child process

Forking is very easy with this Eiffetosiximplementation. The steps:

1. Write a child by inheriting fronrPOSIX _FORK _ROO#&nd implementing it®xecute

method.

2. The class that will do the forking, should inherit frd®SIX CURRENT _PROCESS
3. Pass the child to the inherited feat?P®©SIX _CURRENT _PROCESS. forkand the

forking has begun.

The following class shows the process that forks the child.

class
EX_FORK1
inherit
POSIX_CURRENT_PROCESS
POSIX_FILE_SYSTEM
creation
make

feature

Working with processes 52

POSIX_CURRENT_PROCESS PQSIX_CHILD_PROCESS

POSIX_FORK_ROO

Figure 9.1 BON diagram of forking a child process.

makeis

local
reader POSIX_TEXT_FILE
stop_sign BOOLEAN
child: FORK_CHILD

do
-- necessary for SmallEiffel before -0.75 beta 7
ignore_child_stop_signal

unlink ("berend.tmp)

create_fifo("berend.tmp, S_IRUSR+ S_IWUSR
create child

fork (child)

-- we will now block until file is opened for writing
create reader.open_read"berend.tmp)
from
stop_sign:= False
until
stop_sign
loop
reader.read_string(128

53 Forking a child process

print (reader.last_striny

stop_sign:= equalreader.last_string,"stop%N’)
end
reader.close

-- now wait for the writer to terminate
child.wait_for (True)

unlink ("berend.tmp)
end

end

This class just displays anything that the writer, the child class, writes teitloe When it rec-
ognizes stop, the reader stops after waiting for the child it has spawned. Note that this is very
important! Wait for any child you have spawned else you might get spurious errors if the process
exits and a child has not yet finished.

The following class shows the forked child.
class FORK_CHILD

inherit
POSIX_FORK_ROOT
feature

executeis

local
writer: POSIX_TEXT_FILE

do
create writer.open_append"berend.tmp)
writer.put_string ("first%N")
writer.put_string ("stop%N)
writer.close

-- we give the reader some time to process these messages
sleep (10)
end

end

10

Querying the
operating sys-
tem

10.1 Current time

e-Posixhas a very complete class to work with times. A time can be set from the current time
by usingPOSIX _TIME. make from _now . Before a time can be printed, it needs to
be converted to either local time omrc. Do this by callingto _local orto _utc . Date

and times can be printed using featuresle$ault _format , local _date _string
local _time _string or a custom format througlormat

classEX_TIME1

creation
make
feature

makeis

local
timel,
time2 POSIX_TIME

do
create timel.make_from_now
timel.to_local
print_time (timeJ)
timel.to_utc
print_time (timel)
create time2.make_timg0, 0, 0O
print_time (time2
create time2.make_date_timg 970, 10, 31, 6, 55,)0
time2.to_utc
print_time (time2

if time2 < timel then

print ("time2 is less than timel as expected.9%N
else

print ("!! time2 is not less than timel.%N

55 Accessing environment variables

end
end

print_time (time POSIX_TIMB is

do
print ("Date ")
print (time.yeaj
print ("-")
print (time.month
print ("-")
print (time.day
print (" ")
print (time.hou)
print (":")
print (time.minutg
print (":")
print (time.secony
print ("%N")
print ("Weekday ")
print (time.weekday
print ("%N")
print ("default string ")
print (time.default_format
print ("%N")

end

end

10.2 Accessing environment variables

Standard C supports reading environment variables % EbDC _ENV VAR
class EX_ENV2

creation
make
feature

makeis
local
env STDC_ENV_VAR
do
create env.make("HOME")
print (env.valug

Querying the operating system 56

print ("%N")
end

end
Theprosixdoesn't add any functionality here:
classEX_ENV1

creation
make
feature

makeis
local
env POSIX_ENV_VAR
do
create env.make("HOME")
print (env.valug
print ("%N")
end

end

It is not possible irrosix to set an environment variable. This is possible with the Single Unix
Specification classes. UsirlgUS ENV _VABet value it is possible to set environment vari-
ables.

10.3 Capabilities

Use the portabl&PX _SYSTENMIass to query for various system dependent constantsriike
_open _files . There are operating system dependent querid3@8IX SYSTEMand
WINDOWS _SYSTEM

11
Working with
the network

11.1 MIME parsing

Many of the Internet’s protocols send data in MIME formaeasix offers a MIME parser ilePX
_MIME _PARSERb parse such data and MIME message creatida®X _MIME _PART

MIME messages consist of two parts: a header and a body. The body itself can consist of another
header and body. Some examples of using this class are sh@&ntion 12.7

11.2 Sockets

e-Posixcurrently has fairly complete socket support. Not every option offered by the Single Unix
Specification is supported yet, but as always we will attempt in every release to reach full support
for every function offered.

As usual the EPX_XXXX classes are available on both Unix and Windows platform. The SUS_XXXX
classes are available only on Single Unix Specificatjprsystems and extend the EPX_XXXX
classes with Unix specific functionality.

TCP functionality is available for both Windows and Unix. UDP is only available on Unix, as well
as Unix streams.

11.3 Echo client

The following example demonstrates a simple echo client for TCP. An echo server must be running
on your machine:

classEX_ECHO_CLIENT_TCP
creation

make

feature

hello: STRINGis "Hello World.%N'
makeis

local
host EPX_HOST

Working with the network 58

service EPX_SERVICE

echa EPX_TCP_CLIENT_SOCKET

sa EPX_HOST_PORT

do

create host.make_from_nam@glocalhost)
create service.make_from_namechd, "tcp")

create sa.make(host, servicg

create echo.open_by addregsa)
echo.put_string(hello)
echo.read_string256)

if not echo.last_string.is_equdhello) then

print ("I got ")
print (echo.last_striny
end
end
end

The following example demonstrates a simple echo client for UDP. An echo server must be running
on your machine:

classEX_ECHO_CLIENT_UDP
creation

make

feature

hello: STRINGis "Hello World.%N

makeis
local
host SUS HOST
service SUS_SERVICE
echo SUS_UDP_CLIENT_SOCKET
sa EPX_HOST_PORT
do
create host.make_from_nam@localhost)
create service.make_from_nam&echd, "udg")

create sa.make(host, servicg
create echo.open_by addregsa)

echo.put_string(hello)
echo.read_string256)

59 Echo client and server

if not echo.last_string.is_equghello) then

print ("!! got ")
print (echo.last_striny
end
end
end

11.4 Echo client and server

The following class demonstrates an echo server and client in a single class. It uses unix sockets (a
fast interprocess communication) to achieve that.

classEX_ECHO_UNIX
inherit
SUS_FILE_SYSTEM
SUS_CONSTANTS
creation
make
feature

makeis
-- Echo client and server, unix style.
local
client_socket SUS_UNIX_CLIENT_SOCKET
server_socketSUS UNIX_SERVER_SOCKET
client_fa SUS_UNIX_SOCKET
correct BOOLEAN
do
if is_existing("/tmpeposiX) then
unlink ("/tmpeposix)
end
create server_socket.listen_by_patlYtmpeposiX, SOCK_STREAM
create client_socket.open_by paftVytmpeposiX, SOCK_STREAM
client_fd := server_socket.accept
client_socket.put_stringhello)
client_fd.read_string(256)
correct := client_fd.last_string.is_equdkhello)
if not correct then
print ("Oops.%N)
end

Working with the network

60

client_fd.put_string(berend
client_socket.read_strin¢256)

correct := client_socket.last_string.is_equéberend
if not correct then

print ("Oops.%N)

end

client_socket.close

client_fd.close

server_socket.close

unlink ("/tmpeposix)
end

feature {NONE -- Implementation

hello: STRINGis "Hello World.%N'
berend STRINGis "hello berend%N

end
The following class is similar, but uses TCP.
classeEX_ECHO_TCP

inherit
SUS_CONSTANTS
creation
make
feature

makeis
-- Echo client and server, tcp style.

local
host SUS_HOST
service SUS_SERVICE
client_socketSUS TCP_CLIENT_SOCKET
server_socketSUS_TCP_SERVER_SOCKET
sa EPX_HOST_PORT
client_f¢ ABSTRACT _TCP_SOCKET
correct BOOLEAN

do
create host.make_from_nam@localhost)
create service.make_from_pofport, "tcp")
create sa.make(host, servicg

61 Echo client and server
create server_socket.listen_by address)
create client_socket.open_by_addrets)
client_fd := server_socket.accept
client_socket.put_stringhello)
client_fd.read_string(256)
correct := client_fd.last_string.is_equdhello)
if not correct then
print ("Oops.%N)
end
client_fd.put_string(berend
client_socket.read_string256)
correct := client_socket.last_string.is_equéberend
if not correct then
print ("Oops.%N)
end
client_socket.close
client_fd.close
server_socket.close
end

feature {NONE -- Implementation

port: INTEGERIis 9877
-- Thanks to W. Richard Stevens

hello: STRINGis "Hello World.%N'
berend STRINGis "hello berend%N

end

12

Working with
the network:
advanced top-
ICS

12.1 Introduction

In version 2.0 erosix has introduced the first of a series of classes for writing common Internet
clients and servers.

Many of these classes are a work in progress, and might not have the robustness desired for critical
applications.

12.2 FTP client

The ePOSIXFTP client supports almost all FTP operations, but currently has a fairly basic interface.
Read and write operations return a stream for example. Reading and writing files to the file system
is left as an exercise for the reader.

The following example demonstrates reading a directory from an FTP server and receiving a file:
classEX_FTP1

creation
make
feature

makeis

local
ftp: EPX_FTP_CLIENT

do
-- ftp://ftp.nim.nih.gov/nimdata/sample/serfile/serfilesamp2005.xml
create ftp.make_anonymou@erver_name; guest)
ftp.open
if ftp.is_positive_completion_repthen
ftp.change_directory(directory_namg

63 HTTP client

ftp.name_list
dump_data_connectio(ftp.data_connection
ftp.read_reply
ftp.retrieve (file_namé
dump_data_connectiofftp.data_connectign
ftp.read_reply
ftp.quit
ftp.close

else
print ("Connect fails.%N)

end

end

dump_data_connectio(stream KI_CHARACTER_INPUT_STREANMs
-- Dump stream input.
require
stream_not_voidstream/= Void
do
from
stream.read_character
until
stream.end_of _input
loop
print (stream.last_charactgr
stream.read_character
end
stream.close
end

feature -- Access
directory_name STRINGis "/pub/FreeBSD
file_name STRINGis "README.TXT
server_nameSTRINGis "ftp.freebsd.orf

end

EXP _FTP _CLIENT also supports creatingriake _directory) or deleting directories
(remove _directory), deleting (emove _file), renaming (ename _to), and up-
loading files gtore).

12.3 HTTP client

The following example demonstrates retrieval of a file through HTTP usingé HTTP 10
_CLIENT class:

Working with the network: advanced topics 64

classeX HTTP1
creation
make
feature
url: STRINGis "http://www.freebsd.orindex. html

makeis
local
uri: UT_URI
client EPX_HTTP_10_CLIENT
do
create uri.make (url)
create client.make(uri.authority) -- www.freebsd.org
client.get (uri.path) -- /index.html
client.read_response
print (client.body.as_string
end

end

It also demonstrates the use of idd _URI class to parse an URI into its components.

12.4 HTTP server

e-Posix offers a basic HTTP server BPX _HTTP _SERVERThe followng example demon-
strates starting such a server and let it listen on the local interface.

classeEX HTTP_SERVER1
inherit

EPX_CURRENT_PROCESS
creation

make
feature

makeis

local
server EPX_HTTP_SERVER

do
create server.makgport_to_listen_on, document_rgot

65 HTTP server

server.set_serve_xhtml_if support@else

server.listen_locally

from

until
False

loop
server.process_next_requests
millisleep (100

end

end

port_to_listen_onINTEGERIis 5566

document_root STRINGis "/variwwwhtml'

end
EPX_ HTTP _SERVER:Ill say to clients that it serves XHTML instead of HTML. Or in MIME
types:application/xhtml+xml instead oftext/html . In case that the HTML pages

which are served are not actually XHTML, you will need to turn this option off with a caketb
_serve _xhtml _if _supported

In the main loop all available requests are served after which a brief sleep follows. Without the
sleep the process would use 100% CPU.

The server will return the files undévar/www/html from the file system to the browser.

It's also possible to create and register servlets which can respond to requests. A servlet is like a
built-in CGI program. A servlet allows maximum control over the response send to the browser,
not only the response header, but also the response code send to the client.

A servlet is built after REST principles. A servlet is designed to behave like a resource. You can
bind it to a URL and after that it can handle any of the HTTP commands as GET, POST, or PUT
that are send to it. By default a servlet will return error code 405, meaning “Method not allowed”.
The simplest servlet, which always returns 405 is therefore the following:

classeEX HTTP_SERVLET1
inherit
EPX_HTTP_SERVLET
creation
make

end

This servlet has to be registered with the HTTP server. The following example shows a virtual
HTTP server, one that doesn’t have a document root and therefore will never read the file system.
It attaches the servlet to the ddustomers

classEX_HTTP_SERVER2

Working with the network: advanced topics

66

inherit
EPX_CURRENT_PROCESS
creation
make
feature
makeis
local
server EPX_HTTP_SERVER

servlet EX HTTP_SERVLET2
do

create server.make_virtua(port_to_listen_oh

create servlet.make

server.register_fixed_resourq®/customers, servle)

server.listen_locally

from

until
False

loop
server.process_next_requests
millisleep (100

end

end

port_to_listen_onINTEGERIis 5566

end

You might have noticed it attached servieEX HTTP _SERVLET2 This servlet is shown

below:
classeEX HTTP_SERVLET2
inherit
EPX_HTTP_SERVLET
redefine
get_header
end

creation

make

67 HTTP server

feature {EPX_HTTP_SERVER-- Execution

get_headeris
do
doctype
b_html
b_head
title ("Customery
e _head
b_body
p ("1. Johr)
p ("2. Luke)
p ("3. Matthew)
p ("4. Peté)
e_body
e_html
write_default_header
add_content_length
end

end

OnlytheEX HTTP SERVLET. get _header method needs to be overwritten. The format

is usually to write the body first and write the header last. This might seem counter-intuitive, but for

persistent connections you need to supply a Content-Length if you write a body. Another solution
would be to use the chunked transfer encoding, but that isn’t explicitly supported yet, so you have
to do the work yourself here.

So for dynamically created content, you usually write the body in the header, so you can setup the
header. There is alsoBX HTTP _SERVLET. get _body , but it is usually not overriden
for dynamic content.

TheEPX HTTP _SERVERass is responsible for sending the header and the body and to guard
against any errors.

In the same manner you can write code to react to PUT, POST or DELETE requests. As browsers
usually do not support PUT or DELETE requestsRPX HTTP _CONNECTIONill turn a

POST request into a PUT or DELETE when it finds a special value. The implementation is in
remap _http _method . This happens under the following circumstances:

1. Therequestis a POST request.
2. The POST request is a submit of form fields (regardless of the chosen encoding).
3. There is a form field that starts with the name “http-method:”.

In these cases the substring after “http-method:” is taken to override the POST request into what-
ever is present as substring.

Figure 12.1shows the BON diagram of tHePX HTTP _SERVERA server can have zero or
more registered servlets and zero or more open connections.

Working with the network: advanced topics 68

+ +
Eg: EPX_HTTP_SERVER) ——=MEPX_HTTP_SERVLE]

Figure 12.1 BON diagram ofEPX_HTTP_SERVER

The server supports persistent connections. In HTTP/1.1 connections are persistent by default. If
not requested otherwise, the server will keep the connection open and monitor it to see if any data
is coming in. If no data has been send in the last 15 seconds, the connection is forcibly closed.

The server can have zero or more servlets registered. A single servlet can be connected to multiple

URLs by callingEPX HTTP _SERVER. register fixed _resource with the same
servlet.
There is also aegister _dynamic _resource call to register servlets where part of

the data is present in the URL. For example the URUstomer/1 looks much better than
/customer?id=1 . Register a servlet that takes part of the URL as input as follows:

server.register_dynamic_resour€dcustomef(id)", servle}

Every name present between parentheses in such a path is appela&@ti ttH TTP _CONNECTION.
request _form _fields . To a servlet it does therefore not matter if a query is used to input
the data, if it is part of a POST or if it was part of the URL. It all becomes input data.

12.5 IMAP4 client

e-Posiximplements an IMAP4 client that supports IMAP4 access. The following example con-
nects to an IMAP4 server and performs various operations:

class EX_IMAP41
inherit
POSIX_CURRENT_PROCESS
creation
make
feature

makeis
local
client EPX_IMAP4_CLIENT
do
create client.make(hos)
if client.is_openthen
client.login (login_name, passwojd
if client.response.is_othen

69 IRC client

client.list_subscribed

client.examine("INBOX")

client.fetch_messag@t)

print (client.response.current_message.message
client.close_mailbox

client.logout

else

print ("Login failed.%N)

end

client.close
else

print ("Cannot connect to server.%N
end
end

feature -- Access
host STRINGis "bmacHi

password STRINGis

local

password_envSTDC_ENV_VAR

once

create password_env.mak€IMAP4_PASSWORID

Result:= password_env.value

ensure

password_not_voidResult/= Void

end

end

The first operation is reading the list of available folders.. Next it examines the standard INBOX
folder, i.e. open it for reading only. It reads message 4 and prints it. And finally it closes the
mailbox.

The erPosIXIMAP4 is fairly full featured, it can read and write messages and receive various pieces
of information about the email such as just its header ot its size.

12.6 IRC client
e-Posix also has an IRC client implementatidaPX |IRC _CLIENT. The following example
demonstrates logging on to tieiffel channel orirc.freenode.net and printing all
the messages.

classeEX_IRC1

creation

make

Working with the network: advanced topics 70

feature

makeis
local
irc: EPX_IRC_CLIENT
eiffel EPX_IRC_CHANNEL
do
create irc.make (host, username, password
irc.set_print_responsé€True)
irc.set_real_namg"EiffelBot")
irc.open
if irc.is_openthen
irc.read_all
irc.join ("#eiffel’)
eiffel := irc.last_joined_channel
irc.set_blocking_io(True)
from
irc.read
until
False
loop
irc.read
end
-- We wont come here.,
irc.close
end
end

host STRINGis "irc.freenode.nét
username STRINGis "eiffelbot’

password STRING
-- nl/a

end

The printing is done by callingEPX IRC _CLIENT. set _print _response . Not
something you probably will use except when debugging. Also weakt blocking _io
to True, but real IRC clients will be non-blocking.

Look at the test clas§sEST IRC CLIENT for more examples, or download the Eiffel Bot
from the eposIx page.

12.7 SMTP client

EPX SMTP _CLIENTmplements support for sending email to an SMTP server. It only sup-
ports servers that can receive 8 bit messages. This class cannot convert 8 bit data to 7 bit data.

71 Sending plain text email

12.8 Sending plain text email

The following example demonstrates sending a plain text email with this class:
classEX_SMTP1

creation
make
feature

makeis

local
messageEPX_MIME_EMAIL
mail: EPX_SMTP_MAIL
smtp EPX_SMTP_CLIENT

do
create message.make
message.header.set_froffBerend de Boé€r "berend@pobox.cotn
message.header.set_{Berend de Bo€r "berend@pobox.coh
message.header.set_subj¢dEX _SMTPI)
message.create_singlepart_body
message.text_body.append_strifigiello!")
create mail.make(sender_mailbox, recipient_mailbox, mesgage
create smtp.makesmtp_server_name
smtp.open
smtp.ehlo(my_domaip
smtp.mail (mail)
smtp.quit
smtp.close

end

my_domain STRINGis "nederware.rl
smtp_server_nameSTRINGis "localhost
sender_mailboxSTRINGis "berend
recipient_mailbox STRINGis "berend

end
There are three steps in creating an email:

Working with the network: advanced topics 72

1. Create the message usbBBX _MIME _EMAIL which basically isakeEPX _MIME _PART
It has and has several convenience routines to quickly create such a message.

2. Create the mail usingX _SMTP _MAIL This class is a container for the sender, the recipi-
ents and the actual message that is to be sent.

3. Create an instance of tHePX _SMTP _CLIENTclass. TheEPX _SMTP _CLIENT.
ehlo command identifies the client with the server. Pass as argument the local domain, or
if this is not available, the ip address of the client. The actual message is send after calling
themail command. It's argument is the EclassEPX_SMTP_MAIL instance created in the
previous step.

After the message has been sdeBX _SMTP _CLIENT. quit is called to end the session
andclose is called to close the connection with the SMPT server.

The creation routine of EPX_SMTP_CLIENT] takes as argument the SMTP server. Correctly
finding the SMTP server for a given recipient involves querying a DNS server for MX records.
e-PosiIx does not support this at the moment. However, passing the local SMTP server is usually
sufficient as this server knows how to figure this out.

12.9 SendingHT™ML email

The following example demonstrates sendingi@mL text email with this class:
class EX_SMTP2

creation
make
feature

makeis

local
type_namesexpanded EPX_MIME_TYPE_NAMES
messageEPX_MIME_EMAIL
mail: EPX_SMTP_MAIL
smtp EPX_SMTP_CLIENT

do
create message.make
message.header.set_frafiBerend de Boér "berend@pobox.com
message.header.set_{tBerend de Boé€r "berend@pobox.coh
message.header.set_subj¢tEX_SMTP2)
message.header.set_content_type
type_names.mime_type_text, type_names.mime_subtype html,
"us-ascif)
message.create_singlepart_body
message.text_body.append_strifingml)
create mail.make(sender_mailbox, recipient_mailbox, mesgage
create smtp.makesmtp_server_name

73 Sending both text anditML email

smtp.open
smtp.ehlo(my_domaip
smtp.mail (mail)
smtp.quit
smtp.close

end

my_domain STRINGis "nederware.nl
smtp_server_nameSTRINGis "localhost
sender_mailboxSTRINGis "berend
recipient_mailbox STRINGis "berend

htmt STRINGis "[
<htmp
<head>
<title>EX_SMTPZ/title>
</head>
<body>
<h1>Hello</h1>
<p>HTML email, brought to you by eposip>
</body>
I

end

The main difference is setting the content type to be “text/hmtl”. And the body mustie of
course.

12.10 Sending both text andTML email

As not all email clients can displayrmL, most mailers send both a text andramiL version. The
following example demonstrates how this can be donerogx

classeEX_SMTP3
creation
make
feature
makeis
local

type_namesexpanded EPX_MIME_TYPE_NAMES
messageEPX_MIME_EMAIL

Working with the network: advanced topics 74

ct: EPX_MIME_FIELD_CONTENT_TYPE

text_part,

html_part EPX_MIME_PART

mail: EPX_SMTP_MAIL

smtp EPX_SMTP_CLIENT

do

create message.make

message.header.set_froffBerend de Boér "berend@pobox.cot
message.header.set_{Berend de Bo€r "berend@pobox.coh
message.header.set_subj¢dEX _SMTP3J3)

create ct.make_multipart
type_names.mime_subtype_alternative,
"----=_my-boundary--+)

message.header.add_fieck)

message.create_multipart_body

text_part:= message.multipart_body.new_part
text_part.header.set_content_type

type_names.mime_type_text, type_names.mime_subtype plain,
"ISO-8859-1)

text_part.create_singlepart_body
text_part.text_body.append_strirftex)

html_part := message.multipart_body.new_part
html_part.header.set_content_type

type_names.mime_type_text, type_names.mime_subtype html,
"ISO-8859-1)

html_part.create_singlepart_body
html_part.text_body.append_strirf{gtm])

create mail.make(sender_mailbox, recipient_mailbox, mesgage
create smtp.makegsmtp_server_name

smtp.open

smtp.ehlo(my_domaih

smtp.mail (mail)

smtp.quit

smtp.close

end

my_domain STRINGis "nederware.rl
smtp_server_nameSTRINGis "localhost
sender_mailbaxSTRINGis "berend

recipient_mailbox STRINGis "berend

75 LDIF parser

htmt STRINGis "[
<htmb
<head>
<titte>EX_SMTP3/title>
</head>
<body>
<h1>Hello</h1>
<p>HTML email, brought to you by epostp>
</body>
I

text STRINGis "Hello%N%NHTML email, brought to you by epoSix.

end

We set the content type to be “multipart/alternative”, and create two parts. The first part is content
type “text/plain” and the second is the content type “text/html”.

12.11 LDIF parser

e-PosIxcontains an LDIF (LDAP Data Interchange Format) parser, see RFC 2849.

13
Writing dae-
mons

13.1 Introduction

e-PosIx has several classes that help with writing daemons or services. First of all there is the
POSIX _DAEMOldncestor class. But as daemons have no user interface, there are also classes
for error and information logging.

13.2 Windows

On Windows NT (and derivatives) the equivalent of unix daemons are called services. They are
a lot harder to write and require an Eiffel compiler with multi-threading. It is not yet possible to
write an NT service with @0siIx.

The logging functionality described in this chapter does work on Windows NT though.
13.3 Creating a daemon
Creating a simple daemon is easy if you inherit flB@SIX _DAEMONmplement theexecute

method, and you're done. At run-time, cdietach to fork off a child. You can caldetach
as many times as you want to spawn daemons.

class EX_DAEMON
inherit
POSIX_DAEMON
ARGUMENTS
creation
make
feature -- the parent
makeis
do

-- necessary under SmallEiffel
ignore_child_stop_signal

77 Logging messages and errors

if argument_count 0 then
print ("Options%N")
print ("-d start daemon%N
else
if equalargumenfl), "-d") then
detach
print ("Daemon started.%N
print ("Its pid: ")
print (last_child_pid
print ("%N")
end
end
end

feature -- the daemon

executeis
do
-- daemon stays alive for 20 seconds
sleep(20)

end

end

13.4 Logging messages and errors

Although posix doesn’t have logging facilities, the Single Unix Specification does. This spec-
ification requires the presence of tegslogd daemon for centralizes logging facilities. The
following example shows you to write messages to this daemon

classeEX_SYSLOG
inherit
SUS_CONSTANTS
SUS_SYSLOG_ACCESSOR
creation
make
feature
makeis

do
syslog.open("test, LOG_ODELAY+ LOG_PID, LOG_USER

Writing daemons 78

syslog.debug_dum@'this is a debug messafe
syslog.info("this is an informational messafe
syslog.warning("this is a warning)
syslog.error("this is an error messagge

syslog.close
end

end

Always use th&US _SYSLOG _ACCESS@Riccess the syslog wrapper cl&dS SYSLOG
SUS SYSLOGs a singleton, it makes no sense to open a connection to the syslog daemon twice.

13.5 ULM based logging

e-PosIx has portable routines for logging in Windows NT and Unix. This is build using the ULM
(Universal Format for Logger Messages) specification. The specification itself can be found at
http://www.hsc.fr/gul/draft-abela-ulm-05.txt . It is a fixed format for
logging that makes it easier to extract data with other tools.

On Unix ePosixoutputs messages to the syslog daemonssetion 13.4 On Windows ePOSIX
logs to the event log. This makes this kind of logging specific to Windows NT based systems. It
will not work on Windows 9x based systems.

Below a short example of using ULM. The first step is to create a handler that does the actual
logging. The clasEPX _LOG _HANDLER operating system specific. If you compile on
Windows it gives NT event log logging, on Unix it gives syslog logging. There is no logging
mechanism for Windows 9x, but it should not be hard to write one. Just impleldieht LOG
_HANDLERand implement the deferred routines.

The second step is connecting that handler to the class that does ULM loggibld,Mhe LOGGING
class. Logging is now set up.

classEX_ULM
creation

make

feature -- Initialization

makeis
local
logger. ULM_LOGGING
handler EPX_LOG_HANDLER
field: ULM_FIELD
fields ARRAY[ULM_FIELD]
do
-- Create handler and logger

http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt

79 ULM based logging

create handler.make(identification
create logger.make(handler, system_narpe

-- Log a simple message
logger.log_messagéogger.Alert, subsystem_namdjlello World'")

-- Log a message with a custom field
create fields.make(0, 0)

create field.make(logger.SRC_IP,'127.0.0.1)
fields.put(field, O
logger.log_even{logger.Usage, Void, fields
end

feature -- Access

identification STRINGis "examplé
system_nameSTRINGis "ex_ulm
subsystem_nam&TRINGis "noné

end
Two messages are written. Below the slightly formatted output Unix:

Jul 21 21:12:34 dellius example: DATE=20030721091234 \
HOST=dellius.nederware.nl PROG="ex_ulm.none" LVL=Alert \
MSG="Hello World."

Jul 21 21:12:34 dellius example: DATE=20030721091234 \
HOST=dellius.nederware.nl PROG="ex_ulm" LVL=Usage \
SRC.IP=127.0.0.1

The first message is in the default format. This will always log the date, the host where the message
originated and the program. The program figldpG consists of a system and subsystem name,
separated by dots. This subsystem name is the second parameleMo LOGGING. log
_message . It may be Void, in which case no subsystem is added to the system name. The level
field, LvL, contains the importance of the message. It is the first paramdtdcthd L OGGING.

log _message . TheclasdJLM _LOG _LEVEL&as the complete list of levels. And in most
cases the log ends with a simple messagss, that contains the message itself.

FeatureULM _LOGGING. log _event allows more control over the fields that are logged.

That is demonstrated in the second message. You can pass the fields that are logged. You can use
the fields listed irhttp://www.hsc.fr/gul/draft-abela-ulm-05.txt , or any

other field. There is neisG field if you don'’t specify one.

An interesting application of theLm specification is the NetLogger library, setp://www-didc.
Ibl.gov/NetLogger/ . Itis a protocol to measure response times for a distributed applica-
tion.

On Windows NT you can use the supplimessages.dll file to avoid this message in the
event log:

http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/

Writing daemons 80

The description for Event ID (some_number4) in Source

(some_name) cannot be found. The local computer may not have
the necessary registry information or message DLL files to

display messages from a remote computer.

Register this DLL under thelKLM/SY STEM/CurrentControlSet/Services/Event-
log/Application key. Add a new key which should have the name you have supplied to the
EPX LOG _HANDLER. makeoutine. This key should have two values:

1. EventMessageFile, type REG_SZ. Its value is the full path to this messages.dll file.
2. TypesSupported, type DWORD. Its value should be 7.

14
Writing CGlI
programs

Although writing acal program doesn't really belong ®osix, they still are very common, so |
decided to include a few classes to make this easier. And of course, they build upon the Standard
C classes.

+
XML_GENERATOR

STPC_CURRENT_PROCHSS KHTML_GENERATO}

Figure 14.1 BON diagram ofEPX_CGlI

You inherit fromEPX _CGland implemenexecute . AsEPX _CGlitself inherits fromEPX
_XHTML _WRITERwou can call use the features of that class to generate XHTML.

classeEX_CGI1
inherit
EPX_CGI

creation

Writing CGI programs 82

make
feature

executeis
do
content_text_html

doctype
b_html

b_head
title ("e-POSIX CGI exampl§.
e _head

b_body

p ("Hello World")

extend("<p>you can use yourb>owr tags</p>")
b_p

puts ("or use any tag by using

e_p

start_tag ("tablé")
set_attribute("border", Void)
set_attribute("cols', "3")
start_tag ("tr")

start_tag ("td")
add_data("start_tagd)
stop_tag

start_tag ("td")
add_data("stop_tad)
stop_tag

stop_tag

stop_tag

e_body
e_html

end

end

Output is accumulated in a string and written to stdout after 2K _CGI. execute method
has finished. The partially built string is accessible ViEfAX XML WRITER. unfinished

_Xml . Generated output isHTML, which usually displays fine with older browsers. If strict
XHTML is problematic, you can catloctype _transitional instead ofdoctype .

83

Itis important not to write to stdout as the output is only written after yoldiX _CGI. execute
has finished. If you want to write something to standard output, udef CGI. add data
feature or its shortcut aligsuts . If you want to write real tags, usedd _raw . This last feature
allows you to write anything, whilputs escapes reserved characters like '>’.

If you use provided features like_a, b _p and such, an attempt is made to produce good looking
source. Also your input is somewhat validated agaxrgtiL standards.

It is also easy to write aGl program that displays a form and accepts submitted values. Even file
upload is supported. The following example uses the GET method to submit data:

classEX_CGI2
inherit
EPX_CGI
creation
make
feature

executeis
do
content_text_html

doctype
b_html

b _head
title ("e-POSIX CGI form examplg.
e _head

b_body
b_form_get("ex_cgi2.bit)

b_p

puts ("Name ")

b_input ("text', "namée)
set_attribute("size', "32")
e_input

e_p

b_p

puts ("City: ")

input_text("city", 40, "enter city herg&)
e_p

Writing CGI programs 84

b_p
b_button_submi{"action’, "GO!")
e_button_submit

nbsp

button_reset
e_p

e_form
hr

p ("In your last submit you entereg)

b_p
if not has_key("namé) then

end

puts ("name ")

puts (value ("name))
puts (*, ")

puts (“city: ")

puts (raw_value ("city™))
e_p

e_body
e_html

end

end

You can useEPX _CGI. b _input to start an input element as shown for the input of a name.
Or you can usénput _text to start a simple text input as shown for the input of a city. Below
the line you see the value a user has submitted, if anyvdhkee to get values with certain meta—
characters removed. The output is still not save to be passed straight to a Unix Shell though! You
can usgaw Vvalue to getthe contents as submitted by the user.

In the above example it doesn’t matter much if you bseform _get orb _form _post
But with the GET method, you cannot upload files. The following example demonstrates how files
can be uploaded:

classEX_CGI3
inherit
EPX_CGI

creation

85

make
feature

executeis
do
content_text_html

assert_key value pairs_created
save_uploaded_files

doctype
b_html

b_head
title ("e-POSIX CGI file upload examplg.
e _head

b_body

b_form ("post', "ex_cgi3.bit)
set_attribute("enctyp&, mime_type_ multipart_form_data

b_p

puts ("Filename ")

b_input ("file", "filenamé)
set_attribute("size', "32")
set_attribute("maxlength, "128")
e_input

ep

b_p
b_button_submi("action’, "Upload filgs)")
e_button_submit

nbsp

button_reset
e_p

e form

e_body
e_html

end

Writing CGI programs 86

save_uploaded_filels
local
kv. EPX_KEY_VALUE
buffer. STDC_BUFFER
target_name STRING
target STDC_BINARY_FILE
do
create buffer.allocate(8192
from
cgi_data.start
until
cgi_data.after
loop
kv := cgi_data.item_for_iteration
if kv.file /= Void then
from
target_name= "/tmp" + kv.value
create target.create_write(target_namg
kv.file.read_buffer(buffer, 0, 8192
until
kv.file.end_of_input
loop
target.write_buffer(buffer, 0, kv.file.last_read
kv.file.read_buffer(buffer, 0, 8192
end
target.close
kv.file.close
end
cgi_data.forth
end
buffer.deallocate
end

end

It is important to set the encoding type. This example accepts a file and writdtnitpo. Because
multiple files can be present, this example just loops over all key value pairs and checks if a file is
present. This example isn't fool-proof with multiple users submitting the same file, but you should
get the idea.

Note that the first line i€EPX _CGlI. content _text _html : in case an exception occurs,
the web server is still able to output something back to the user.

After that we make sure that the key value pairs are created agiggert _key _value

_pairs _created . They are automatically created if you catillue , but in this case we
want the key value pairs themselves. BIX _CGI3. save _uploaded _files we use
theEPX KEYVALUE. file feature to check if that key value pair is an uploaded file: if it is
not \Void, it points to a temporary file. As this file will be deleted when it is closed or when your

87

program exits, we have to copy it to a new file. The filename is just the value part of this key value
pair. The filename is guaranteed to be free of directory parts.

In the last example we just print all key/value pairs to thelfg&txt in the temporary direc-
tory. We redirect the user to another file.

classeEX_CGl4
inherit
EPX_CGI
EPX_FACTORY
creation
make
feature

executeis
do
assert_key value pairs_created
save_values

extend("Location /mydir/myfile.htmil)
new_line

new_line

end

save_valuess
local
fout STDC_TEXT_FILE
kv. EPX_KEY_VALUE
do
create fout.create_write(fs.temporary_directory+ "/list.txt")
from
cgi_data.start
until
cgi_data.after
loop
kv := cgi_data.item_for_iteration
fout.puts (kv.key
fout.puts ("%T")
fout.puts (kv.valué
fout.puts ("%N")
cgi_data.forth
end

Writing CGI programs

88

fout.close
end

end

15
Error handling

This chapter describes the error handling strategies that are possible rathyeBasically there
are two strategies: using the Eiffel exception mechanism or doing the error handling all yourself.

15.1 Error handling with exceptions

The opinion of the author of eosix is that Eiffel's exception mechanism is very well suited to
deal with things like files that cannot be opened or directories that do not exist. Others disagree,
seesection 15.2 e-Posix is designed such that whenr@six routine returns an error code, an
exception is thrown. Here my arguments why | favor this style of error handling:

1. We all know that exceptions are to be used for breach of contract. This idea is formulated in

(Meyer, 1997)and is the best expressed opinion of exception handling | know.

So if you ask an eosixmethod to open a file, it will do that for you. If it cannot open the file,

for whatever reason, it will raise an exception. The same argument hold if you ask it to go to a
directory, to start a program, or to open a connection to another machine.

This approach is also reflected in the names pbetxs features. The name ROSIX TEXT
_FILE. open _read andnotPOSIX TEXT _FILE. attempt _open _read

2. It is usually not wise to trust clients with error handling. The larger a distance between a
software failure and the error report, the more difficult it is to make a correct diagnosis of what
went wrong (see (Hatton, 2001)).p@six uses the fail early, fail hard approach.

3. Error handling is often forgotten or left to some global general error handling mechanism.
In an interesting article (see (Whittaker, 2001)) James Whittaker describes how he modified
certain system calls to return legitimate, but unexpected return codes. Memory allocation failed
for example, or opening a file returned with no more file handles. Applications failed within
seconds, but it was usually completely unclear why.

4. It's a lot easier for programmer’s. You don't have to write any error handling. If your program
completed, you know that there wasn't a single system call that failed, that you didn’t continue
despite some error. This will make it possible to write programs that do their work correctly if
no errors occur, or else do nothing.

First an example. Let’s take a look at the code you have to write in case you want to handle failure
of opening a file:

classEX_ERROR1
inherit
POSIX_CURRENT_PROCESS

creation

Error handling 90

make
feature

makeis
local
fd: POSIX_FILE_DESCRIPTOR
do
fd := attempt_create_file
end

attempt_create_fitePOSIX_FILE_DESCRIPTOIR
local
attempt INTEGER
still_exists BOOLEAN
do
create Result.create_with_modgmyfilé'’, O_ CREAFO_TRUNGO_EXCL, 0
rescue
still_exists:= errno.value= EEXIST
attempt:= attempt+ 1
if still_existsand then attempt<= 3 then
sleep (1)
retry
end
end

end

In this example we try to create a file exclusively. The create will fail if the file already exists. In
case this happens, we retry 3 times. Before retrying we wait 1 second. Note that if the error is not
EEXIST, we fail directly, without retrying.

In my opinion above’s code is just the code you want to write usually: do not worry about errors,
if something goes wrong, your application will fail.

My preferred way of error handling is (or sometimes should be) also reflected in the preconditions.

For example thd?OSIX FILE SYSTEM. browse _directory has the precondition

that the given path should exist and should be a directory. Quite reasonable | think. The argument
against such preconditions is that it is somewhat strange: if a client has honoured the precondition
by checking that the directory exists, it should be able to assume that it safely can call the routine.
But between its own check and the actual call, the directory can be removed by another process.

This is the concurrent precondition paradox (see (Meyer, 1997)). In my opinion it would not be
wise to remove this precondition. It is true that honouring it, will not make sure the contract is not
broken. But it still serves a very usefull purpose: documentation.

For example the routinfOSIX FILE SYSTEM. remove file does not have the pre-
condition that the file should exist. That isn't an oversight. This routine does not fail if the file no
longer exists for good reason: it honours its postcondition after all. So when you call this routine,
the file may or may not exist. The routine doesn’t care.

91 Manual error handling

15.2 Manual error handling

In spite of the arguments listed in the previous section, automatic error handling is perhaps tedious
to use when you expect a lot of errors. And some programmers just do not like Eiffel’s exception
mechanism. Thereforermasiximplements a completely different style of error handling. In this
case, er0sIX continues when an error occurs, but it safes the errorcode, and you can check the
errorcode of the first error when you wish. This first errorcode has to be reset by the programmer.
An example:

classEX_ERROR2
inherit
STDC_SECURITY_ACCESSOR
creation
make
feature

makeis
local
fd: POSIX_FILE_DESCRIPTOR
do
security.error_handling.disable_exceptions
create fd.create_write("myfilé")
if fd.errno.first value= 0 then
fd.put_string ("1%N")
fd.put_string ("2%N")
fd.close
else
fd.errno.clear_first
end
end

end

Exception handling is turned off by a call ®DC _SECURITY _ACCESSOR. security.

error _handling. disable _exceptions . It can be enabled again by callisgcurity.
error _handling. enable _exceptions . In between, you're on your own, just like

a C programmer. Iinyfile cannot be opened, nothing happens, andR@SIX FILE
_DESCRIPTOR. put _string feature is called. Depending if you have enabled precon-
dition checking or notput _string will fail. The precondition ifput _string is that the

file has to be open. Therefore, at certain points, you're still forced to deal with errors. Every object
has anerrno variable. This variable points to the glob@TDC _ERRN®bject (its a once
routine). So there basically is just ofiest _value error value. Whatever object caused the

Error handling 92

error, you can check therrno. first _value of any erPosix object. The last error is still
available inerrno. value

If there is no error, the program continues writing. AOSIX _FILE _DESCRIPTOR. put
_string failed, the next one is still executed. If there is an error, we reset it GifiDC
_ERRNO. clear _first . This gives us the chance to catch another error value if an error
occurs. If this method is not callefirst _value will keep its original value.

The following example is the same BX ERROR1It shows how to open a file exclusively with
manual error handling.

classEX_ERRORS3

inherit
POSIX_CURRENT_PROCESS
EXCEPTIONS

creation
make

feature

makeis
local
fd: POSIX_FILE_DESCRIPTOR
do
security.error_handling.disable_exceptions
fd := attempt_create_file
end

attempt_create_fitePOSIX_FILE_DESCRIPTOR
require
manual_error not security.error_handling.exceptions_enabled
local
attempt INTEGER
still_exists BOOLEAN
do
from
attempt:= 1
still_exists:= True
until
not still_existsor else attempt> 3
loop
create Result.create_with_mod@gmyfilé’, O_CREAFO_TRUNGO_EXCL,
still_exists:= errno.first_value= EEXIST
if still_existsthen

93 Manual error handling

sleep(1)
attempt:= attempt+ 1
end
end
if still_existsthen
raise ("failed to create filg)
end
end

end
As you can see, manual error handling does not necessarily translate into less code.

The summary of this section is that you chould check each distinctive step when using manual error
handling. You don’t have to check intermediate steps.

16
Security

e-PosiIx is well-suited to write server applications likes| scripts and daemons. As these appli-
cations can be hosted on servers that are attached to the Internet, they could be prone to attack.
Applications written with erosIx could be misused in a denial of service attack or to gain root
access. eosixoffers certain protection mechanisms that enable your applications to fend off such
penetrations.

This chapter shows you how applications can be misused and what mechamesig effers for
certain attacks.

“Programmers typically focus on "positive" aspects of programs, that is, what is the func-
tionality required for the task to be accomplished. Programmers rarely focus on the neg-
ative aspects of programs, that is, what functionality is not required for the program to
accomplish its task. Attackers take advantage of proggrammers failure to consider negative
functionality. Perhaps a reason that programmers avoid negative functionality is that there
is no good way to specify what a program should not be permitted to do.”

16.1 Denial of service attacks

In a denial of service attack, crackers attempt to deplete one or more finite resources. Resources
can be software related like database connectiomEmP connections, but ultimately resources

are finite because of hardware limitations. This manual distinguishes the following hardware re-
sources:

Memory.

CPU.

Disk space.
Network bandwidth.

A denial of service attack succeeds if a cracker depletes these resources in such a way that the
server cannot handle request anymore, or handles them very slowly. For example, Linux 2.2 is
easy to bring to its knees if you keep on allocating memory. In normal situations your application
runs fine, and allocates only a limited amount of memory. But an attacker might have found a way
to make your application allocate much more memory. Even if you are sure that the code you have
written is not prone to such an attack, you might use a library basedrosiethat does have code

that is exploitable.

e-PosIx has some limited support to set limits on memory, file handle (a memory issue) and cpu
usage. When a set limit has been exceeded, an exception is raised.

To limit the amount of memory that can be allocated by$%DC BUFFERIass, inherit from
STDC _SECURITY _ACCESSQRd callsecurity. memory. set_max _allocation
Currently this limits the amount of memory that can be allocated $iftDC _BUFFERIt does
not limit the amount of memory that is allocated Bf RINGor other classes. You can also limit

95 Authorization bypass attacks

the amount of memory that can be allocated with a single call by cataoyrity. memory.
set _max _single _allocation

You can limit the number of file handles a program can open by cadlegurity. files.

set _max _open _files . This works only with files and sockets opened byasix classes
asSTDC _FILE andPOSIX _FILE _DESCRIPTOR not with files opened through other
means. In this case you cannot rely on the garbage collection to close your file. Certain garbage
collectors do not allow calling other classes in MEMORY. dispose method. erosixneeds

to do this to decrement its idea of the number of open handles. Only when you explici®/dal
_FILE. close will the ePosIxdecrease its open file handles.

You can limit the amount of CPU time by callirggcurity. cpu. set _max _process

_time . Itis not possible to automatically halt your application when this time has exceeded. You
have to callsecurity. cpu. check _process _time to actually check the processor
time used.

Currently eposix cannot check disk space or network bandwidth limitations.

Discuss here that decrementing only works for manual deallo-
cations, I'm very sorry about that, but this is a problem of
ISE. I'm thinking about ways to work around this.

16.2 Authorization bypass attacks

A hacker can bypass authorization if he or she, through your program, can gain the following
access:

e Access to more information than your program is written to provide. Security is not breached
here, but your program is used in an ‘innovative’ way. Note that if your program runs within
the root security context (suid root), security can be breached!

e Security is breached when your program is used to get more access rights than your program is
written to provide. Especially suid root programs are an attractive target here.

Usually Eiffel programs do not allocate buffers on the stack, so they are not prone to the so called
‘buffer overflow’ attack. As certain vendors might provide some ‘native’ class that allocate things
on the stack, leave precondition checking always on in suid root programs.

Currently eposix doesn’t offer much protection for suid root programs. Much better security will
be the topic of a next release.

17
Accessing C
headers

This chapter explains the conventions tha&six uses to access the C-headers.

17.1 Making C Headers available to Eiffel

The most portable and safest header translation comes when a C function is not called verbatim,
but instead a translation function is used. For example to make the Standard C fdapiém
available within Eiffel a new header file is created which lists an Eiffel compatible way to call this
routine:

#include "eiffel.h"
#include <stdio.h>

EIF_POINTER posix_fopen(EIF_POINTER filename, EIF_POINTER mode);

Instead of using C types, we use Eiffel types here, which are made available by indhifling
fel.h

The corresponding C file contains the following implementation:
#include "my_new_header.h"

EIF_POINTER posix_fopen(EIF_POINTER filename, EIF_POINTER mode)

{
return ((EIF_POINTER) fopen (filename, mode));

}

It simply calls the original function, returning the result. Type conversion between Eiffel and C
types shouldn’t pose problems this way.

To be able to call this function from Eiffel, saxternal feature needs to be written. For example:
classHEADER_STDIO

feature {NONE -- C binding for stream functions

posix_fopen(path, a_mode POINTER: POINTERIs
-- Opens a stream
require
valid_mode a_mode/= default_pointer
external "C"
end

97 Distinction between Standard C ammbsix headers

eogeopooe iy

eoe

Figure 17.1 e-POSIX
directory structure

end

Of course, the Eiffel function can have all Design By Contract features Eiffel programmers are
accustomed too.

To recapitulate: every header that is to be translated, needs:

1. anew header file, and
2. acorresponding C file, and
3. an Eiffel class.

For example to translatestdio.h > a header file likesiffel_stdio.h and a C fileeif-
fel_stdio.c is needed. The Eiffel class could behieader_stdio.e

17.2 Distinction between Standard C ambsix headers

However, PosIX sometimes defines extensions to existing Standard C headers. Simply using a
translation header file likeiffel_stdio.h will not work for pure Standard C Eiffel pro-
grams, as it can includeosix specific extensions that might simply not be available on a given
platform.

Therefore, erosixdivides the C headers in several groups:

The Standard C headers.

Theposix headers.

The Single Unix Specification headers.

Microsoft Windows headers (as far as they defiasixfunctions, this library does not translate
Microsoft Windows specific functions).

PN P

Every group gets its own translation header with its own prefix. A translated header has a prefix,
an underscore and next the original header name. The Standard C translat&idioth > is
doneinc_stdio.h andc_stdio.c . Theposixextensions to this header are availabl@in
_stdio.h andp_stdio.c

The corresponding Eiffel class follows similar conventions. It has the group’s prefix, next the string
‘API’, an underscore and next the name of the header. Sesilio.h > functions are made
available inCAPI _STDIO.

In table 17.1all the groups with there translation header prefix and Eiffel class prefix are listed.
See also the directory structurefigure 17.1

Accessing C headers

98

Group directory header prefix| class prefix
Standard C src/capi c CAPI
POSIX src/[api p PAPI
Single Unix Specification| src/sapi s SAPI
Windows src/wapi w WAPI

Table 17.1 e-osix prefix conventions

17.3 C translation detalls

This translation wants to do as less as possible at the C level. It attempts to just make available the
C constants and C functions and do the actual work in Eiffel.

A few details:

1. Constants, C macro definitions, are exported in the header file with the prefix ‘const_" and next
the macro name. The Eiffel API class exports these constants with the original, uppercased

name.

2. Struct members are exported with getter and setter functions. The get function has the prefix
‘posix’, an underscore, the struct name, an underscore and as last the member name. The
set function has the prefix ‘posix’, an underscore, ‘set’, an underscore, the struct name, an
underscore and as last the member name.

A

Posix function
to Eiffel class
mapping list

The following table defines exactly where a given Posix function is used in a Eiffel class mapping.
The table is sorted in alphabetic order. Note that when a STDC _ class is listed, the feature is also
available in the corresponding POSIX_ class. The same is true for the EPX_ classes. The EPX_
classes provide functionality portable between Unix and Windows. The corresponding POSIX_ or

SUS_ classes extend that functionality for

or the Single Unix Specification.

Function Header Class

abort <stdlib.h > STDC _CURRENT _PROCESS. abort

accept <sys/socket.h > EPX_TCP _SERVER _SOCKET. accept
access <unistd.h > ABSTRACT _FILE _SYSTEM. is _accessible
aio_cancel <aio.h > POSIX _ASYNC _IO _REQUEST. cancel
aio_error <aio.h > POSIX _ASYNC _IO _REQUEST. is _pending
aio_fsync <aio.h > POSIX _ASYNC 10 REQUEST. synchronize
aio_read <aio.h > POSIX _ASYNC _IO _REQUEST. read
aio_return <aio.h > POSIX _ASYNC _IO _REQUEST. return _status
aio_suspend <aio.h > POSIX ASYNC |0 REQUEST. wait_for
aio_write <aio.h > POSIX _ASYNC |10 _REQUEST. write

alarm <unistd.h > POSIX _TIMED _COMMAND

asctime <time.h > STDC _TIME. default _format

atexit <stdlib.n > STDC _EXIT _SWITCH. install

bind <sys/socket.h > EPX_TCP_SERVER _SOCKET. listen _by _address
calloc <stdlib.n > STDC _BUFFER. allocate _and _clear
cfgetispeed <termios.h > POSIX _TERMIOS. input _speed

cfgetospeed <termios.h > POSIX _TERMIOS. output _speed

cfsetispeed <termios.h > POSIX _TERMIOS. set _input _speed
cfsetospeed <termios.h > POSIX _TERMIOS. set _output _speed

chdir <unistd.h > POSIX _FILE SYSTEM. change _directory
chmod <sys/stat.h > POSIX _FILE _SYSTEM. change _mode

chown <unistd.h > POSIX _PERMISSIONS _PATH. apply _owner _and _group
clearerr <stdio.h > STDC FILE. clear _error

clock <time.h > STDC _CURRENT _PROCESS. clock
clock_getcpuclockid <time.h >

clock_getres <time.h > SUS _SYSTEM. real _time _clock _resolution
clock_gettime <time.h > SUS SYSTEM. real _time _clock
clock_nanosleep <time.h >

clock_settime <time.h >

close
closedir

<unistd.h >
<direnth >

EPX _FILE _DESCRIPTOR. close
POSIX _DIRECTORY

Posix function to Eiffel class mapping list

100

closelog
confstr
connect
creat
ctermid
ctime

cuserid
daylight
difftime
dup

dup2
endgrent
endhostent
endnetent
endprotoent
endpwent
endservent
execl
execle
execlp
execv
execve
execvp
exit

_exit
fchmod
fchown
fclose

fentl

fdatasync

fdopen
feof
ferror
fflush
fgetc
fgetpos
fgets
fileno
flockfile

fopen

fork
fpathconf
fprintf
fputc
fputs
fread

free

<syslog.h >
<unistd.h >
<sys/socket.h
<fentbth >
<unistd.h >
<time.h >

<stdio.h >
<time.h >
<time.h >
<unistd.h >
<unistd.h >
<grp.h >
<netdb.h >
<netdb.h >
<netdb.h >
<pwd.h >
<netdb.h >
<unistd.h
<unistd.h
<unistd.h
<unistd.h
<unistd.h
<unistd.h
<stdlib.h
<unistd.h
<sys/stat.h
<sys/stat.h
<stdio.h >
<unistd.h >

VV V VVYVVYV

<unistd.h >

<stdio.h
<stdio.h
<stdio.h
<stdio.h
<stdio.h
<stdio.h
<stdio.h

<stdio.h
<stdio.h

VV V VYV V V VYV

<stdio.h >

<unistd.h >
<unistd.h >
<stdio.h
<stdio.h
<stdio.h
<stdio.h

vV V. V VvV

<stdlib.h >

>
>

>

SUS SYSLOG. close

EPX _TCP _CLIENT _SOCKET. open _by _address ,open_by name _and _
EPX _FILE _DESCRIPTOR. create _read _write

STDC _TIME
EPX _FILE DESCRIPTOR. make _as _duplicate
EPX _FILE DESCRIPTOR. make _as _duplicate

EPX _EXEC _PROCESS. execute
STDC _CURRENT _PROCESS. exit

STDC _FILE. close
POSIX _FILE _DESCRIPTOR

POSIX _FILE DESCRIPTOR. synchronize _data

POSIX _FILE. make _from _file _descriptor
STDC _FILE. eof

STDC _FILE. error

STDC _FILE. flush

STDC _FILE. get _character

STDC _FILE. get _position

STDC _FILE. get _string

POSIX _FILE DESCRIPTOR. make _from _file

STDC _FILE

POSIX _CURRENT _PROCESS. fork
STDC _FILE. putc

STDC _FILE. put _string

STDC _FILE. read

STDC _BUFFER. deallocate

101

freopen
fseek

fsetpos
fstat

fsync

ftell
ftruncate
ftrylockfile
funlockfile
fwrite
getc
getchar
getcwd
getegid
getenv
geteuid
getgid
getgrgid
getgrnam
getgroups
getlogin
getpgrp
getpid
getppid
getpwnam
getpwuid
gets
gettimeofday
getuid
gmtime
inet_ntoa
isatty
htonl
htons

ioctl

kill

link
lio_listio
localeconv
localtime
Iseek

malloc
memcpy
memchr
memcmp
memmove
memset
mkdir
mkfifo
mkstemp

<stdio.h >
<stdio.h >
<stdio.h >

<sys/stat.h

<unistd.h >
<stdio.h >
<unistd.h >
<stdio.h >
<stdio.h >
<stdio.h >
<stdioh >
<stdio.h >
<unistd.h
<unistd.h
<stdlib.h

<unistd.h
<unistd.h
<grp.h >
<grp.h >
<unistd.h
<unistd.h
<unistd.h
<unistd.h
<unistd.h
<pwd.h >
<pwd.h >
<stdio.h >
<sys/time.h
<unistd.h >
<time.h >

<arpalinet.h
<unistd.h >
<netinet/in.h
<netinet/in.h
<stropts.h >
<signal.h >
<unistd.h >
<aio.h >

<locale.h >
<time.h >
<unistd.h

vV V.V V V

vV V. V V V

Vv

<stdlib.h
<string.h
<string.h
<string.h
<string.h
<string.h
<sys/stat.h
<sys/stat.h
<stdlib.h >

V V.V V V VvV

>

>

STDC _FILE. reopen
STDC _FILE. seek

STDC _FILE. set _position
POSIX _STATUS

POSIX _FILE _DESCRIPTOR. synchronize
STDC _FILE. tell

STDC _FILE. write

POSIX _FILE _SYSTEM. current _directory

POSIX _CURRENT _PROCESS. effective _group _id
STDC _ENV _VAR. value

POSIX _CURRENT _PROCESS. effective _user _id
POSIX _CURRENT _PROCESS. real _group _id
POSIX _GROUP. make _from _gid

POSIX _GROUP. make _from _name

POSIX CURRENT _PROCESS.is _in _group
POSIX _CURRENT _PROCESS. login _name
POSIX _CURRENT _PROCESS. process _group _id
POSIX _CURRENT _PROCESS. pid

POSIX _CURRENT _PROCESS. parent _pid

POSIX _USER. make _from _name

POSIX _USER. make _from _uid

POSIX CURRENT _PROCESS. real user _id

STDC _TIME. to _utc

EPX _IP4 _ADDRESS. out

EPX FILE DESCRIPTOR.is attached to _terminal
SAPI _IN. posix _htonl

SAPI _IN. posix _htons

SAPI_STROPTS. posix _ioctl

POSIX _PROCESS. kill

POSIX _FILE _SYSTEM. link

STDC _LOCALE _NUMERIC
STDC TIME. to _local
EPX _FILE _DESCRIPTOR. seek

STDC _BUFFER. allocate
STDC _BUFFER. memory _copy

CAPI _STRING. posix _memcmp

STDC _BUFFER. memory _move

STDC _BUFFER. fill _with

POSIX _FILE SYSTEM. make _directory
POSIX _FILE _SYSTEM. create _fifo
SUS _TEMPORARY _FILE. make

Posix function to Eiffel class mapping list 102

mktime <time.h > STDC TIME. set_date _time
mlockall <sys/mman.h >

mlock <sys/mman.h >

mmap <sys/mman.h > POSIX_MEMORY _MAP

mprotect <sys/mman.h >

mg-receive <mqueue.h >

mq_close <mqueue.h >

mq_getattr <mqueue.h >

mq_notify <mqueue.h >

mq_open <mqueue.h >

mq_send <mqueue.h >

mq_setattr <mqueue.h >

mq_unlink <mqueue.h >

msync <sys/mman.h >

munlockall <sys/mman.h >

munlock <sys/mman.h >

munmap <sys/mman.h > POSIX _MEMORY _MAP

nanosleep <time.h > SUS CURRENT _PROCESS. nanosleep
ntohl <netinet/in.h > SAPI _IN. posix _ntohl

ntohs <netinet/in.h > SAPI_IN. posix _ntohs

open <fentth > EPX _FILE DESCRIPTOR. open
opendir <direnth > POSIX _DIRECTORY

openlog <syslog.h > SUS _SYSLOG. open

pathconf <unistd.h > POSIX DIRECTORY. max _filename _length
pause <unistd.h > EPX _CURRENT _PROCESS. pause
perror <stdio.h >

pipe <unistd.h > EPX _PIPE. make

printf <stdio.h >

putc <stdio.h >

putchar <stdio.h >

puts <stdio.h >

raise <signal.h > STDC _SIGNAL. raise

rand <stdlib.h > STDC _CURRENT _PROCESS. random
read <unistd.h > EPX _FILE DESCRIPTOR. read
readdir <dirent.h > POSIX _DIRECTORY

realloc <stdlib.h > STDC BUFFER. resize

remove <stdio.h > POSIX _FILE _SYSTEM. remove _file
rename <unistd.h > POSIX _FILE _SYSTEM. rename _to
rewind <stdio.h > STDC _FILE. rewind

rewinddir <direnth > POSIX DIRECTORY

rmdir <unistd.h > EPX _FILE _SYSTEM. remove _directory
scanf <stdio.h >

select <sys/select.h > EPX_SELECT

sem_close <semaphore.h

sem_destroy
sem_getvalue
sem_init
sem_open
sem_post
sem_trywait
sem_unlink
sem_wait

<semaphore.h
<semaphore.h
<semaphore.h
<semaphore.h
<semaphore.h
<semaphore.h
<semaphore.h
<semaphore.h

V V.V V VV V VYV

POSIX _UNNAMED _SEMAPHORE. create _shared

POSIX SEMAPHORE. release
POSIX _SEMAPHORE. attempt _acquire

POSIX _SEMAPHORE. acquire

103

setbuf <stdio.h > STDC _FILE. set_buffer

setgid <unistd.h > POSIX _CURRENT _PROCESS. set _group _id
setlocale <locale.h > STDC _CURRENT _PROCESS. set _locale
setpgid <unistd.h > PAPI_UNISTD. posix _setsid

setsid <unistd.h > PAPI _UNISTD. posix _setsid

setuid <unistd.h > POSIX _CURRENT _PROCESS. set _user _id
setvbuf <stdio.h > STDC _FILE. set _no _buffering

shm_open <sys/mman.h > POSIX _SHARED _MEMORY. open _read _write
shm_unlink <sys/mman.h > POSIX _FILE _SYSTEM. unlink _shared _memory _object
sigaction <signal.h > POSIX _SIGNAL

sigaddset <signal.h > POSIX _SIGNAL _SET. add

sigdelset <signal.h > POSIX _SIGNAL _SET. prune

sigemptyset <signal.h > POSIX _SIGNAL _SET. make _empty

sigfillset <signal.h > POSIX _SIGNAL _SET. make _full
sigismember <signal.h > POSIX _SIGNAL _SET. has

signal <signal.h > STDC _SIGNAL. raise

sigpending <signal.h > POSIX _SIGNAL _SET. make _pending
sigprocmask <signal.h > POSIX _SIGNAL _SET. add _to _blocked _signals
sigqueue <signal.h >

sigsuspend <signal.h > POSIX _SIGNAL _SET. suspend

sigtimedwait <signal.h >

sigwait <signal.h >

sigwaitinfo <signal.h >

sleep <unistd.h > POSIX_CURRENT _PROCESS. sleep

sprintf <stdio.h >

srand <stdlib.h > STDC _CURRENT _PROCESS. set _random _seed
sscanf <stdio.h >

stat <sys/stat.h > POSIX _STATUS

strftime <time.h > STDC _TIME. format

sysconf <unistd.h > POSIX _SYSTEM

syslog <syslog.h > SUS _SYSLOG

system <stdlib.h > STDC _SHELL _COMMAND

tcdrain <unistd.h >

tcflow <unistd.h >

tcflush <unistd.h > POSIX _TERMIOS. flush _input

tcgetattr <unistd.h > POSIX _TERMIOS. make

tcgetparp <unistd.h >

tcsendbreak <unistd.h >

tcsetattr <unistd.h > POSIX _TERMIOS. apply _now

tcsetpgrp <unistd.h >

time <time.h > STDC _TIME. make _from _unix _time
timer_create <signal.h >

timer_create <time.h >

times <times.h >

tmpfile <stdio.h > STDC _TEMPORARY _FILE. make

Posix function to Eiffel class mapping list 104

tmpnam <stdio.h > STDC _FILE SYSTEM. temporary _file _name
ttyname <unistd.h > POSIX _FILE DESCRIPTOR. ttyname
tzset <time.h >

umask <gys/stat.h >

uname <sys/utsname.h > POSIX_SYSTEM

ungetc <stdio.h > STDC _FILE. ungetc

unlink <unistd.h > POSIX _FILE _SYSTEM. unlink

utime <utime.h > POSIX _FILE _SYSTEM. utime

viprintf <stdio.h >

vprintf <stdio.h >

vsprint <stdio.h >

wait <sys/wait.h > POSIX _CURRENT _PROCESS. wait
waitpid <sys/wait.h > POSIX _FORK _ROOT. wait _pid

write <unistd.h > EPX FILE DESCRIPTOR. write

This tabel does not contain the following category of functions:

=

Math functions.

String functions, including wide character/multibyte string. routines. The memory move/copy
functions are included, some of them even supported.

No type conversion functions.

No functions fromzctype.h >.

No functions fromxsetjmp.h ~ >.

No functions fromkstdarg.h >.

No string formatting functions likescanf . | suggest you use the Formatter library for that.
You can download this library dtttp://www.pobox.com/~berend/eiffel/

n

No o

Functions in above categories are either not applicable, already present in Eiffel or are better off in
a different library.

http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/

To do

ABSTRACT_DIRECTORY

1. ABSTRACT _DIRECTORY. forth _recursive raises an exception when it encoun-
ters a symbolic link that does no longer point to a file. Because it tries to retrieve the statistics,
and that call fails.

EPX_FILE_SYSTEM

1. MakeEPX _DIRECTORY

STDC_FILE

1. read_integer, read_double, read _boolean should perhaps be different for the binary or text files.
Now they’re satisfy the mico/e definition, so useful for text files only.

STDC_LOCALE_NUMERIC

1. Complete the list of properties

STDC_PATH

1. make some escape char functionality with ‘%’ or so.

STDC_TIME

1. Add elapsed seconds

POSIX_DAEMON

1. Closing the first three file descriptors is not likened by SmartEiffel. So leaves them open. Have
to fix this some how.

POSIX_EXEC_PROCESS

To do 106

1. Turn off Eiffel exception handling after the final execvp, else you get back signals not captured
by child process as your signals, or so it seems (or perhaps you're killing the Eiffel process, but
not the subprocess it generated??)

Killing subprocesses works sometimes, but not always.

Remove exception handling just before execvp?

how about capture to /dev/null?

can we capture i/o for every forked process? If so, move this code to POSIX_FORK_ROOT.
4. Perhaps option to influence environment variables to pass to subprocess?

wnN

POSIX_FILE_DESCRIPTOR

1. possible to open exclusively and so?
2. complete support for nonblocking i/o.

POSIX_MEMORY_MAP

1. Cannot change protection.
2. No locking.

POSIX_SEMAPHORE

1. not valid for named semaphore | think.
2. have to add various close/unlink functions.

POSIX_SIGNAL

1. Add synchronous waiting for signals liségwait
2. (Re)enable sending Eiffel exception on signal? i.e. set_exception_handler or so.
3. Resend signal as Eiffel exception in signal handler.

POSIX_STATUS

1. return STDC_TIME instead of unix time
2. Not all stat member fields are currently available.

POSIX_MQUEUE

1. Solaris x86 says it supports it, so have to work on that.

Security

Add base security class that specifies programs intent. Default is to allow anything, but security
can be tightened:

107 Windows code

N

Call toopen orcreat (used?), use real user id, not effective user id.

Assume we're free from buffer attacks if preconditions are enabled.

exec/system call only allowed when effective user is not root, unless otherwise specified. Or
exec only allowed for specific files.

Protect against writing specific files/directories. Perhaps substitute vulnerable filenames for
other ones.

Emulate atomic calls. Or add aton@ccess andopen call. Shouldn’t be done by setting
su??

When appending/writing to files, check if symbolic link.

ABSTRACT FILE SYSTEM. force remove _directory is potentially unsafe
because it follows links so it can be used to destroy things not under that directory.

remove tmpnam function.

Make sure the once functions in STDC_BASE are called from within the security initialization,
so they're allocated and do not generate an out-of-memory exception themselves.

Idea from ‘Remediation of Application Specific Security Vulnerabilities at Runtime’ article in
IEEE Computer sep/oct 2000.

Windows code

1. chmod also available on Windows.

2. Add permissions to status: read/write.

3. set_binary_mode should do something for the posix factory, i.e., when compiling with cygwin.
Perhaps separa@Y GWIN _APlor so inposix dir with the window specific stuff.
Currently cygwin uses text mode for file descriptors, the windows variant uses binary.

4. utime can be supported by using SetFileTime.

Other

1. remove ugly const_ prefix from constants. Uppercase should be good enough.

2.

Almost done, only const_ EOF remains, not easy to replace perhaps.
Compare POSIX_SIGNAL with ISE UNIX_SIGNAL: They have an is_caught function, use-
ful? Means this signal generates an exception.

Known bugs

The error code is perhaps not always set for e®NDC _BASE. raise _posix _error

does STRING_HELPER leak memory in to_external? How is memory used for these conver-
sions being freed? Is memory used there?

If a child process is signalled (terminated), the funcf®@SIX FORK _ROOT.is _terminated
_nhormally sometimes returns True.

~NOoO b~ WwWDN

Bibliography

ANSI/IEEE, (1996). System Application Program Interface (API) [C Languagedl-
ume Part | ofInformation technology — Portable Operating System Interface (POSIX)

ANSI/IEEE, 1996 edition.
Plauger, P. (1991)he Standard C libraryPrentice Hall.

Lewine, D. (1994)POSIX programmer’s guidéD’Reilly & Associates.

Stevens, W. R. (1998)nix network programmingPrentice Hall.

Meyer, B. (1997)0Object-Oriented Software ConstructioAddison Wesley, 2nd edition.
Hatton, L. (2001). Exploring the role of diagnosis in software faillEEE Software
Whittaker, J. A. (2001). Software’s invisible uselSEE Software

) 57
Isrc/library.xace 7,7, 8
[25 72
99
_ermo 5
_exit 100
a
abort 99
abort

STDC_CURRENT_PROCESS99

ABSTRACT_FILE_DESCRIPTOR 7, 17,

23,33, 36
accept 99
accept

EPX_TCP_SERVER_SOCKET99

access 99 107
acquire
POSIX_SEMAPHORE 102
add
POSIX_SIGNAL_SET 103
add_data
EPX_CGI 83
add_raw
EPX_CGI 83
add_to_blocked_signals
POSIX_SIGNAL_SET 103
aio.h 99 101
aio_cancel 99
aio_error 99
aio_fsync 99
aio_read 99

aio_return 99
aio_suspend 99
aio_write 99
alarm 99

allocate

STDC_BUFFER 101
allocate_and_clear

STDC_BUFFER 20, 99
ANY 5
apply

POSIX_SIGNAL 49

Index

apply_drain
POSIX_TERMIOS 103
apply_flush
POSIX_TERMIOS 103
apply_now
POSIX_TERMIOS 103
apply_owner_and_group
POSIX_PERMISSIONS_PATH 99
arpalinet.h 101
asctime 99
assert_key value pairs_created
EPX_CGI 86
atexit 99
attempt_acquire
POSIX_SEMAPHORE 102
attempt_lock
POSIX_FILE_DESCRIPTOR 100
attempt_open_read
POSIX_TEXT_FILE 89

b
b _a
EPX_CGI 83
b_form_get
EPX_CGI 84
b_form_post
EPX_CGI 84
b_input
EPX_CGI 84
b_p
EPX_CGI 83
backslash 27
BeOS 7
non-blocking iflo 7
big endian 20
binary file 27
binary mode 33
binary stdin 33
binary stdout 33
bind 99
browse_directory
POSIX_FILE_SYSTEM 42, 90

Index 110

c closedir 99
c_stdio.c 97 closelog 100
c_stdio.h 97 compiler.se 16
calloc 99 configure 1,7
cancel confstr 100
POSIX_ASYNC_IO_REQUEST 99 connect 100
CAPI_STDIO 10, 97 Content-Length 67
C compiler content_text_html
Borland 2,5 EPX_CGI 86
lcc 2 copy_from
Microsoft 2 STDC_BUFFER 101
Microsoft Visual C creat 100 107
+ 5 create_fifo
cecil.se 6 POSIX_FILE_SYSTEM 16, 101
cfgetispeed 99 create_read_write
cfgetospeed 99 EPX_FILE_DESCRIPTOR 100
cfsetispeed 99 create_shared
cfsetospeed 99 POSIX_UNNAMED_SEMAPHORE 102
cgi 81 create_unshared
enumerating all values87 POSIX_UNNAMED_SEMAPHORE 102
file upload 83 create_write
redirect 87 POSIX_SHARED_ MEMORY 103
change_directory ctermid 100
POSIX_FILE_SYSTEM 99 ctime 100
change_mode Ctrl
POSIX_FILE_SYSTEM 99 C 48 49
chdir 99 ctype.h 104
chmod 99 current_directory
chown 99 POSIX_FILE_SYSTEM 101
clear_error cuserid 100
STDC_FILE 99 cygwin 7
clear_first Cygwin 8
STDC_ERRNO 92 cygwin 11
clearerr 99 CYGWIN 33
clock 99 CYGWIN_API 107
clock
STDC_CURRENT_PROCESS99 d
clock_getcpuclockid 99 daylight 100
clock_getres 99 deallocate
clock_gettime 99 STDC_BUFFER 100
clock_nanosleep 99 default_format
clock_settime 99 POSIX_TIME 54
close 99 STDC_TIME 99
close DELETE request 67
EPX_FILE_DESCRIPTOR 99 detach
EPX_SMTP_CLIENT 72 POSIX_DAEMON 76
STDC_FILE 95, 100 difftime 100

SUS_SYSLOG 100

111

directory
browse 42
change 40
create 40
remove 40
test_suite 18
dirent.h 99, 102
dispose
MEMORY 95
doctype
EPX_XML_WRITER 82
doctype_transitional
EPX_XML_WRITER 82
dup 100
dup2 100

e

EEXIST 90

effective_group _id
POSIX_CURRENT_PROCESS101

effective_user _id
POSIX_CURRENT_PROCESS101

ehlo
EPX_SMTP_CLIENT 72
eiffel.h 96

Eiffel Forum Freeware Licensev
elj-win32 2
end_of_input
POSIX_TEXT_FILE 26
endgrent 100
endhostent 100
endnetent 100
endprotoent 100
endpwent 100
endservent 100
ENOSYS 16
environment variable 27
CFLAGS 8
CYGWIN 33
EPOSIX 1
Environment variable
expansion 28
environment variable
GOBO CC 1,2, 3
GOBO_EIFFEL 3
set 56
eof
STDC_FILE 100

eposix.ecf 5

EPX_CGI vi, 81
EPX_CURRENT_PROCESSL17, 33, 49
EPX_DIRECTORY 105
EPX_EXEC_PROCESS17, 45
EPX_FILE_DESCRIPTOR 16, 17
EPX_FILE_SYSTEM 16, 17
EPX_HTTP_10_CLIENT 63
EPX_HTTP_CONNECTION 67
EPX_HTTP_SERVER 64, 65, 67
EPX_IRC_CLIENT 69
EPX_LOG_HANDLER 78
EPX_MIME_EMAIL 72
EPX_MIME_PARSER 57
EPX_MIME_PART 57, 72
EPX_PIPE 17

EPX_SELECT 102
EPX_SMTP_CLIENT 70, 72
EPX_SOCKET 7
EPX_SYSTEM 56
EPX_TCP_CLIENT_SOCKET 7
EPX_XHTML_WRITER 81

epxc 11
epxs 11
errno 10

errno
POSIX_FILE_DESCRIPTOR 91
errno.first_value
POSIX_FILE_DESCRIPTOR 92
errno.value
POSIX_FILE_DESCRIPTOR 92
error
STDC_FILE 100
SUS SYSLOG 103
error handling 89
EX_ERROR1 92
EX HTTP_SERVLET2 66
EX_SMTP_MAIL 72

execl 100
execle 100
execlp 100
execute

EPX_CGI 81, 82, 83

EPX_EXEC_PROCESS100

POSIX_DAEMON 76

POSIX_FORK_ROOT 51

POSIX_SHELL_COMMAND 45
execv 100

Index

112

execve 100
execvp 100
exit 100
exit
STDC_CURRENT_PROCESS100
exit_switch
STDC_EXIT_SWITCH_ACCESSOR 99
EXP_FTP_CLIENT 63
expand_path
POSIX_FILE_SYSTEM 27

f

fchmod 100

fchown 100

fclose 100

fentl 100

fentl.h 100 102

fd_stderr
EPX_EXEC_PROCESS46

fd_stdin

EPX_CURRENT_PROCESS33
EPX_EXEC_PROCESS46
fd_stdout
EPX_CURRENT_PROCESS33
EPX_EXEC_PROCESS46

fdatasync 7,7, 7,100
fdopen 100
feof 100
ferror 100
fflush 100
fgetc 100 101
fgetpos 100
fgets 100 101
file
EPX_KEYVALUE 86
file

read entire 25
filename manipulation 38
fileno 100
file pointer 28
fill_with

STDC_BUFFER 101
first_value

POSIX_FILE_DESCRIPTOR 91

STDC_ERRNO 92
flockfile 100
flush 34

flush
STDC_FILE 100
flush_input
POSIX_TERMIOS 103
fopen 96, 100
force_remove_directory
ABSTRACT_FILE_SYSTEM 107
fork 100
fork
POSIX_CURRENT_PROCESS51, 100
format
POSIX_TIME 54
STDC_TIME 103
forth_recursive
ABSTRACT_DIRECTORY 105

forum.txt v
fpathconf 100
fprintf 100
fputc 100 102
fouts 100, 102
fread 100

free 100

FreeBSD 7

freopen 101
fseek 101
fsetpos 101

fstat 101

fsync 7,7,7, 100 101
ftell 101
ftruncate 101
ftrylockfile 101
funlockfile 101
fwrite 101

g

geant 1

get_body

EX_HTTP_SERVLET 67
get_character

STDC_FILE 100
get_header

EX _HTTP_SERVLET 67
get_lock

POSIX_FILE_DESCRIPTOR 16, 31, 100
get_position

POSIX_FILE 28

STDC_FILE 100

113

get_string
STDC_FILE 100
getc 101
getchar 101
getcwd 101
getegid 101
getenv 101
geteuid 101
getgid 101

getgrgid 101
getgrnam 101
getgroups 101
getlogin 100 101
getpgrp 101
getpid 13,101
getppid 101
getpwnam 101
getpwuid 101

gets 101
gettimeofday 101
getuid 101
gexace 4

glibc 6

gmtime 101

Gobo 23, 36

grp.h 100 101

h

has

POSIX_SIGNAL_SET 103
htonl 101

htons 101

HTTP 11

i
inet_ntoa 101
input_speed
POSIX_TERMIOS 99
input_text
EPX_CGI 84
install
STDC_EXIT_SWITCH 99
ioctl 101
is_accessible
ABSTRACT_FILE_SYSTEM 99
is_attached_to_terminal
EPX_FILE_DESCRIPTOR 101

is_blocking_io
ABSTRACT_FILE_DESCRIPTOR 36

is_in_group
POSIX_CURRENT_PROCESS101

is_modifiable
POSIX_FILE_SYSTEM 40

is_pending
POSIX_ASYNC_I0_REQUEST 99

is_readable
POSIX_FILE_SYSTEM 41

is_terminated
EPX_EXEC_PROCESS48

is_terminated_normally
POSIX_FORK_ROOT 107

isatty 101

ISE Eiffel 2

ISE Eiffel 5.6 5

ISE Eiffel 5.7 5

k
KI_CHARACTER_INPUT_STREAM 23
36
KI_CHARACTER_OUTPUT_STREAM 23
kill 101
kill
POSIX_PROCESS 101

last_string

POSIX_TEXT_FILE 26
LDAP 75
LDIF 75
libeposix 5
libeposix_ise_msc.lib 3
libeposix_ise_msc.lib 2
libeposix_se.a 3,16
libeposix_ve msc.lib 6
libmteposix_ise_msc.lib 2
library.xace 4
license v
link 101
link

POSIX_FILE_SYSTEM 101
lio_listio 101

listen_by address
EPX_TCP_SERVER_SOCKET99
little endian 20

Index

114

local_date_string
POSIX_TIME 54
local_time_string
POSIX_TIME 54
locale.h 101, 103
localeconv 101
localtime 101
lock 30
log_event
ULM_LOGGING 79
log_message
ULM_LOGGING 79
login_name
POSIX_CURRENT_PROCESS101
Iseek 101

m
mail
EPX_SMTP_CLIENT 72
make
EPX_LOG_HANDLER 80
EPX_PIPE 102
POSIX_TERMIOS 103
STDC_TEMPORARY_FILE 103
SUS_TEMPORARY_FILE 101
make.exe 2
make_as_duplicate
EPX_FILE_DESCRIPTOR 100
POSIX_FILE_DESCRIPTOR 34
make_capture_input
EPX_EXEC_PROCESS46
make_capture_output
EPX_EXEC_PROCESS 46
make_directory
EXP_FTP_CLIENT 63
POSIX_FILE_SYSTEM 101
make_empty
POSIX_SIGNAL_SET 103
make_expand
STDC_PATH 40
make_from_file
POSIX_FILE_DESCRIPTOR 100
make_from_file_descriptor
POSIX_FILE 100
make_from_gid
POSIX_GROUP 101
make_from_name
POSIX_GROUP 101

POSIX_USER 101
make_from_now
POSIX_TIME 54
make_from_uid
POSIX_USER 101
make_from_unix_time
STDC_TIME 103
make_full
POSIX_SIGNAL_SET 103
make_pending
POSIX_SIGNAL_SET 103
makelib.exe 2
malloc 101
max_filename_length
POSIX_DIRECTORY 102
max_open_files 56
memchr 101
memcmp 101
memcpy 101
memmove 101
memory_copy
STDC_BUFFER 101
memory_move
STDC_BUFFER 101
memset 101

MIME 11
minicom 34
mkdir 101

mkfifo 7,7, 16, 101
mkstemp 101
mktime 102

mlock 102
mlockall 102
mmap 102

modem 34

mprotect 102
mg-receive 102
mqg_close 102
mq_getattr 102
mq_ notify 102
mqg_open 102
mqg_send 102
mq_setattr 102
mq_unlink 102
mqueue.h 102
msync 102
multi-threaded programming?2
munlock 102

115

munlockall 102
munmap 102

n

nanosleep 102

nanosleep
SUS_CURRENT_PROCESS102

netdb.h 100

netinet/in.h 101, 102
non-blocking i/o 23, 36
notice

SUS _SYSLOG 103
ntohl 102
ntohs 102

o]
open 102 107
open
EPX_FILE_DESCRIPTOR 102
POSIX_FILE 10
SUS_SYSLOG 102
open_by address
EPX_TCP_CLIENT_SOCKET 100
open_by name_and_port
EPX_TCP_CLIENT_SOCKET 100
open_read
EPX_FILE_DESCRIPTOR 102
POSIX_FILE 10
POSIX_SHARED_MEMORY 103
POSIX_TEXT_FILE 89
open_read_write
EPX_FILE_DESCRIPTOR 102
POSIX_SHARED_MEMORY 103
open_write
EPX_FILE_DESCRIPTOR 102
opendir 102
openlog 102
Open Source v
out
EPX_IP4_ADDRESS 101
output_speed
POSIX_TERMIOS 99

p
p_stdio.c 97

p_stdio.h 97
PAPI_UNISTD 10

parent_pid
POSIX_CURRENT_PROCESS101
parse
STDC_PATH 40
pathconf 102
path name 27
pause 102
pause
EPX_CURRENT_PROCESS102
peek_intl6
STDC_BUFFER 20
peek_int16_big_endian
STDC_BUFFER 20
peek_int16_little_endian
STDC_BUFFER 20
peek_int32
STDC_BUFFER 20
peek_uintl6
STDC_BUFFER 20
permissions
POSIX_FILE_SYSTEM 41
perror 102
pid

POSIX_CURRENT_PROCESS13, 101

pipe 102
poke_int32_big_endian
STDC_BUFFER 20
poll v
POSIX_ASYNC_IO_REQUEST 37
POSIX_BASE 10
POSIX_BINARY_FILE 23
POSIX_BUFFER 19, 19, 20
POSIX_CONSTANTS 12
POSIX_CURRENT_PROCESS51
POSIX_DAEMON 76, 76
POSIX_DIRECTORY 42, 43, 99, 102
POSIX_EXEC_PROCESSvi, 47
POSIX_FILE 23, 23

POSIX_FILE_DESCRIPTOR 17, 29, 95

100
POSIX_FILE_SYSTEM 40
POSIX_FORK_ROOT 13, 51
posix_htonl

SAPI_IN 101
posix_htons

SAPI_IN 101
posix_ioctl

SAPI_STROPTS 101

Index

116

posix_memcmp

CAPI_STRING 101
POSIX_MEMORY_MAP 21, 102
posix_ntohl

SAPI_IN 102
posix_ntohs

SAPI_IN 102
POSIX_PERMISSIONS 41, 42
posix_setsid

PAPI_UNISTD 103
POSIX_SHARED_MEMORY 19
POSIX_SHELL_COMMAND 45
POSIX_SIGNAL 103
POSIX_SIGNAL_HANDLER 49, 50
POSIX_STAT 42
POSIX_STATUS 42, 101, 103
POSIX_SYSTEM 56, 103 104
POSIX_TEXT_FILE 23, 30
POSIX_TIMED_COMMAND 99
printf 102
process_group_id

POSIX_CURRENT_PROCESS101
prune

POSIX_SIGNAL_SET 103
put_string

POSIX_FILE_DESCRIPTOR 91, 92

STDC_FILE 100
putc 102
putc

STDC_FILE 100
putchar 102
PUT request 65

puts 102
puts
EPX_CGI 83

pwd.h 100 101

q
ONX 7

quit
EPX_SMTP_CLIENT 72

r
raise 102
raise
STDC_SIGNAL 102 103
raise_posix_error
STDC_BASE 107

rand 102

random
STDC_CURRENT_PROCESS102

raw_value

EPX_CGI 84
read 7,102
read

ABSTRACT_FILE_DESCRIPTOR 7, 36
EPX_FILE_DESCRIPTOR 102
POSIX_ASYNC_IO_REQUEST 37, 99
POSIX_FILE 26
STDC_FILE 100
read_buffer
POSIX_FILE 26
read_character
STDC_FILE 100
read_line
[25
ABSTRACT_FILE_DESCRIPTOR 33
read_string
[25
ABSTRACT_FILE_DESCRIPTOR 23
POSIX_TEXT_FILE 26
STDC_FILE 100
readdir 102
real_group_id
POSIX_CURRENT_PROCESS101
real_time_clock
SUS_SYSTEM 99
real_time_clock_resolution
SUS_SYSTEM 99
real_user_id
POSIX_CURRENT_PROCESS101
realloc 102
recv. 7
redirect standard error34
reestablish
STDC_SIGNAL_HANDLER 50
refresh
POSIX_PERMISSIONS 42
register_dynamic_resource
EPX_HTTP_SERVER 68
register_fixed_resource
EPX_HTTP_SERVER 68
release
POSIX_SEMAPHORE 102
remap_http_method
EPX_HTTP_CONNECTION 67

117

remove 102

remove_directory
EPX_FILE_SYSTEM 102
EXP_FTP_CLIENT 63

remove_file
EXP_FTP_CLIENT 63
GENERAL 5

POSIX_FILE_SYSTEM 5, 90, 102
remove_from_blocked_signals
POSIX_SIGNAL_SET 103
rename 102
rename_to
EXP_FTP_CLIENT 63
POSIX_FILE_SYSTEM 102
reopen
STDC_FILE 101
request_form_fields
EPX_HTTP_CONNECTION 68
resize
STDC_BUFFER 102
REST 65
restore_group_id
POSIX_CURRENT_PROCESS103
restore_user_id
POSIX_CURRENT_PROCESS103
return_status
POSIX_ASYNC_IO_REQUEST 99
rewind 102
rewind
STDC_FILE 102
rewinddir 102
rmdir 102

s

save_uploaded_files
EX_CGI3 86

scanf 102

security.cpu.check _process_time
STDC_FILE 95

security.cpu.set_max_process_time
STDC_FILE 95

security.error_handling.disable_exceptions
STDC_SECURITY_ACCESSORO91

security.error_handling.enable_exceptions
STDC_SECURITY_ACCESSOR91

security.files.set_max_open_files
STRING 95

security.memory.set_max_allocation
STDC_SECURITY_ACCESSOR9%4

security.memory.set_max_single_allocation
STRING 95

seek 28

seek
EPX_FILE_DESCRIPTOR 101
POSIX_FILE 28
STDC_FILE 101

seek_from_current
EPX_FILE_DESCRIPTOR 101
STDC_FILE 101

seek_from_end
EPX_FILE_DESCRIPTOR 101
STDC_FILE 101

select 102

sem_close 102

sem_destroy 102

sem_getvalue 102

sem_init 102

sem_open 102

sem_post 102

sem_trywait 102

sem_unlink 102

sem_wait 102

semaphore.h 102

sendmsg 7

servlet 65

set_allow_anyone_read
POSIX_PERMISSIONS 42

set_allow_group_write
POSIX_PERMISSIONS 42

set_blocked_signals
POSIX_SIGNAL_SET 103

set_blocking_io
ABSTRACT_FILE_DESCRIPTOR 36
EPX_IRC_CLIENT 70

set_buffer
POSIX_ASYNC_IO_REQUEST 37
STDC_FILE 103

set_count
POSIX_ASYNC_IO_REQUEST 37

set_date
STDC_TIME 102

set_date_time
STDC_TIME 102

set_full_buffering
STDC_FILE 103

Index

118

set_group_id
POSIX_CURRENT_PROCESS103
set_handler
POSIX_SIGNAL 49, 50
set_input_speed
POSIX_TERMIOS 99
set_line_buffering
STDC_FILE 103
set_locale
STDC_CURRENT_PROCESS103
set_lock
POSIX_FILE_DESCRIPTOR 100
set_native_locale
STDC_CURRENT_PROCESS103
set_native_time
STDC_CURRENT_PROCESS103
set_no_buffering
STDC_FILE 103
set_offset
POSIX_ASYNC_IO_REQUEST 37
set_output_speed
POSIX_TERMIOS 99
set_position
POSIX_FILE 28
STDC_FILE 101
set_print_response
EPX_IRC_CLIENT 70
set_random_seed
STDC_CURRENT_PROCESS103
set_serve_xhtml_if _supported
EPX_HTTP_SERVER 65
set_time
STDC_TIME 102
set_user_id
POSIX_CURRENT_PROCESS103
setbuf 103

setgid 103
setjmp.h 104
setlocale 103
setpgid 103
setsid 103
setuid 103

setvbuf 103
shm_open 103
shm_unlink 103
sigaction 103
sigaddset 103
SIGCHLD 50

sigdelset 103
sigemptyset 103

sigfillset 103
sigismember 103
signal 103

signal.h 101, 102, 103
signal handler 49
signalled

POSIX_SIGNAL_HANDLER 49, 50
sigpending 103
sigprocmask 103
sigqueue 103
sigsuspend 103

sigtimedwait 103
sigwait 103 106
sigwaitinfo 103
slash 27

sleep 103

sleep

EPX_CURRENT_PROCESS49
POSIX_CURRENT_PROCESS103
SmallEiffel vi
SmartEiffel 2
Solaris 8
sprintf 103
srand 103
src/library.xace 1,6
sscanf 103 104
stat 42, 103
status
EPX_FILE _DESCRIPTOR 101
POSIX_FILE_DESCRIPTOR 42
STC_TEMPORARY_FILE 15
stdarg.h 104
STDC_BASE 10
STDC_BINARY_FILE 15, 33
STDC_BUFFER 15, 19, 19, 20, 94
STDC_CONSTANTS 12, 15
STDC_CURRENT_PROCESS15
STDC_ENV_VAR 15,55
STDC_ERRNO
POSIX_FILE_DESCRIPTOR 91
STDC_FILE 23, 95, 100
STDC_FILE_SYSTEM 15
STDC_LOCALE_NUMERIC 101
STDC_PATH 38
STDC_SECURITY_ACCESSOR9%4
STDC_SHELL_COMMAND 15, 103

119

stdc_signal_switch_switcher
6
STDC_SYSTEM 15
STDC_TEXT_FILE 15, 33
STDC_TIME 15, 100
stderr 34
stderr
EPX_EXEC_PROCESS47
stdin
binary 33
stdin
EPX_CURRENT_PROCESS33
EPX_EXEC_PROCESS47
stdio.h 97, 97, 99, 100 101, 102 103
104
stdioh 101
stdlib.h 99, 100, 101, 102 103
stdout 34
binary 33
stdout
EPX_CURRENT_PROCESS33
EPX_EXEC_PROCESS47
store
EXP_FTP_CLIENT 63
stream buffer 34
strftime 103

STRING 94
string.h 101
stropts.h 101
support

commercial v
supports_nonblocking_io
ABSTRACT_FILE_DESCRIPTOR 7, 36
SUS_BASE 11
SUS_ENV_VAR
STDC_ENV_VAR 56
SUS_SYSLOG 78, 103
SUS_SYSLOG_ACCESSOR78
SUS_TIME_VALUE 101
suspend
POSIX_SIGNAL_SET 103
synchronize
POSIX_ASYNC_IO_REQUEST 37, 99
POSIX_FILE_DESCRIPTOR 101
synchronize_data
POSIX_FILE_DESCRIPTOR 100
sys/mman.h 102 103
sys/select.h 102

sys/socket.h 99, 100
sys/stat.h 99, 100, 101, 103 104
sys/time.h 101
sys/utsname.h 104
sys/wait.h 104
sysconf 103

syslog 103

syslog.h 100 102 103
system 103

system.se 16
system.xace 4,6

t
tcdrain 103

tcflow 103
tcflush 103
tcgetattr 103

tcgetpgrp 103
tcsendbreak 103
tcsetattr 103
tcsetpgrp 103
tell

POSIX FILE 28

STDC FILE 101
temporary_file_name

STDC_FILE_SYSTEM 104
temporary file 15, 86
terminal 31

password 31
termios.h 99
TEST_IRC_CLIENT 70
text mode 33

time 103

time.h 99, 100 101, 102 103 104
timer_create 103

times 103

times.h 103
tmpfile 103
tmpnam 104
to_local
POSIX_TIME 54
STDC_TIME 101
to_utc
POSIX_TIME 54
STDC_TIME 101
touch
POSIX_FILE_SYSTEM 104
ttyname 104

Index

120

ttyname
POSIX_FILE_DESCRIPTOR 104
tzset 104

u

ULM_LOG_HANDLER 78
ULM_LOG_LEVELS 79
ULM_LOGGING 78
umask 104

uname 104
unfinished_xml
EPX_XML_WRITER 82

ungetc 104
ungetc
STDC_FILE 104
unistd.h 99, 100, 101, 102 103 104
unlink 10, 104
unlink

POSIX_FILE_SYSTEM 104
unlink_shared_memory_object
POSIX_FILE_SYSTEM 103
URI 11 64
UT_URI 64
utime 104
utime
POSIX_FILE_SYSTEM 104
utime.h 104

v
value
EPX CGI 84, 86
STDC_ENV_VAR 101
VE BIN 6

viprintf 104
Visual Eiffel vi
VisualEiffel 2, 6
vprintf 104
vsprint 104

w
wait 104
wait
POSIX_CURRENT_PROCESS13, 104
wait_for
EPX_EXEC_PROCESS47, 48
POSIX_ASYNC_IO_REQUEST 37, 99
POSIX_CHILD 13
wait_pid
POSIX_FORK_ROOT 104
waited_child_pid
POSIX_CURRENT_PROCESS13
waitpid 104
Windows 2000 8
WINDOWS_PAGING_FILE_SHARED_ MEMORY
21
WINDOWS_SYSTEM 56
write 7,104
write
ABSTRACT_FILE_DESCRIPTOR 7, 36
EPX_FILE_DESCRIPTOR 104
POSIX_ASYNC_I0_REQUEST 37, 99
STDC_FILE 101

X
XM_UNICODE_CHARACTER_CLASSES
5

121

