
e-POSIX
The definitive and complete

Eiffel to Standard C and
POSIX 1003.1 binding

written by Berend de Boer

Contents

1 Requirements and installation 1
1.1 Requirements 1
1.2 Compiling the C code 1
1.2.1 Compiling on Unix 1
1.2.2 Compiling on Windows 2
1.2.3 Library naming conventions 3

2 Using e-POSIX 4
2.1 Using library.xace 4
2.2 Gobo 3.3 5
2.3 Vendor specific notes 5
2.3.1 ISE Eiffel 5
2.3.2 SmartEiffel 5
2.3.3 Visual Eiffel 6
2.4 Platform specific notes 6
2.4.1 Linux 7
2.4.2 FreeBSD 7
2.4.3 Cygwin 7
2.4.4 BeOS 7
2.4.5 QNX 7
2.4.6 Solaris 8
2.4.7 Win32 8

3 Design notes 9
3.1 Why an entire reimplementation? 9
3.2 Goals and guidelines 9
3.3 Class structure 10
3.4 Clients of this library 12
3.5 Forking 12
3.6 Books 14

4 Layers 15
4.1 Layers architecture 15
4.2 Standard C 15
4.3 Windows 15
4.3.1 Writing portable programs 15
4.3.2 Compiling POSIX programs in Windows 16
4.3.3 Native Windows 16
4.4 Introduction to the next chapters 18

ii

5 Working with memory 19
5.1 Introduction 19
5.2 Allocating memory 19
5.3 Allocating memory 20
5.4 Using shared memory 20
5.5 Memory maps 21

6 Working with files 23
6.1 Introduction 23
6.2 Standard C notes 23
6.3 Compatibility with Gobo 23
6.4 Working with streams 23
6.5 Working with streams using Standard C only 28
6.6 Working with file descriptors 29
6.7 Windows systems: binary mode versus text mode 32

7 Working with files: advanced topics 34
7.1 Redirecting stderr to stdout 34
7.2 Talking to your modem 34
7.3 Non-blocking I/O 36
7.4 Asynchronous I/O 36

8 Working with the file system 38
8.1 Portability 38
8.2 Standard C 38
8.3 POSIX 40

9 Working with processes 45
9.1 Introduction 45
9.2 Executing a child command 45
9.3 Catching a signal with Standard C 46
9.4 Catching a signal withPOSIX 48
9.5 General wait for child handler 49
9.6 Forking a child process 50

10 Querying the operating system 53
10.1 Current time 53
10.2 Accessing environment variables 54
10.3 Capabilities 55

11 Working with the network 56
11.1 MIME parsing 56
11.2 Sockets 56
11.3 Echo client 56
11.4 Echo client and server 58

iii

12 Working with the network: advanced topics 61
12.1 Introduction 61
12.2 FTP client 61
12.3 HTTP client 62
12.4 HTTP server 63
12.5 IMAP4 client 67
12.6 IRC client 68
12.7 SMTP client 68

13 Writing daemons 70
13.1 Introduction 70
13.2 Windows 70
13.3 Creating a daemon 70
13.4 Logging messages and errors 71
13.5 ULM based logging 72

14 Writing CGI programs 75

15 Error handling 83
15.1 Error handling with exceptions 83
15.2 Manual error handling 85

16 Security 88
16.1 Denial of service attacks 88
16.2 Authorization bypass attacks 89

17 Accessing C headers 90
17.1 Making C Headers available to Eiffel 90
17.2 Distinction between Standard C andPOSIXheaders 91
17.3 C translation details 92

A Posix function to Eiffel class mapping list 93

To do 99
ABSTRACT_DIRECTORY 99
EPX_FILE_SYSTEM 99
STDC_FILE 99
STDC_LOCALE_NUMERIC 99
STDC_PATH 99
STDC_TIME 99
POSIX_DAEMON 99
POSIX_EXEC_PROCESS 99
POSIX_FILE_DESCRIPTOR 100
POSIX_MEMORY_MAP 100
POSIX_SEMAPHORE 100
POSIX_SIGNAL 100
POSIX_STATUS 100
POSIX_MQUEUE 100
Security 100

iv

Windows code 101
Other 101
Known bugs 101

Bibliography 102

Index 103

Introduction

It has been a great pleasure for me when I could announce the first public alpha release of this
manual. And then came the betas and the first release. Writing libraries like this is boring stuff.
Every Eiffel programmer should have had access to all those Standard C andPOSIX routines long
ago. Anyway, now you and me have. Whatever a C programmer can do, you can. And even more
safe as this library protects you of inadvertently calling routines that are not portable (because
they’re simply not there :-)).

Writing libraries like this also seems to be a never ending story, as we now are at version 2.2. And
my to do list hasn’t shrinked, so stay tuned!

I actively support this library, so bug reports and wishes are gladly accepted. In the future, I hope to
be able to expand this library to add more stuff from the Single Unix Specification such aspoll
andselect support, and raw sockets. Also on my wish lists are an FTP, NEWS and IRC client
implementation.

Have fun using this library and I like to hear about applications!

Licensing

This software is licensed under the Eiffel Forum Freeware License, version 2. This license can be
found in theforum.txt file. Basically this license allows you to do anything with it, i.e. use it
for commercial or Open Source software without restrictions. But don’t sue me if something goes
wrong. And give me some credits.

Also explicitly allowed is copying parts of this library to your own, for example copying certain
Standard C or POSIX header wrappings. I prefer linking, but you don’t have to retype everything
if you don’t want to link.

Support

e-POSIX is a fully supported program. You can send requests for help directly to me. But to
help others profit from the discussion, and perhaps to get feedback when I’m short on time, it is
suggested that support messages are sent toeposix@yahoogroups.com.

Latest versions and announcements are available fromhttp://groups.yahoo.com/group
/eposix/ .

Commercial support

I’m available to give companies or organisations a one or two day course usingPOSIX and in
particularly this library. Prices are $1000 NZD a day, excluding VAT, travel and hotel expenses.
Contact me atberend@pobox.com.

mailto:eposix@yahoogroups.com
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
mailto:berend@pobox.com

vi

Acknowledgements

I like to thank people who, one way or another, have helped me in creating this library. They’re
listed in order they have been involved with this library or manual:

• Eugene Melekhov<eugene_melekhov@object-tools.com>: compiled it with Visual Eiffel.
As Visual Eiffel is the most strict compiler, he found a great many oversights that SmallEiffel
didn’t catch.

• mico/E team: I got many ideas for my C interface from the mico/E project. Sometime ago
Andreas Schulzwrote me that the micoe team wanted to use e-POSIX in mico/E. Andreas also
reported problems and suggested improvements, especially in theEPX _CGIclass. Andreas
and Robert Switzer, thanks for the bug reports!

• Ida de Boer <ida@gameren.nl>: it was she who provided you with thePOSIX to Eiffel
mapping table inappendix A.

• Steve Harris<scharris@worldnet.att.net>: suggested improvements, found a CAT call problem
and we had an interesting discussion about forking.

• Jörgen Tegnér <teg@post.netlink.se>reported a problem with an example, and a bug in
POSIX _EXEC _PROCESS.

• Marcio Marchini <mqm@magma.ca> contributed a lot to e-POSIX. He gave very useful
advice, submitted code, and supplied patches to compile e-POSIXbetter on Windows. I think it
is fair to say that you thank the Windows support in e-POSIX to Marcio.

• Eric Bezault: I’ve had some insightful discussions with Eric regarding architecture of libraries
such as e-POSIX. I think we never agreed :-), but the alternative error handling is due to his
comments!

• Andreas Leitner: Discussions about using eposix which will lead to even closer integration
with Gobo in subsequent releases.

• [sven] : various comments and suggestions.
• Colin Paul Adams: contributed classes such as the resolvers and fixes.

Colophon

The text of this manual was entered with GNU Emacs 21.3.1 on Linux according to the LFS
method. It was typeset with pdfTEX using the ConTEXt macro package, seehttp://www.
pragma-ade.com . BON diagrams were created withMETAPOST.

mailto:eugene_melekhov@object-tools.com
mailto:eugene_melekhov@object-tools.com
mailto:eugene_melekhov@object-tools.com
http://www.math.uni-goettingen.de/micoe/
http://www.math.uni-goettingen.de/micoe/
mailto:ascholz@math.uni-goettingen.de
mailto:ascholz@math.uni-goettingen.de
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:scharris@worldnet.att.net
mailto:scharris@worldnet.att.net
mailto:scharris@worldnet.att.net
mailto:teg@post.netlink.se
mailto:teg@post.netlink.se
mailto:teg@post.netlink.se
mailto:mqm@magma.ca
mailto:mqm@magma.ca
mailto:mqm@magma.ca
mailto:ericb@gobosoft.com
mailto:ericb@gobosoft.com
mailto:nozone@sbox.tugraz.at
mailto:nozone@sbox.tugraz.at
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com

In this chapter:

1.1Requirements
1.2Compiling the C code

1
Requirements

and installation

1.1 Requirements

e-POSIXhas three requirements:

1. e-POSIX requires Gobo release 3.4 or higher. You can download Gobo athttp://www.
gobosoft.com/ . Gobo must be installed.

2. e-POSIX requires that the environment variableEPOSIX is set to the root directory where the
e-POSIXare unpacked.

3. On Windows, e-POSIX requires that the environment variableGOBO_CCis set to the name of
the C compiler you are using. Failure to do so will result in link errors. Perhaps in a future
geant release this will be set automatically.

1.2 Compiling the C code

Before e-POSIXcan be used, a few C files need to be compiled into a library. The steps differ if you
are using a Unix derivative, or a Windows based system.

1.2.1 Compiling on Unix

Before the C files can be compiled, e-POSIXmust be configured. If you have just one Eiffel compiler
on your system, this should be sufficient:

./configure --prefix=$EPOSIX
make

If you have multiple Eiffel compilers, you can specify the compiler with:

./configure --with-compiler=ve --prefix=$EPOSIX

The--prefix switch is a trick to make sure that you can type:

make install

after the make was successful. With this step the library is installed into the\$EPOSIX/lib
directory. This is the location where e-POSIX’s src/library.xace expects it. Without the
--prefix switch the library will usually be installed in/usr/local/lib .

More information aboutconfigure options can be displayed with:

./configure --help

http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/

Requirements and installation 2

1.2.2 Compiling on Windows

For Windows system, I’ve supplied a tool —build with e-POSIX— that can build the necessary
e-POSIX library for your Eiffel and C compiler.

Type:

makelib

to get help. Type:

makelib -ise -msc

to compile the C code with Microsoft’s Visual C compiler targeting the ISE Eiffel compiler.

Only the Microsoft supplied library did work, i.e. link, with VisualEiffel:

makelib -ve -msc

Type:

makelib -se -bcb

to compile the C code with Borland’s C compiler targeting SmartEiffel. It was tested with the free
Borland C version 5.5 compiler.

Type:

makelib -se -lcc

to compile the C code with elj-win32’s lcc C compiler.

If you have both the Borland C compiler and lcc installed, make sure themake.exe in your path
is the correct one!

The generated library will have the name of the C compiler in its path. Make sureGOBO_CChas
the correct value when compiling an e-POSIXprogram, seetable 1.1.

bcb Borland C compiler.

msc Microsoft C compiler.

lcc lcc-win32 compiler.

Table 1.1 Possible values for theGOBO_CC
environment variable

If you want to compile the eposix library for use in a multi-threaded application, pass the-mt
switch tomakelib.exe :

makelib -ise -msc -mt

You must pass the-mt flag for ISE Eiffel 5.6 if you are using the Microsoft Visual C compiler.
You also will have to copy the multi-threaded library to the single-threaded library:

cd lib
copy libmteposix_ise_msc.lib libeposix_ise_msc.lib

This is only supported for the ISE Eiffel compiler. eposix is not specifically written for use in multi-
threaded programs nor tested much in such environments. There are certain areas (exit handling,
signal handling) that are not multi-thread safe.

3 Compiling the C code

1.2.3 Library naming conventions

The name of this library starts withlibeposix . On Unix the name of the Eiffel vendor is
appended, solibeposix_se.a is the library for SmartEiffel. On Windows systems the name
of the Eiffel vendor and the C compiler are appended. On Windows different C compilers have
incompatible libraries, so they need to be distinguished. On Windows the e-POSIX library for ISE
Eiffel compiled with the Microsoft Visual C compiler is calledlibeposix_ise_msc.lib .

The vendor names are derived from the names the Gobo Eiffel package uses, i.e. theGOBO_EIFFEL
environment variable.

The C compiler is derived from theGOBO_CCenvironment variable.

In this chapter:

2.1Using library.xace
2.2Gobo 3.3
2.3Vendor specific notes
2.4Platform specific notes

2
Using e-POSIX

2.1 Usinglibrary.xace

Since Gobo 3.0 Eiffel library writes have a new great tool at their dispose:gexace . Eiffel library
writers have to write and maintain just a single file,library.xace . You can this file file in
the e-POSIXsrc subdirectory.

Typically, a library.xace is included in asystem.xace . A typical example, including
all required Gobo files, is:

<?xml version =" 1.0 " ?>

<system name=" eposix_test " >
<description >

system : " eposix example program "
author : " Berend de Boer [berend@pobox.com] "
copyright : " Copyright (c) 2002-2003, Berend de Boer "
license : " Eiffel Forum Freeware License v2 (see forum.txt) "
date : " $Date : $"
revision : " $Revision : $"

</ description >

<root class =" ${ROOT_CLASS}" creation =" make" / >

<option unless =" ${DEBUG}" >
<option name=" assertion " value =" none " / >
<option name=" garbage_collector " value =" internal " / >
<option name=" finalize " value =" true " unless =" ${GOBO_EIFFEL} =ve " / >

</ option >
<option if =" ${DEBUG}" >

<option name=" assertion " value =" all " / >
<option name=" garbage_collector " value =" internal " / >
<option name=" finalize " value =" false " / >

</ option >

<option if =" ${GOBO_OS}=se " >
<option name=" c_compiler_options " value =" -O0 -pipe " unless =" ${GOBO_OS}=windows " / >

</ option >

5 Gobo 3.3

<cluster name=" example " location =" ${EPOSIX}/doc " unless =" ${GOBO_EIFFEL} =ve " / >

<mount location =" ${EPOSIX}/src/library.xace " / >
<mount location =" ${GOBO}/library/xml/library.xace " / >
<mount location =" ${GOBO}/library/parse/library.xace " / >
<mount location =" ${GOBO}/library/lexical/library.xace " / >
<mount location =" ${GOBO}/library/structure/library.xace " / >

<mount location =" ${GOBO}/library/kernel/library.xace " / >
<mount location =" ${GOBO}/library/utility/library.xace " / >
<mount location =" ${GOBO}/library/kernel.xace " / >

</ system >

2.2 Gobo 3.3

e-POSIXcan be used with the previous release of Gobo, Gobo 3.3. Do a:

make clean

in order to regenerate the provider parser and scanner files. You will need to copy two files from
Gobo 3.4 (or CVS version):

1. [KL_STRING_EQUALITY_TESTER] class to$GOBO/library/kernel/basic/ .
2. [UC_STRING_EQUALITY_TESTER] class to$GOBO/library/kernel/unicode/ .

2.3 Vendor specific notes

2.3.1 ISE Eiffel

e-POSIXsupports ISE Eiffel 5.6. e-POSIXhas been tested under the following conditions:

1. I used Microsoft Windows 2000, Service Pack 2.
2. I used the Borland C 5.5 and Microsoft Visual C++ 6.0 compiler.

Note that you need the multithreaded version of the C binding library if youse ISE Eiffel 5.6 and the
Microsoft Visual C compiler. Else you will get a linker message complaining about the unresolved
external symbol_errno .

2.3.2 SmartEiffel

e-POSIXwas tested with SmartEiffel 1.2r6 on FreeBSD, Linux, QNX, Solaris and Windows.

Because SmartEiffel has a tendency to provide lots of non-ELKS routines in its kernel classes —a
bad thing in my opinion— I had to write a newANY. My ANYrenamesGENERAL. remove
_file , so I wouldn’t get a conflict withPOSIX _FILE _SYSTEM. remove _file .

Using e-POSIX 6

There is no reason for the presence ofGENERAL. remove _file , I expect this to be removed
soon1, so myANYcan be deleted when this has happened.

If you use lcc-win32 as your C compiler, note that for the GoboXM _UNICODE _CHARACTER
_CLASSESclass SmartEiffel generates code that does not compile with lcc-win32 due to some
line length limit. This problem was still present with the latest lcc-win32 compiler, version 3.8,
compiled on December 23.

If you use SmartEiffel and if you don’t use Gobo’s gexace tool to generate SmartEiffel’s Ace file,
you might see a complaint about a routinestdc_signal_switch_switcher not being
found when linking. In that case you will need to put acecil.se file in your directory. The
contents of this file should be:

-- The name of our include C file:
cecil.h
-- The features called from C:
stdc_signal_switch_switcher STDC_SIGNAL_SWITCH switcher
stdc_exit_switch_at_exit STDC_EXIT_SWITCH at_exit

But I strongly suggest to make the switch to Gobo’s gexace tool as this tool makes compilation for
different Eiffel compilers a lot easier.

2.3.3 Visual Eiffel

e-POSIXhas been tested with one of ObjectTool’s offerings:

1. Their free VisualEiffel 5.0b for Linux.

VisualEiffel 4.1 might still work but is no longer tested.

Follow these steps to compile with VisualEiffel 5 on Windows:

1. Make sure the VE_BIN environment variable is set to the Bin directory in the VisualEiffel
subdirectory. On my system it is set toM:/ProgramFiles/ObjectTools/VisualEiffel
/Bin .

2. Create thelibeposix_ve_msc.lib library using the Microsoft Visual C compiler:
makelib -ve -msc

3. Usegexace to generate an.esd file.
4. Make sure to set the linker supplier option to Microsoft in yoursystem.xace file! So an

option like this should be present:
<option name="linker" value="microsoft" if="\${GOBO_EIFFEL}=ve"/>

2.4 Platform specific notes

Although e-POSIXshould, in principle, run on every platform that supports Standard C orPOSIX, it
cannot be tested on every platform by me alone. This section gives details about the platforms I’ve
used. The main thing you need to do is to edit e-POSIX’s src/library.xace to the proper
libraries for your platform are linked. The defaultsrc/library.xace is suited for Linux
only.

I wrote that two years ago. . .1

7 Platform specific notes

2.4.1 Linux

The latest version of e-POSIXwas tested with kernel 2.4.29 and glibc 2.2.93.

2.4.2 FreeBSD

The latest version of e-POSIX was tested with FreeBSD 4.11-STABLE. FreeBSD doesn’t support
fdatasync , so we do afsync there. Cases like that are automatically detected by the
configure script.

You have to edit/src/library.xace to link the proper library for FreeBSD. Look at the
comments.

After amake clean you have to use gmake instead of make.

2.4.3 Cygwin

The latest version of e-POSIXwas tested with Cygwin 1.3.x. Some remarks:

1. Locking doesn’t seem to be supported.
2. fifo’s (mkfifo) are not supported.
3. No support forfdatasync , so we do afsync there.

2.4.4 BeOS

The latest version of e-POSIX was tested with BeOS 5.03. BeOS has a nicePOSIX compatibility
layer. Some remarks:

1. Locking doesn’t seem to be supported.
2. fifo’s (mkfifo) are not supported.
3. Hard links are not supported, only symbolic links.
4. No support forfdatasync , so we do afsync there.
5. Sockets work in BeOS, but they are not file descriptors. Stick to theEPX _SOCKETclasses

like EPX _TCP _CLIENT _SOCKET. Never pass a socket to anABSTRACT _FILE
_DESCRIPTORas that will not work.
The trick is thatread andwrite in EPX _SOCKETcall recv andsendmsg . If you
pass a socket to anABSTRACT _FILE _DESCRIPTOR, the POSIXread andwrite
routines will be called.

6. BeOS does not support non-blocking i/o on file descriptors or sockets. e-POSIX says it does if
you askABSTRACT _FILE _DESCRIPTOR. supports _nonblocking _io , but
it doesn’t.
BeOS has some options for non-blocking sockets, but they’re very primitive and it seems you
can’t turn blocking off once it has been turned on for example.

2.4.5 QNX

The latest version of e-POSIXwas tested with QNX 6.2.1.

Using e-POSIX 8

You have to edit/src/library.xace to link the proper library for QNX. Look at the
comments.

2.4.6 Solaris

e-POSIX was tested against Solaris 10 for Intel. Make sure to add the-std=c99 option to
CFLAGS. Solaris seems to require this if the POSIX-1.2001 define is set.

You have to edit/src/library.xace to link the proper library for Solaris. Look at the
comments.

2.4.7 Win32

The latest version of e-POSIXwas tested with Windows 2000, Service Pack 2. On Win32, Standard
C is fully supported. With e-POSIX’s abstract layer, parts ofPOSIXand the Single Unix Specification
are also supported. Support isn’t as extensive as using the Cygwin tools.

In this chapter:

3.1Why an entire reimplementation?
3.2Goals and guidelines
3.3Class structure
3.4Clients of this library
3.5Forking
3.6Books

3
Design notes

3.1 Why an entire reimplementation?

One might wonder why I reimplemented the entire Standard C andPOSIX library when most
vendors also have classes that deal with files, the file system, signals and such. Unfortunately,
these classes are nor complete nor very portable between vendors. For someone who wants to
compile against all the major vendors —and there are good reasons to do this— there is currently
no portable solution. That’s why many portable Eiffel programs more or less contain the same code
again and again. There are some attempts to write more portable libraries, for example theUnix
File/Directory Handling Cluster by Friedrich Dominicus, but they also are not complete nor is
the implementation satisfactory. For example they usually have much logic at the C level. I wanted
only C glue code: all intelligence should be in the Eiffel code.

Another attempt is done by the Gobo cluster: it attempts to provide users with a set of classes that
work accross all Eiffel vendors by using only the native facilities offered by each implementation.
This approach has the advantage that no C compilation is necessary. The disadvantages are:

1. The contract for these classes is probably not specifiable: for which platforms and which
assumptions are the contracts valid? Are these contracts the same in all implementations?

2. It is incomplete, i.e. it doesn’t cover most of thePOSIX routines.

That’s why I started to make the entire Standard C andPOSIXroutines available to Eiffel programmers.
All these routines are nicely wrapped in classes. I spend a lot of time designing and refactoring
these, comments and improvements about its structure are very appreciated.

The advantage of makingPOSIX available to Eiffel programmers is that someone doesn’t need to
think about creating a set of portable file and directory classes that work on every known operating
system.POSIX is available on many platforms and for other systems there either is an emulation or
a POSIX mapping available. It’s better to reuse that, instead of reinventing work that took years to
complete.

3.2 Goals and guidelines

The goals and guidelines for this library were:

1. A complete Standard C implementation for those who didn’t have access toPOSIX routines.
2. A completePOSIX implementation.
3. Do the job in such a way that it will become the official EiffelPOSIXmapping.
4. All classes should satisfy the demands posed by the query--command separation principle.

http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm

Design notes 10

5. The native Standard C andPOSIX routines should be available to those who don’t want to go
through a certain class layer.

6. The names in use in thePOSIXworld like file descriptor or memory map are used as class names.
This should make it easy to find a class if one knows thePOSIXname.

7. If a command fails, an exception code is raised. This differs from thePOSIXroutines where one
is expected to test for error and query theerrno variable. The only exception isunlink :
when the file does not exist, no exception is raised.

8. POSIXassumptions should be made explicit. For Eiffel this means specifying explicit pre-- and
postconditions.

9. Use of constants to influence the way a method should be avoided by providing clearly named
methods. So instead of passing a constants to thePOSIX _FILE. open function to open a
file read--only, one can also callopen _read .

10. Attempt to create non-deferred class that refer to an entity that exists in thePOSIX world.
Creation of an object is binding to that entity, or creation of that entity.

11. Names should be clear, and Eiffel--like. They should not differ in just one character.POSIX

names are also made available to ease use of this library for programmers that knowPOSIX

well.

3.3 Class structure

e-POSIXmakes available all the Standard C andPOSIXheaders in classes likeCAPI _STDIO and
PAPI _UNISTD. More details about the header translation are inchapter 17.

However, making the plain C API available is not a very interesting addition to an Eiffel programmer’s
toolkit. Therefore, this library’s second attempt was to make an effective OO--wrapper, while
making a careful distinction between what is available in the Standard C and what is available in
POSIX. This distinction is reflected in e-POSIX’s directory structure, seefigure 3.1.

Figure 3.1 e-POSIX

directory structure

The raw Standard C API is available insrc/capi , the OO--wrapper is available insrc/standardc .
The rawPOSIXAPI is available insrc/papi , the OO--wrapper is available insrc/posix .

Every Standard C andPOSIXwrapper is derived from a common root, see alsofigure 3.2:

1. If a class builds upon facilities available on Standard C, its name starts with the prefix STDC_
and it inherits fromSTDC _BASE.

2. If a class builds upon facilities available inPOSIX, its name starts with the prefix POSIX_ and it
inherits fromPOSIX _BASE.

11 Class structure

3. If a class builds upon facilities available in the Single Unix Specification, its name starts
with the prefix SUS_ and it inherits fromSUS _BASE. The support for the Single Unix
Specification is not yet complete, but is continually enhanced.

4. Because we live in a world dominated by Microsoft Windows, and Microsoft Windows does
not doPOSIX, this would mean that many users only could use e-POSIX’s Standard C facilities.
These facilities are extremely limiting, for example there is no change directory command in
Standard C. Therefore e-POSIX makes available an abstraction layer that covers routines that
have an equivalent inPOSIX and the Single Unix Specification. These classes start with the
name EPX_. They always inherit from classes starting with ABSTRACT_. These abstract
classes implement the common code. Seechapter 4.3.3for more details.
Note that by using Cygwin you have a fullPOSIXemulation layer on Windows. In that specific
environment you can use e-POSIX’s entirePOSIXand Single Unix Specification layer.

POSIX BASE
*

STDC BASE
*

POSIX BASE
*

STDC BASE
*

ABSTRACT
*

POSIX BASE
*

ABSTRACT
*

POSIX BASE
*

Figure 3.2 Inheritance structure

The wrapper classes should be fully command--query separated and use clear names. Often the
POSIXname, if applicable, is also made available as an alias. If this is a good thing, I’m not sure. I
hope it facilitates working with the wrapper classes if you already knowPOSIX.

Besides these directories, e-POSIXprovides a number of extensions to the pure Standard C orPOSIX

routines. These can be found in the subdirectories that start withsrc/epx . A single letter
indicates if the classes only built upon routines available in Standard C orPOSIX:

1. epxc : Standard C based extensions like URI resolving, a MIME parser andXML generation.
2. epxs : Single Unix Specification based extension like an HTTP client.

Design notes 12

3.4 Clients of this library

For client classes, two important classes areSTDC _CONSTANTSandPOSIX _CONSTANTS,
seefigure 3.3. The wrapper classes tend to avoid having routines whose behavior drastically
depends on passed constants. But if you need to use constants, your client class can just inherit
from these classes and every Standard C andPOSIXconstant is available.

STDC CONSTANTS
+

POSIX CONSTANTS
+

Figure 3.3 Standard
C andPOSIX constants

3.5 Forking

Implementing forking posed some interesting challenges. I started with the basic idea that every
process has a pid:

class PROCESS

feature

pid: INTEGER

end

I wanted to be able to write two kinds of forking. The first one is forking a child as in:

class PARENT

inherit

POSIX_CURRENT_PROCESS

feature

make is
local

13 Forking

child: POSIX_CHILD_PROCESS
do

print ("My pid: ")
print (pid)
print ("%N")
fork (child)
print ("child’s pid: ")
print (child.pid)
print ("%N")
child.wait_for (True)

end

end

However, I also wanted to fork myself, because that basically is what forking is!

class PARENT

inherit

POSIX_CURRENT_PROCESS

POSIX_CHILD_PROCESS

feature

make is
do

fork (Current)
wait

end

executeis
do

-- forked code
end

end

The above code gives a name clash, becausePOSIX _CURRENT _PROCESS. pidis a call to
thePOSIX routinegetpid , while the child’s pid is a variable, which gets a variable after forking.
You can solve this name clash yourself, but it is most easy to inherit fromPOSIX _FORK _ROOT,
a clash which has solved this clash already.

If you fork a child, you must wait for it. For a child process, you can usePOSIX _CHILD.
wait _for , if you fork yourself, you must usePOSIX _CURRENT _PROCESS. wait.
The variablewaited _child _pid will be set with the pid of the child process thatwait
waited for.

Design notes 14

3.6 Books

Books that have been helpful during the development of e-POSIXwhere (Xxxxxxxxxx, 0000, 0000,
0000), see the biography section atpage 102.

In this chapter:

4.1Layers architecture
4.2Standard C
4.3Windows
4.4Introduction to the next chapters

4
Layers

4.1 Layers architecture

e-POSIX is written in such a way that it is possible to write a pure Standard C based application
(ANSI/ISO IS 9899: 1990), a purePOSIX application (Standard ISO/IEC-9945-1: 1990), or a
pure Single Unix Specification version 3 application (http://www.unix-systems.org
/single_unix_specification/). AlthoughPOSIX and the Single Unix Specification
merged there specifications, they are still kept separate in e-POSIX, because the merge happened
relatively recently and the purePOSIX functions are more very widely supported.

Based on these standards e-POSIXoffers a compatibility layer. This layer offers a common framework
for people that want to write code that works on both Unix and Windows systems. The compatibility
layer uses all features that an operating system offers. If you use the network compatibility layer
for example, you need a system that supports the Single Unix Specification.

4.2 Standard C

All Standard C classes start withSTDC_. They are:

1. STDC _TEXT _FILE: access text files.
2. STDC _BINARY _FILE: access binary files.
3. STC _TEMPORARY _FILE: create a temporary file, a file that is removed when it is closed

or when the program terminates.
4. STDC _CONSTANTS: access Standard C constants like error codes and such.
5. STDC _BUFFER: allocate dynamic memory.
6. STDC _ENV _VAR: access environment variables.
7. STDC _FILE _SYSTEM: delete and rename files.
8. STDC _SHELL _COMMAND: pass an arbitrary command to the native shell.
9. STDC _SYSTEM: access information about the system the program is running on.
10.STDC _CURRENT _PROCESS: access to current process related information like its standard

input, output and error streams.
11.STDC _TIME: access current time. Also can format a given time in various formats.

4.3 Windows

4.3.1 Writing portable programs

e-POSIXoffers three alternatives to writing programs that run on both Unix and Windows platforms:

http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/
http://www.unix-systems.org/single_unix_specification/

Layers 16

1. Write programs that only rely on Standard C. If you use only Standard C classes your program
is probably quite portable. Standard C doesn’t offer that much however.

2. Write programs that are based onPOSIX. You use aPOSIX emulator to compile and run your
program unchanged on Windows. The only thing you have to be aware of is the distinction
between binary and text files.

3. Write programs that are based upon e-POSIX’s EPX_XXXX layer. This layer is based on e-
POSIX’s ABSTRACT_XXXX classes, that covers code that is common between Windows and
a POSIXplatform.
Previous versions of e-POSIXused a factory class approach to access this common code. This is
no longer needed. The ABSTRACT_XXXX are maded effective through EPX_XXXX classes
when compiling for Windows or forPOSIX.

The following sections offer more details about the last two approaches.

4.3.2 Compiling POSIX programs in Windows

You can also use a very large subset ofPOSIX under Windows with aPOSIX emulator. I’ve tested
this using SmartEiffel and Cygwin’s freely available emulator. Here the steps:

1. Download the Cygwin toolkit fromhttp://sources.redhat.com/cygwin .
2. Set the compiler incompiler.se to gcc . Leave the system insystem.se to Windows.
3. Configure e-POSIXas described in1.2and createlibeposix_se.a

A few things are not available under Cygnus’POSIXemulation:

1. POSIX _FILE _SYSTEM. create _fifo is not supported. Any attempt to use it will
returnENOSYS. I’m not sure if returning an error is the correct solution for applications that
requirePOSIXcompatibility, because you are only warned at run--time. Another solution would
be to include a call tomkfifo and if you use it, let the linker complain.

2. There is no locking, so calls toPOSIX _FILE _DESCRIPTOR. get _lock and such
will fail.

3. CertainPOSIX tests assume that a more Unix like environment is available, so not all tests will
run. For example the standard Cygwin distribution doesn’t have amore utility. If you make a
symbolic link fromless to more the child process test will run.

4. The current list of implemented functions is available fromhttp://sources.redhat.
com/cygwin/faq/faq_3.html#SEC17 .

4.3.3 Native Windows

Previous versions of e-POSIX used a factory class approach to access Windows orPOSIX specific
code. This is obsolete.

If you want to write code that is portable between Windows andPOSIX use the EPX_XXXX class
layer. For example you can use theEPX _FILE _DESCRIPTORto use file descriptors that are
completely portable between these two OSes. UseEPX _FILE _SYSTEMto have access to file
system specific code to change directories or get the temporary directory.

In general you can replace the POSIX_ prefix with EPX_ to compile most of the examples presented
in the previousPOSIX specific chapters. The classes currently available in the EPX_XXXX layer
are:

http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17

17 Windows

• EPX _CURRENT _PROCESS.
• EPX _EXEC _PROCESS.
• EPX _FILE _DESCRIPTOR.
• EPX _FILE _SYSTEM.
• EPX _PIPE.

Figure one shows hoe theEPX _FILE _DESCRIPTORclass is derived fromABSTRACT
_FILE _DESCRIPTOR. Both Windows andPOSIXhave an effectiveEPX _FILE _DESCRIPTOR
class. Classes asPOSIX _FILE _DESCRIPTORimplementPOSIX specific functionality for a
file descriptor.

POSIX BASE
*

ABSTRACT FD
*

WINDOWS BASE
*

EPX FD
+

EPX FD
+

POSIX FD
+

WINDOWS FD
+

Figure 4.1 How EPX_XXXX classes are related to thePOSIX and Windows classes

An example of using theEPX _FILE _SYSTEMclass is shown below:

class EX_EPX1

inherit

EPX_FILE_SYSTEM

creation

make

Layers 18

feature

make is
local

dir: STRING
do

print ("Current directory: ")
dir := current_directory
print (dir)
print ("%N")
change_directory("..")
change_directory(dir)
make_directory("abc")
rename_to("abc", "def")
remove_directory("def")

end

end

In �� all abstract classes are listed. There deferred features are made effective in theEPX class for
the operating system you’re compiling for.

4.4 Introduction to the next chapters

The following chapters are topic based: they discuss how to work with files for example and show
examples for all layers and give hints what is and what isn’t supported in each layer.

Instead of describing every class and every feature, I decided to show short and simple examples of
common ways to use the various e-POSIX classes. Most examples assume aPOSIX or Single Unix
Specification environment. If you don’t havePOSIXavailable, you can try to replace thePOSIX_
prefix bySTDC_. Most of the time thePOSIXclasses are based on the Standard C classes.

If you are looking for more examples, you might take a look at the classes in thetest_suite
directory. These classes should demonstrate and test almost every feature available in thePOSIX

classes.

In this chapter:

5.1Introduction
5.2Allocating memory
5.3Allocating memory
5.4Using shared memory
5.5Memory maps

5
Working with

memory

5.1 Introduction

e-POSIX has several classes that allocate memory. The main class isSTDC _BUFFER(or the
equivalentPOSIX _BUFFER). This class allocates a memory block that isn’t moved by the
garbage collector. This is very useful for an Eiffel compiler that has a moving garbage collector.

You can also get access to shared memory usingPOSIX _SHARED _MEMORY.

5.2 Allocating memory

You can dynamically allocate memory withSTDC _BUFFERwhich works just likePOSIX
_BUFFER.

class EX_MEM2

creation

make

feature

make is
local

mem: STDC_BUFFER
byte: INTEGER

do
create mem.allocate_and_clear(128)
mem.poke_uint8(2, 57)
byte := mem.peek_uint8(2)
mem.resize(256)
mem.deallocate

end

end

With the featureSTDC _BUFFER. allocate _and _clear memory is allocated and
cleared to all zeros.

Working with memory 20

STDC _BUFFERcontains many routines to read bytes and strings from the memory it manages
like peek _int16 , peek _uint16 , or peek _int32 . It supports reading and writing
16 and 32 bit integers in little and big endian order with routines aspeek _int16 _big
_endian , peek _int16 _little _endian , andpoke _int32 _big _endian .

5.3 Allocating memory

Allocating dynamic memory is very useful, but not portably available for Eiffel programmers. With
POSIX _BUFFERmemory can be allocated, read and written to.

class EX_MEM

creation

make

feature

make is
local

mem: POSIX_BUFFER
byte: INTEGER

do
create mem.allocate(256)
mem.poke_uint8(2, 57)
byte := mem.peek_uint8(2)
mem.resize(512)
mem.deallocate

end

end

For more information about the dynamic memory class, seesection 5.2.

5.4 Using shared memory

You can use shared memory to exchange data between different processes. It’s dependent on your
POSIXversion if this is supported, so check for this capability explicitly!

class EX_SHARED_MEM1

inherit

POSIX_SYSTEM

POSIX_CURRENT_PROCESS

POSIX_FILE_SYSTEM

21 Memory maps

creation

make

feature

make is
local

fd: POSIX_SHARED_MEMORY
do

if not supports_shared_memory_objectsthen
stderr.puts("Shared memory objects not supported.%N")
exit_with_failure

end

create fd.create_read_write("/test.berend")
fd.put_string("Hello world.%N")
fd.close
unlink_shared_memory_object("/test.berend")

end

end

Make sure you always start a shared memory object with a slash. Else the behaviour is undefined
or processes might not be able to find your shared memory.

There is not yet an abstract layer implementing shared memory, but you can useWINDOWS
_PAGING _FILE _SHARED _MEMORYon Windows to get a similar effect.

5.5 Memory maps

You can map a file to memory usingPOSIX _MEMORY _MAP.

class EX_MEMORY_MAP1

inherit

POSIX_SYSTEM

POSIX_CURRENT_PROCESS

creation

make

feature

Working with memory 22

make is
local
fd: POSIX_FILE_DESCRIPTOR
map: POSIX_MEMORY_MAP
byte: INTEGER
correct: BOOLEAN

do
if supports_memory_mapped_filesthen

-- Open a file.
create fd.open_read_write("ex_memory_map1.e")

-- Create memory map.
create map.make_shared(fd, 0, 64)

-- Read a byte from the mapping.
byte := map.peek_uint8(2)
correct := byte = (’a’) .code
if not correct then
print ("Oops.%N")

end

-- Cleanup.
map.close
fd.close

end
end

end

There is no equivalent abstract layer class for memory mapping to support Windows yet.

In this chapter:

6.1Introduction
6.2Standard C notes
6.3Compatibility with Gobo
6.4Working with streams
6.5Working with streams using Standard C only
6.6Working with file descriptors
6.7Windows systems: binary mode versus text

mode

6
Working with

files

6.1 Introduction

e-POSIXoffers two different file classes: Standard C stream based andPOSIXfile descriptor classes.
The main difference between stream and descriptor based classes is that the stream classes offer
read and write caching. Output is not immediately written to disk or network for example.

6.2 Standard C notes

If you don’t have access to aPOSIX compatible system, you can use the underlying Standard
C classes. Standard C is quite restricted in certain respects: you cannot change directories for
example. On the other hand, this library gives you access to all Standard C routines, so you can
use what’s there and write an extremely portable program.

6.3 Compatibility with Gobo

Since version 2.0 e-POSIX is built upon foundations laid in Gobo. e-POSIX́sSTDC _FILE/POSIX
_FILE andABSTRACT _FILE _DESCRIPTORare implementations ofKI _CHARACTER
_INPUT _STREAMandKI _CHARACTER _OUTPUT _STREAM.

The e-POSIX classABSTRACT _FILE _DESCRIPTORhas support for non-blocking i/o, see
section 7.3. Gobo’sKI _CHARACTER _INPUT _STREAMexpects blocking i/o however. If
you call ABSTRACT _FILE _DESCRIPTOR. read _string you will call the routine
that has support for non-blocking i/o. Due to Eiffel’s renaming mechanism,ABSTRACT _FILE
_DESCRIPTORwill behave blocking when it is called as if it was aKI _CHARACTER _INPUT
_STREAM.

6.4 Working with streams

The basic class for working with files, or streams as they are also called, isPOSIX _FILE . There
are two kinds of files:POSIX _TEXT _FILE andPOSIX _BINARY _FILE . According to
the POSIX standard, there is no distinction between binary and text files. But on certain systems
you must usePOSIX programs through an emulation layer. For example, on Windows Cygwin is
a well--knownPOSIX emulator. To maintain compatibility with other Windows programs, Cygwin

Working with files 24

distinguishes between text and binary files. If you use Cygwin to compile yourPOSIX programs,
this distinction is therefore still important.

The first example shows how to open a text file, see also the corresponding BON diagram in
figure 6.1.

STDC FILE
*

STDC TEXT FILE
+

POSIX FILE
*

POSIX TEXT FILE
+

EX FILE1

Figure 6.1 BON diagram of opening a text file.

class EX_FILE1

creation

make

feature

make is
local
file: POSIX_TEXT_FILE

do
create file.open_read("/etc/group")
from
file.read_line

until
file.eof

25 Working with streams

loop
print (file.last_string)
print ("%N")
file.read_line

end
file.close

end

end

It simply opens a file for reading and prints every line in it. Note that the line read doesnot include
the end-of-line character. This is a change in behaviour from pre 2.0 eposix versions.

[POSIX_FILE] has two functions that read strings. These areread _line andread _string .
read _line only returns when it has read an end-of-line character. It it has to read a 2GB
characters to reach that, it will return a 2GB string.read _string returns a string with the
given number of characters, or less if the end of the file is reached. These two functions have
one other difference as well:read _line removes the end-of-line character(s), whileread
_string returns the raw string, including end-of-line characters and such.

At the end of the example, the file is closed. You don’t need to explicitly close a file as it will be
closed when your object is garbaged collected. But I think it’s a good thing not to rely or depend
on this, but to close your external resources as soon as you’re done using them. For example many
systems have easily reached limits on the number of files a process can have open.

Reading binary files is almost the same loop, only you read it in chunks:

class EX_FILE2

creation

make

feature

chunk_size: INTEGER is 512

make is
local

file: POSIX_BINARY_FILE
buffer: POSIX_BUFFER

do
create file.open_read("/bin/sh")
create buffer.allocate(chunk_size)
from

file.read_buffer(buffer, 0, chunk_size)
until

file.eof
loop

file.read_buffer(buffer, 0, chunk_size)

Working with files 26

end
file.close

end

end

This example uses a more safe version of buffer reading,POSIX _FILE. read _buffer .
There is an untyped variantPOSIX _FILE. read which accepts a pure pointer. There is no
need to mention that you need to watch buffer overflows carefully with this last one!

Correctly looping through files, takes care. For example the following loop is wrong:

class EX_WRONG1

creation

make

feature

make is
local

file: POSIX_TEXT_FILE
do

create file.open_read("/etc/group")
from
until

file.eof
loop

file.read_string(256)
print (file.last_string)

end
file.close

end

end

After POSIX _TEXT _FILE. read _string , eof might be True. But the precondition
for last _string is thateof is false. You will make an unnecessary extra loop. The correctly
coded variant is:

class EX_WRONG2

creation

make

feature

27 Working with streams

make is
local

file: POSIX_TEXT_FILE
do

create file.open_read("/etc/group")
from
until

file.eof
loop

file.read_string(256)
if not file.eof then

print (file.last_string)
end

end
file.close

end

end

I myself prefer the first example, as the check is only in theuntil part, and not repeated in the loop.

The following examples shows how a binary file is created and a string is written to it.

class EX_FILE3

inherit

POSIX_FILE_SYSTEM

creation

make

feature

make is
local

file: POSIX_BINARY_FILE
do

create file.create_write(expand_path("$HOME/myfile.tmp"))
file.put_string("hello world.%N")
file.close

end

end

Depending on the platform you are running a backslash is turned into a slash or vice versa.

This example also demonstrates how path names —file and directory names— can be expanded: if
you callPOSIX _FILE _SYSTEM. expand _path , any environment variables in the path

Working with files 28

are expanded. Backslashes and slashes are always translated, but environment variable expansion
has to be done explicitly.

You can move the file pointer with two different methods:POSIX _FILE. seek andset
_position . Theseek works with files up to 2 GB,set _position has no such limits.
Usetell to get a position that can be passed toseek . Useget _position to get a position
that can be passed toset _position .

class EX_FILE5

creation

make

feature

make is
local

file: POSIX_BINARY_FILE
pos1: INTEGER
pos2: STDC_FILE_POSITION

do
create file.create_read_write("test.bin")
file.put_string("one")
pos1 := file.tell
pos2 := file.get_position
file.put_string("two")
file.seek(pos1)
-- or file.set_position (pos2)
file.read_string(3)
if not file.last_string.is_equal("two") then

print ("unexpected read.%N")
end
file.close

end

end

6.5 Working with streams using Standard C only

Working with text files is equal to thePOSIXclasses, only you use theSTDCprefix.

class EX_FILE4

creation

make

feature

29 Working with file descriptors

make is
local
file: STDC_TEXT_FILE

do
create file.open_read("/etc/group")
from
file.read_line

until
file.eof

loop
print (file.last_string)
print ("%N")
file.read_line

end
file.close

end

end

Its BON diagram, seefigure 6.2 is therefore quite equal to thePOSIXone, seefigure 6.1.

STDC FILE
*

STDC TEXT FILE
+

EX FILE3

Figure 6.2 BON diagram of
opening a Standard C text file.

6.6 Working with file descriptors

The file descriptors classes are quite equal to the file classes. The following example opens a file
usingPOSIX _FILE _DESCRIPTORand reads the first 64 bytes.

class EX_FD1

creation

make

Working with files 30

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
do

create fd.open_read("/etc/group")
fd.read_string(64)
print (fd.last_string)
fd.close

end

end

Unlike POSIX _TEXT _FILE , there is no easy way to detect end of line and end of file
conditions. However, a file descriptor can easily be turned into a file as the following example
demonstrates.

class EX_FD2

creation

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
file: POSIX_TEXT_FILE

do
create fd.open_read("/etc/group")
create file.make_from_file_descriptor(fd, "r")
from

file.read_string(256)
until

file.eof
loop

print (file.last_string)
file.read_string(256)

end
file.close
fd.close

end

end

A file descriptor can also be used to lock, unlock or test for locks on a given file as the following
example demonstrates. See also the accompanying BON diagram infigure 6.3.

31 Working with file descriptors

class EX_FD4

creation

make

feature

make is
local

some_lock,
lock: POSIX_LOCK
fd: POSIX_FILE_DESCRIPTOR

do
create fd.create_read_write("test.tmp")
fd.put_string("Test")

create lock.make
lock.set_allow_read
lock.set_start(2)
lock.set_length(1)
some_lock:= fd.get_lock(lock)
if some_lock/= Void then

print ("There is already a lock?%N")
end

-- create exclusive lock
lock.set_allow_none
lock.set_start(0)
lock.set_length(4)
fd.set_lock(lock)

fd.close
end

end

POSIX _FILE _DESCRIPTOR. get _lock is command--query separated, that is why it
returns a new lock when queried and there is a lock. If there is no lockget _lock returns Void.
The passed lock is not modified.

A file descriptor also gives you access to the attached terminal, if any. The following example
demonstrates how to read a password without the password appearing on the screen.

class EX_FD3

inherit

POSIX_CURRENT_PROCESS

Working with files 32

POSIX BASE
*

POSIX FILE DESCRIPTOR
+

POSIX LOCK
+

EX FD4

Figure 6.3 BON diagram of locking a portion of a file.

creation

make

feature

make is
do

print ("Password: ")
stdout.flush

-- turn off echo
fd_stdin.terminal.set_echo_input(False)
fd_stdin.terminal.apply_flush

-- read password
fd_stdin.read_string(256)

-- turn echo back on
fd_stdin.terminal.set_echo_input(True)
fd_stdin.terminal.apply_now

print ("%NYour password was: ")
print (fd_stdin.last_string)

end

end

6.7 Windows systems: binary mode versus text mode

If you are using Unix exclusively, you can skip this section.

33 Windows systems: binary mode versus text mode

Independent of what layer you use to write Windows programs, you have to deal with binary and
text modes. And if you usually write Unix programs and want them to work on Windows too, you
have to bother with it too.

On Windows, each line of a text files ends with a carriage return character followed by a line
feed character. If you use a C text stream to read a file on Windows, a trick is employed: every
occurrence of"%R%N"is replaced by a single"%N" . If The same happens when writing to a text
stream: you just have to write a single"%N" and the C run-time code replaces this by

So make sure you are using the proper classes if you use streams. UseSTDC _TEXT _FILE if
you want to read and write text files and useSTDC _BINARY _FILE to read and write binary
files.

File descriptors are binary only. So any descendant fromABSTRACT _FILE _DESCRIPTOR
treats input and output as binary and does no translation whatsoever. If you useABSTRACT
_FILE _DESCRIPTOR. read _line to read lines, the end-of-line character may either
be a"%R%N"or just a end-of-line characters regardless of the platform. So reading a file with
Windows end-of-line characters on Windows or Unix will work exactly the same.

There is no explicit support for creating text files using file descriptors with the proper Windows
end of file characters. Use eitherSTDC _TEXT _FILE to create platform dependent end-of-lines
or write the proper end-of-line characters yourself.

This discussion also applies to standard input and output. If you want to use binary standard input
or binary standard output, use the file descriptors available inEPX _CURRENT _PROCESSas
fd _stdin andfd _stdout . If you usestdin andstdout you can handle text files only
on Windows. On Unix it does not matter.

For Cygwin users the story is somewhat more difficult it seems. File descriptors can be text or
binary. The default is binary however. The following information can be helpful to get the binary
versus text file distinction correct:

• Mount the volume in binary mode.
• Set the environment variable CYGWIN to ‘binary’.

More information about Cygwin and CR/LF handling can be found athttp://sources.
redhat.com/cygwin/faq/faq_toc.html#TOC62 .

http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62

In this chapter:

7.1Redirecting stderr to stdout
7.2Talking to your modem
7.3Non-blocking I/O
7.4Asynchronous I/O

7
Working with

files: advanced
topics

7.1 Redirecting stderr to stdout

If you want to redirect all output written by your program or any child you spawn to stdout, you
can use thePOSIX _FILE _DESCRIPTOR. make _as _duplicate call:

class EX_REDIRECT1

inherit

POSIX_CURRENT_PROCESS

creation

make

feature

make is
do

-- flush stream buffers, else output may be in wrong order
stdout.flush
stderr.flush

fd_stderr.make_as_duplicate(fd_stdout)
-- all output written to stderr goes to stdout now

end

end

It’s a good idea to call this at the beginning of your program, before you have written anything to
stderr or stdout. If you do that, you don’t have to flush the stream buffers.

7.2 Talking to your modem

With e-POSIXyou can talk to your modem. The implementation contains not all the details to write
a full--featured program as minicom, but they will be added upon request.

35 Talking to your modem

The following example tries to talk to your modem —which is expected to be at/dev/modem —
and queries its manufacturer.

class EX_MODEM

inherit

POSIX_CURRENT_PROCESS

creation

make

feature

make is
local

modem: POSIX_FILE_DESCRIPTOR
term: POSIX_TERMIOS

do
-- assume there is a /dev/modem device
create modem.open_read_write("/dev/modem")
term := modem.terminal
term.flush_input
print ("Input speed: ")
print (term.speed_to_baud_rate(term.input_speed))
print ("%N")
print ("Output speed: ")
print (term.speed_to_baud_rate(term.output_speed))
print ("%N")

term.set_input_speed(B9600)
term.set_output_speed(B9600)
term.set_receive(True)
term.set_echo_input(False)
term.set_echo_new_line(False)
term.set_input_control(True)
term.apply_flush

-- expect modem to echo commands
modem.put_string("AT%N")
modem.read_string(64)
print ("Command: ")
print (modem.last_string)
modem.read_string(64)
print ("Response(expect ok): ")
print (modem.last_string)
modem.put_string("ATI0%N")

Working with files: advanced topics 36

modem.read_string(64)
print ("Command: ")
print (modem.last_string)
modem.read_string(64)
print ("Response: ")
print (modem.last_string)
modem.close

end

end

POSIX BASE
*

POSIX FILE DESCRIPTOR
+

POSIX TERMIOS
+

EX MODEM

Figure 7.1 BON diagram of talking to a modem.

7.3 Non-blocking I/O

e-POSIXsupports non-blocking i/o on its file descriptor classes, i.e. the descendants ofABSTRACT
_FILE _DESCRIPTOR. Use is _blocking _io to query if the descriptor blocks on
read or write if there is no data. Useset _blocking _io to change the behavior.

Usesupports _nonblocking _io to query if the behavior with respect to blocking i/o
can be changed. On Windows file i/o must be blocking. Only sockets on Windows can be non-
blocking. On Unix all descriptors support non-blocking i/o.

See alsosection 6.3for non-blocking i/o when e-POSIX is used as a plugin for classes that expect
a KI _CHARACTER _INPUT _STREAM. In such cases e-POSIX reverts to blocking i/o, even
when non-blocking i/o has been enabled.

7.4 Asynchronous I/O

e-POSIX supports the asynchronous i/o features ofPOSIX. Not all Free Unices seem to support this
feature, nor does their support seems to be error free.

Take a look at the following example:

class EX_ASYNC1

37 Asynchronous I/O

creation

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
request: POSIX_ASYNC_IO_REQUEST

do
create fd.create_read_write("test.tmp")
create request.make(fd)
request.set_offset(0)
request.put_string("hello world.")
request.wait_for
fd.close

end

end

The basic idea is that each asynchronous request is a separate object, modeled byPOSIX _ASYNC
_IO _REQUEST. You prepare it through calls likeset _buffer , set _count andset
_offset . You execute the request by callingread or write .

You can wait for the request to be complete by callingwait _for . It should be possible to force
open requests to be synchronized to the disk withsynchronize , but this does give strange
results on Linux. So far I haven’t got access to a machine that also implements asynchronous i/o to
test if my code is correct.

In this chapter:

8.1Portability
8.2Standard C
8.3POSIX

8
Working with

the file system

8.1 Portability

Use theEPX_classes to write code that is portable betweenPOSIXsystems and Windows.

8.2 Standard C

Standard C doesn’t offer much for file systems. You can only delete and rename files.

class EX_DIR5

inherit

STDC_FILE_SYSTEM

creation

make

feature

make is
do

rename_to("qqtest.abc.tmp", "qqtest.xyz.tmp")
remove_file("qqtest.xyz.tmp")

end

end

The BON diagram is shown infigure 8.1.

But you can manipulate filenames including directories, although technically they’re not part of
Standard C. The following example shows how filenames can be manipulated withSTDC _PATH:

class EX_FILENAME1

creation

make

feature

39 Standard C

STDC BASE
*

STDC FILE SYSTEM
+

EX DIR5

Figure 8.1 BON diagram of deleting and
renaming files with Standard C.

make is
local
path: STDC_PATH

do
create path.make_from_string("/tmp/myfile.e")
path.parse(<<".e">>)
print_path (path)

create path.make_expand("$HOME/myfile.e")
path.parse(<<".e">>)
print_path (path)

end

print_path (a_path: STDC_PATH) is
do
print ("Directory: ")
print (a_path.directory)
print (", basename: ")
print (a_path.basename)
print (", suffix: ")
print (a_path.suffix)

Working with the file system 40

print ("%N")
end

end

The parse feature is used to parse a path into its components. Give it a suffix list to remove
any matching suffices. Suffix matching is case-insensitive. If the suffix list is empty, no suffix
matching will be done. This follows standard unix behaviour: if a filename has a dot in it, it does
not necessarily mean that what follows after that dot is a suffix.

Create a path withmake _expand to expand any environment variables in the given string to
their values.

8.3 POSIX

POSIX defines many commands to navigate a file system. They’re made available by thePOSIX
_FILE _SYSTEM. The following example navigates to the user’s home directory, create a
directory and removes it.

class EX_DIR1

inherit

POSIX_FILE_SYSTEM

creation

make

feature

make is
do

change_directory(expand_path("~"))
make_directory("qqtest.xyz.tmp")
remove_directory("qqtest.xyz.tmp")

end

end

To get access to the file system, inheriting from thePOSIX _FILE _SYSTEMclass is easiest.

There are also lots of functions to test for existence, readability or writability of files. Useis
_modifiable to test if a file is readable and writable.

class EX_DIR2

inherit

POSIX_FILE_SYSTEM

41 POSIX

creation

make

feature

make is
local

perm: POSIX_PERMISSIONS
do

print_info (is_existing("/tmp"), "existing")
print_info (is_executable("/bin/ls"), "executable")
print_info (is_readable("/etc/passwd"), "readable")
print_info (is_writable ("/etc/passwd"), "writable")
print_info (is_modifiable("/etc/passwd"), "readable and writable")

perm := permissions("/etc/passwd")

if perm.allow_group_readthen
print ("Group is allowed to read/etc/passwd.%N")

else
print ("Group is not allowed to read/etc/passwd.%N")

end

if perm.allow_anyone_read_writethen
print ("Anyone is allowed to read file.tmp.%N")

else
print ("Anyone is not allowed to read file.tmp.%N")

end

end

print_info (ok: BOOLEAN; what: STRING) is
do

print ("is_")
print (what)
print (" returned ")
print (ok)
print (".%N")

end

end

Be aware thatPOSIX _FILE _SYSTEM. is _readable uses the real user and group IDs
instead of the effective ones.

As can be seen in the above example, one can test for the permissions of a file using thePOSIX
_PERMISSIONSclass. A new permissions class is created for everyPOSIX _FILE _SYSTEM.

Working with the file system 42

permissions call, so it is best to cache this object. If the permissions change on the file
system, this class does not reflect reality anymore, because it caches the permissions. UsePOSIX
_PERMISSIONS. refresh to update the contents. Useset _allow _group _write ,
set _allow _anyone _read and such to set permissions.

e-POSIXalso gives you access to thestat function using thePOSIX _STATUSclass.

class EX_DIR4

inherit

POSIX_FILE_SYSTEM

creation

make

feature

make is
local

stat: POSIX_STATUS
do

stat := status ("/etc/passwd")
print ("size: ")
print (stat.size.out)
print (".%N")
print ("uid: ")
print (stat.permissions.uid)
print (".%N")

end

end

The POSIX _STAT, and through itPOSIX _PERMISSIONS, are also returned byPOSIX
_FILE _DESCRIPTOR. status .

Browsing a directory can be done by allocated aPOSIX _DIRECTORYclass through thePOSIX
_FILE _SYSTEM. browse _directory feature:

class EX_DIR3

inherit

POSIX_FILE_SYSTEM

creation

make

43 POSIX

feature

make is
local

dir: POSIX_DIRECTORY
do

from
dir := browse_directory(".")
dir.start

until
dir.exhausted

loop
print (dir.item)
print ("%N")
dir.forth

end
dir.close

end

end

As can be seen,POSIX _DIRECTORYfollows EiffelBase conventions.

When browsing a directory, all entries in that directory are returned. You might want to be
interested only in certain files. e-POSIX has the ability to define arbitrary filters. Standard e-POSIX

comes with an extension filter that only shows files with a certain extension:

class EX_DIR6

inherit

POSIX_FILE_SYSTEM

creation

make

feature

make is
local

dir: POSIX_DIRECTORY
do

from
dir := browse_directory(".")
dir.set_extension_filter(".e")
dir.start

until
dir.exhausted

Working with the file system 44

loop
print (dir.item)
print ("%N")
dir.forth

end
dir.close

end

end

In this chapter:

9.1Introduction
9.2Executing a child command
9.3Catching a signal with Standard C
9.4Catching a signal withPOSIX

9.5General wait for child handler
9.6Forking a child process

9
Working with

processes

9.1 Introduction

This chapter discusses starting processes, either by executing new ones or forking the current one.
It also describes support for process communication using signals.

9.2 Executing a child command

Any command line can be executed by using thePOSIX _SHELL _COMMANDclass. Just pass
a command line andexecute it.

class EX_CMD

creation

make

feature

make is
local

command: POSIX_SHELL_COMMAND
do

create command.make("/bin/ls *")
command.execute
print ("Exit code: ")
print (command.exit_code)
print ("%N")

end

end

Often one wants to redirect the output of the program that is being executed. For such cases use
thePOSIX _EXEC _PROCESSclass.

class EX_EXEC1

inherit

Working with processes 46

POSIX_CURRENT_PROCESS

creation

make

feature

make is
local
ls: POSIX_EXEC_PROCESS

do
-- list contents of current directory
create ls.make_capture_output("ls", <<"-1", ".">>)
ls.execute
print ("ls pid: ")
print (ls.pid)
print ("%N")
from
ls.stdout.read_string(512)

until
ls.stdout.eof

loop
print (ls.stdout.last_string)
ls.stdout.read_string(512)

end

-- close captured io
ls.stdout.close

-- wait for process
ls.wait_for (True)

end

end

Besides capturing output, you can also capture the standard input and standard error of the executed
process.

It is important to wait for the child that has been executed at some point in time, just like anyPOSIX

would have to do. If you do not wait for a child process, memory in the kernel is not released and
eventually you would run out of processes. Also, after thePOSIX _EXEC _PROCESS. wait
_for command, the exit code of the process becomes available.

9.3 Catching a signal with Standard C

You can catch signals with Standard C. The following example demonstrates a program that can be
safely interrupted by pressing Ctrl+C:

47 Catching a signal with Standard C

class EX_SIGNAL3

inherit

EPX_CURRENT_PROCESS

STDC_CONSTANTS

STDC_SIGNAL_HANDLER

creation

make

feature

handled: BOOLEAN

make is
local
signal: STDC_SIGNAL

do
create signal.make(SIGINT)
signal.set_handler(Current)
signal.apply

print ("Wait 10s or press Ctrl+C.%N")
sleep (10)
if handled then
print ("Ctrl+C pressed.%N")

else
print ("Ctrl+C not pressed.%N")

end
end

signalled (signal_value: INTEGER) is
do
handled := True

end

end

As Standard C doesn’t have a sleep command, this program usesEPX _CURRENT _PROCESS
to get either thesleep from POSIXor from Windows.

More explanation about the program itself can be found insection 9.4.

Working with processes 48

9.4 Catching a signal withPOSIX

Every class can become a signal handler by inheriting fromPOSIX _SIGNAL _HANDLER.
Implement thesignalled method as that is the function that is called when the signal occurs.
UsePOSIX _SIGNAL. set _handler to make your class a signal handler and callapply
to start receiving signals when they occur.

The following examples demonstrates a program that can be safely interrupted by pressing Ctrl+C:

class EX_SIGNAL1

inherit

POSIX_CURRENT_PROCESS

POSIX_CONSTANTS

POSIX_SIGNAL_HANDLER

creation

make

feature

handled: BOOLEAN

make is
local

signal: POSIX_SIGNAL
do

create signal.make(SIGINT)
signal.set_handler(Current)
signal.apply

print ("Wait 30s or press Ctrl+C.%N")
sleep (30)
if handled then

print ("Ctrl+C pressed.%N")
else

print ("Ctrl+C not pressed.%N")
end

end

signalled (signal_value: INTEGER) is
do

handled := True
end

49 General wait for child handler

end

All precautions and warnings when handling signals in C apply equally well in Eiffel of course.
While in a signal handler, the signal will not be delivered again. CallSTDC _SIGNAL _HANDLER.
reestablish to make your signal handler interruptable.

You can write a single signal handler, that handles multiple signals. This makes it possible to
have signal handling code in just one place. Create a class that inherits fromPOSIX _SIGNAL
_HANDLER. Pass this class to thePOSIX _SIGNAL. set _handler for every signal you
want to catch. The signal value is passed as parameter toPOSIX _SIGNAL _HANDLER.
signalled , so you can write aninspectstatement based on the value.

9.5 General wait for child handler

If you do not want to wait for every child process explicitly, you can write a simple SIGCHLD
handler that just does a wait (I found this idea in (Xxxxxxxxxx, 0000)):

class EX_SIGNAL2

inherit

POSIX_CURRENT_PROCESS

POSIX_CONSTANTS

POSIX_SIGNAL_HANDLER

creation

make

feature

make is
local

signal: POSIX_SIGNAL
do

create signal.make(SIGCHLD)
signal.set_handler(Current)
signal.apply

-- spawn child processes here
-- you dont have to wait for them

end

signalled (signal_value: INTEGER) is
do

wait
end

Working with processes 50

end

In Unix 98 you should be able to set the ignore handler for this signal. In purePOSIX systems the
behaviour of the ignore handler is unspecified.

9.6 Forking a child process

Forking is very easy with this EiffelPOSIX implementation. The steps:

1. Write a child by inheriting fromPOSIX _FORK _ROOTand implementing itsexecute
method.

2. The class that will do the forking, should inherit fromPOSIX _CURRENT _PROCESS.
3. Pass the child to the inherited featurePOSIX _CURRENT _PROCESS. forkand the

forking has begun.

POSIX CURRENT PROCESS POSIX CHILD PROCESS
*

POSIX TEXT FILE
+

POSIX FORK ROOT
*

FORK CHILD
*

EX FORK1

Figure 9.1 BON diagram of forking a child process.

The following class shows the process that forks the child.

class

EX_FORK1

inherit

POSIX_CURRENT_PROCESS

51 Forking a child process

POSIX_FILE_SYSTEM

creation

make

feature

make is
local

reader: POSIX_TEXT_FILE
stop_sign: BOOLEAN
child: FORK_CHILD

do
-- necessary for SmallEiffel before -0.75 beta 7
ignore_child_stop_signal

unlink ("berend.tmp")
create_fifo("berend.tmp", S_IRUSR+ S_IWUSR)
create child
fork (child)

-- we will now block until file is opened for writing
create reader.open_read("berend.tmp")
from

stop_sign:= False
until

stop_sign
loop

reader.read_string(128)
print (reader.last_string)
stop_sign:= equal(reader.last_string,"stop%N")

end
reader.close

-- now wait for the writer to terminate
child.wait_for (True)

unlink ("berend.tmp")
end

end

This class just displays anything that the writer, the child class, writes to theFIFO. When it recognizes
stop, the reader stops after waiting for the child it has spawned. Note that this is very important!
Wait for any child you have spawned else you might get spurious errors if the process exits and a
child has not yet finished.

Working with processes 52

The following class shows the forked child.

class FORK_CHILD

inherit

POSIX_FORK_ROOT

feature

executeis
local

writer: POSIX_TEXT_FILE
do

create writer.open_append("berend.tmp")
writer.put_string ("first%N")
writer.put_string ("stop%N")
writer.close

-- we give the reader some time to process these messages
sleep (10)

end

end

In this chapter:

10.1Current time
10.2Accessing environment variables
10.3Capabilities

10
Querying the

operating system

10.1 Current time

e-POSIXhas a very complete class to work with times. A time can be set from the current time
by usingPOSIX _TIME. make _from _now . Before a time can be printed, it needs to
be converted to either local time orUTC. Do this by callingto _local or to _utc . Date
and times can be printed using features asdefault _format , local _date _string ,
local _time _string or a custom format throughformat .

class EX_TIME1

creation

make

feature

make is
local

time1,
time2: POSIX_TIME

do
create time1.make_from_now
time1.to_local
print_time (time1)
time1.to_utc
print_time (time1)
create time2.make_time(0, 0, 0)
print_time (time2)
create time2.make_date_time(1970, 10, 31, 6, 55, 0)
time2.to_utc
print_time (time2)

if time2 < time1 then
print ("time2 is less than time1 as expected.%N")

else
print ("!! time2 is not less than time1.%N")

end
end

Querying the operating system 54

print_time (time: POSIX_TIME) is
do

print ("Date: ")
print (time.year)
print ("-")
print (time.month)
print ("-")
print (time.day)
print (" ")
print (time.hour)
print (":")
print (time.minute)
print (":")
print (time.second)
print ("%N")
print ("Weekday: ")
print (time.weekday)
print ("%N")
print ("default string: ")
print (time.default_format)
print ("%N")

end

end

10.2 Accessing environment variables

Standard C supports reading environment variables withSTDC _ENV _VAR.

class EX_ENV2

creation

make

feature

make is
local

env: STDC_ENV_VAR
do

create env.make("HOME")
print (env.value)
print ("%N")

end

end

55 Capabilities

ThePOSIXdoesn’t add any functionality here:

class EX_ENV1

creation

make

feature

make is
local

env: POSIX_ENV_VAR
do

create env.make("HOME")
print (env.value)
print ("%N")

end

end

It is not possible inPOSIX to set an environment variable. This is possible with the Single Unix
Specification classes. UsingSUS _ENV _VARset_value it is possible to set environment variables.

10.3 Capabilities

Use the portableEPX _SYSTEMclass to query for various system dependent constants likemax
_open _files . There are operating system dependent queries inPOSIX _SYSTEMand
WINDOWS _SYSTEM.

In this chapter:

11.1MIME parsing
11.2Sockets
11.3Echo client
11.4Echo client and server

11
Working with

the network

11.1 MIME parsing

Many of the Internet’s protocols send data in MIME format. e-POSIXoffers a MIME parser inEPX
_MIME _PARSERto parse such data and MIME message creation inEPX _MIME _PART.

11.2 Sockets

e-POSIX currently has fairly complete socket support. Not every option offered by the Single Unix
Specification is supported yet, but as always we will attempt in every release to reach full support
for every function offered.

As usual the EPX_XXXX classes are available on both Unix and Windows platform. The SUS_XXXX
classes are available only on Single Unix Specification () systems and extend the EPX_XXXX
classes with Unix specific functionality.

TCP functionality is available for both Windows and Unix. UDP is only available on Unix, as well
as Unix streams.

11.3 Echo client

The following example demonstrates a simple echo client for TCP. An echo server must be running
on your machine:

class EX_ECHO_CLIENT_TCP

creation

make

feature

hello: STRINGis "Hello World.%N"

make is
local
host: EPX_HOST
service: EPX_SERVICE
echo: EPX_TCP_CLIENT_SOCKET
sa: EPX_HOST_PORT

57 Echo client

do
create host.make_from_name("localhost")
create service.make_from_name("echo", "tcp")

create sa.make(host, service)

create echo.open_by_address(sa)
echo.put_string(hello)
echo.read_string(256)
if not echo.last_string.is_equal(hello) then
print ("!! got: ")
print (echo.last_string)

end
end

end

The following example demonstrates a simple echo client for UDP. An echo server must be running
on your machine:

class EX_ECHO_CLIENT_UDP

creation

make

feature

hello: STRINGis "Hello World.%N"

make is
local
host: SUS_HOST
service: SUS_SERVICE
echo: SUS_UDP_CLIENT_SOCKET
sa: EPX_HOST_PORT

do
create host.make_from_name("localhost")
create service.make_from_name("echo", "udp")

create sa.make(host, service)

create echo.open_by_address(sa)
echo.put_string(hello)
echo.read_string(256)
if not echo.last_string.is_equal(hello) then
print ("!! got: ")
print (echo.last_string)

Working with the network 58

end
end

end

11.4 Echo client and server

The following class demonstrates an echo server and client in a single class. It uses unix sockets (a
fast interprocess communication) to achieve that.

class EX_ECHO_UNIX

inherit

SUS_FILE_SYSTEM

SUS_CONSTANTS

creation

make

feature

make is
-- Echo client and server, unix style.

local
client_socket: SUS_UNIX_CLIENT_SOCKET
server_socket: SUS_UNIX_SERVER_SOCKET
client_fd: SUS_UNIX_SOCKET
correct: BOOLEAN

do
if is_existing("/tmp/eposix") then
unlink ("/tmp/eposix")

end
create server_socket.listen_by_path("/tmp/eposix", SOCK_STREAM)
create client_socket.open_by_path("/tmp/eposix", SOCK_STREAM)
client_fd := server_socket.accept
client_socket.put_string(hello)
client_fd.read_string(256)
correct := client_fd.last_string.is_equal(hello)
if not correct then
print ("Oops.%N")

end
client_fd.put_string(berend)
client_socket.read_string(256)
correct := client_socket.last_string.is_equal(berend)

59 Echo client and server

if not correct then
print ("Oops.%N")

end

client_socket.close
client_fd.close
server_socket.close
unlink ("/tmp/eposix")

end

feature { NONE} -- Implementation

hello: STRINGis "Hello World.%N"
berend: STRINGis "hello berend%N"

end

The following class is similar, but uses TCP.

class EX_ECHO_TCP

inherit

SUS_CONSTANTS

creation

make

feature

make is
-- Echo client and server, tcp style.

local
host: SUS_HOST
service: SUS_SERVICE
client_socket: SUS_TCP_CLIENT_SOCKET
server_socket: SUS_TCP_SERVER_SOCKET
sa: EPX_HOST_PORT
client_fd: ABSTRACT_TCP_SOCKET
correct: BOOLEAN

do
create host.make_from_name("localhost")
create service.make_from_port(port, "tcp")
create sa.make(host, service)
create server_socket.listen_by_address(sa)
create client_socket.open_by_address(sa)
client_fd := server_socket.accept

Working with the network 60

client_socket.put_string(hello)
client_fd.read_string(256)
correct := client_fd.last_string.is_equal(hello)
if not correct then
print ("Oops.%N")

end
client_fd.put_string(berend)
client_socket.read_string(256)
correct := client_socket.last_string.is_equal(berend)
if not correct then
print ("Oops.%N")

end

client_socket.close
client_fd.close
server_socket.close

end

feature { NONE} -- Implementation

port: INTEGER is 9877
-- Thanks to W. Richard Stevens

hello: STRINGis "Hello World.%N"
berend: STRINGis "hello berend%N"

end

In this chapter:

12.1Introduction
12.2FTP client
12.3HTTP client
12.4HTTP server
12.5IMAP4 client
12.6IRC client
12.7SMTP client

12
Working with
the network:

advanced topics

12.1 Introduction

In version 2.0 e-POSIX has introduced the first of a series of classes for writing common Internet
clients and servers.

Many of these classes are a work in progress, and might not have the robustness desired for critical
applications.

12.2 FTP client

The e-POSIXFTP client supports almost all FTP operations, but currently has a fairly basic interface.
Read and write operations return a stream for example. Reading and writing files to the file system
is left as an exercise for the reader.

The following example demonstrates reading a directory from an FTP server and receiving a file:

class EX_FTP1

creation

make

feature

make is
local
ftp: EPX_FTP_CLIENT

do
-- ftp://ftp.nlm.nih.gov/nlmdata/sample/serfile/serfilesamp2005.xml
create ftp.make_anonymous(server_name,"guest")
ftp.open
if ftp.is_positive_completion_replythen
ftp.change_directory(directory_name)
ftp.name_list
dump_data_connection(ftp.data_connection)
ftp.read_reply
ftp.retrieve (file_name)

Working with the network: advanced topics 62

dump_data_connection(ftp.data_connection)
ftp.read_reply
ftp.quit
ftp.close

else
print ("Connect fails.%N")

end
end

dump_data_connection(stream: KI_CHARACTER_INPUT_STREAM) is
-- Dump stream input.

require
stream_not_void: stream /= Void

do
from
stream.read_character

until
stream.end_of_input

loop
print (stream.last_character)
stream.read_character

end
stream.close

end

feature -- Access

directory_name: STRINGis "/pub/FreeBSD"

file_name: STRINGis "README.TXT"

server_name: STRINGis "ftp.freebsd.org"

end

EXP _FTP _CLIENT also supports creating (make _directory) or deleting directories
(remove _directory), deleting (remove _file), renaming (rename _to), and uploading
files (store).

12.3 HTTP client

The following example demonstrates retrieval of a file through HTTP using theEPX _HTTP _10
_CLIENT class:

class EX_HTTP1

creation

63 HTTP server

make

feature

url: STRINGis "http://www.freebsd.org/index.html"

make is
local
uri: EPX_URI
client: EPX_HTTP_10_CLIENT

do
create uri.make (url)
create client.make(uri.authority) -- www.freebsd.org
client.get (uri.path) -- /index.html
client.read_response
print (client.body.as_string)

end

end

It also demonstrates the use of theEPX _URI class to parse an URI into its components.

12.4 HTTP server

e-POSIXoffers a basic HTTP server inEPX _HTTP _SERVER. The followng example demonstrates
starting such a server and let it listen on the local interface.

class EX_HTTP_SERVER1

inherit

EPX_CURRENT_PROCESS

creation

make

feature

make is
local
server: EPX_HTTP_SERVER

do
create server.make(port_to_listen_on, document_root)
server.set_serve_xhtml_if_supported(False)
server.listen_locally
from
until

Working with the network: advanced topics 64

False
loop
server.process_next_requests
millisleep (100)

end
end

port_to_listen_on: INTEGER is 5566

document_root: STRINGis "/var/www/html"

end

EPX _HTTP _SERVERwill say to clients that it serves XHTML instead of HTML. Or in MIME
types:application/xhtml+xml instead oftext/html . In case that the HTML pages
which are served are not actually XHTML, you will need to turn this option off with a call toset
_serve _xhtml _if _supported .

In the main loop all available requests are served after which a brief sleep follows. Without the
sleep the process would use 100% CPU.

The server will return the files under/var/www/html from the file system to the browser.
It’s also possible to create and register servlets which can respond to requests. A servlet is like a
built-in CGI program. A servlet allows maximum control over the response send to the browser,
not only the response header, but also the response code send to the client.

A servlet is built after REST principles. A servlet is designed to behave like a resource. You can
bind it to a URL and after that it can handle any of the HTTP commands as GET, POST, or PUT
that are send to it. By default a servlet will return error code 405, meaning “Method not allowed”.
The simplest servlet, which always returns 405 is therefore the following:

class EX_HTTP_SERVLET1

inherit

EPX_HTTP_SERVLET

creation

make

end

This servlet has to be registered with the HTTP server. The following example shows a virtual
HTTP server, one that doesn’t have a document root and therefore will never read the file system.
It attaches the servlet to the url/customers .

class EX_HTTP_SERVER2

inherit

EPX_CURRENT_PROCESS

65 HTTP server

creation

make

feature

make is
local
server: EPX_HTTP_SERVER
servlet: EX_HTTP_SERVLET2

do
create server.make_virtual(port_to_listen_on)
create servlet.make
server.register_fixed_resource("/customers", servlet)
server.listen_locally
from
until
False

loop
server.process_next_requests
millisleep (100)

end
end

port_to_listen_on: INTEGER is 5566

end

You might have noticed it attached servletEX _HTTP _SERVLET2. This servlet is shown
below:

class EX_HTTP_SERVLET2

inherit

EPX_HTTP_SERVLET
redefine
get_header

end

creation

make

feature { EPX_HTTP_SERVER} -- Execution

get_headeris
do

Working with the network: advanced topics 66

doctype
b_html
b_head
title ("Customers")
e_head
b_body
p ("1. John")
p ("2. Luke")
p ("3. Matthew")
p ("4. Pete")
e_body
e_html
write_default_header
add_content_length

end

end

Only theEX _HTTP _SERVLET. get _header method needs to be overwritten. The format
is usually to write the body first and write the header last. This might seem counter-intuitive, but for
persistent connections you need to supply a Content-Length if you write a body. Another solution
would be to use the chunked transfer encoding, but that isn’t explicitly supported yet, so you have
to do the work yourself here.

So for dynamically created content, you usually write the body in the header, so you can setup the
header. There is also aEX _HTTP _SERVLET. get _body , but it is usually not overriden
for dynamic content.

TheEPX _HTTP _SERVERclass is responsible for sending the header and the body and to guard
against any errors.

In the same manner you can write code to react to PUT, POST or DELETE requests. As browsers
usually do not support PUT or DELETE requests,EPX _HTTP _CONNECTIONwill turn a
POST request into a PUT or DELETE when it finds a special value. The implementation is in
remap _http _method . This happens under the following circumstances:

1. The request is a POST request.
2. The POST request is a submit of form fields (regardless of the chosen encoding).
3. There is a form field that starts with the name “http-method:”.

In these cases the substring after “http-method:” is taken to override the POST request into whatever
is present as substring.

Figure 12.1shows the BON diagram of theEPX _HTTP _SERVER. A server can have zero or
more registered servlets and zero or more open connections.

EPX HTTP CONNECTION
+

EPX HTTP SERVER
+

EPX HTTP SERVLET
+

Figure 12.1 BON diagram ofEPX_HTTP_SERVER.

67 IMAP4 client

The server supports persistent connections. In HTTP/1.1 connections are persistent by default. If
not requested otherwise, the server will keep the connection open and monitor it to see if any data
is coming in. If no data has been send in the last 15 seconds, the connection is forcibly closed.

The server can have zero or more servlets registered. A single servlet can be connected to multiple
URLs by callingEPX _HTTP _SERVER. register _fixed _resource with the same
servlet.

There is also aregister _dynamic _resource call to register servlets where part of
the data is present in the URL. For example the URL/customer/1 looks much better than
/customer?id=1 . Register a servlet that takes part of the URL as input as follows:

server.register_dynamic_resource("/customer/(id)", servlet)

Every name present between parentheses in such a path is appended toEPX _HTTP _CONNECTION.
request _form _fields . To a servlet it does therefore not matter if a query is used to input
the data, if it is part of a POST or if it was part of the URL. It all becomes input data.

12.5 IMAP4 client

e-POSIXimplements an IMAP4 client that supports IMAP4 access. The following example connects
to an IMAP4 server and performs various operations:

class EX_IMAP41

inherit

POSIX_CURRENT_PROCESS

creation

make

feature

make is
local
client: EPX_IMAP4_CLIENT

do
create client.make(host)
if client.is_openthen
client.login (login_name, password)
if client.response.is_okthen
client.list_subscribed
client.examine("INBOX")
client.fetch_message(4)
print (client.response.current_message.message)
client.close_mailbox
client.logout

else

Working with the network: advanced topics 68

print ("Login failed.%N")
end
client.close

else
print ("Cannot connect to server.%N")

end
end

feature -- Access

host: STRINGis "bmach"

password: STRINGis
local
password_env: STDC_ENV_VAR

once
create password_env.make("IMAP4_PASSWORD")
Result := password_env.value

ensure
password_not_void: Result /= Void

end

end

The first operation is reading the list of available folders.. Next it examines the standard INBOX
folder, i.e. open it for reading only. It reads message 4 and prints it. And finally it closes the
mailbox.

The e-POSIXIMAP4 is fairly full featured, it can read and write messages and receive various pieces
of information about the email such as just its header ot its size.

12.6 IRC client

e-POSIX also has an IRC client implementation iIRC _CLIENT . Look at the test classTEST
_IRC _CLIENT for an example, or download the Eiffel Bot from the eposix page.

12.7 SMTP client

EPX _SMTP _CLIENTimplements support for sending email to an SMTP server. It only
supports servers that can receive 8 bit messages. This class cannot convert 8 bit data to 7 bit
data.

The following example demonstrates sending an email with this class:

class EX_SMTP1

creation

make

69 SMTP client

feature

make is
local
smtp: EPX_SMTP_CLIENT
message: EPX_MIME_EMAIL
mail: EPX_SMTP_MAIL

do
create smtp.make(smtp_server_name)
smtp.open
smtp.ehlo(my_domain)
create message.make
message.create_singlepart_body
message.header.set_from("Berend de Boer", "berend@pobox.com")
message.header.set_to("Berend de Boer", "berend@pobox.com")
message.header.set_subject("EX_SMTP1")
message.text_body.append_string("Hello!")
create mail.make(sender_mailbox, recipient_mailbox, message)
smtp.mail(mail)
smtp.quit
smtp.close

end

my_domain: STRINGis "nederware.nl"

smtp_server_name: STRINGis "localhost"

sender_mailbox: STRINGis "berend"

recipient_mailbox: STRINGis "berend"

end

The EPX _SMTP _CLIENT. ehlo command identifies the client with the server. Pass as
argument the local domain, or if this is not available, the ip address of the client. The actual
message is send after calling themail command. It’s argument is anEPX _SMTP _MAIL
instance. This class is a container for the sender, the recipients and the actual message that is to be
sent. The message itself can be created by using anEPX _MIME _EMAIL. This class creates a
MIME message, and has several convenience routines to quickly create such a message.

After the message has been sent,EPX _SMTP _CLIENT. quit is called to end the session
andclose is called to close the connection with the SMPT server.

The creation routine of[EPX_SMTP_CLIENT] takes as argument the SMTP server. Correctly
finding the SMTP server for a given recipient involves querying a DNS server for MX records.
However, passing the local SMTP server is usually sufficient as this server knows how to figure
this out.

In this chapter:

13.1Introduction
13.2Windows
13.3Creating a daemon
13.4Logging messages and errors
13.5ULM based logging

13
Writing daemons

13.1 Introduction

e-POSIX has several classes that help with writing daemons or services. First of all there is the
POSIX _DAEMONancestor class. But as daemons have no user interface, there are also classes
for error and information logging.

13.2 Windows

On Windows NT (and derivatives) the equivalent of unix daemons are called services. They are
a lot harder to write and require an Eiffel compiler with multi-threading. It is not yet possible to
write an NT service with e-POSIX.

The logging functionality described in this chapter does work on Windows NT though.

13.3 Creating a daemon

Creating a simple daemon is easy if you inherit fromPOSIX _DAEMON. Implement theexecute
method, and you’re done. At run--time, calldetach to fork off a child. You can calldetach
as many times as you want to spawn daemons.

class EX_DAEMON

inherit

POSIX_DAEMON

ARGUMENTS

creation

make

feature -- the parent

make is
do
-- necessary under SmallEiffel
ignore_child_stop_signal

71 Logging messages and errors

if argument_count= 0 then
print ("Options:%N")
print ("-d start daemon%N")

else
if equal(argument(1), "-d") then
detach
print ("Daemon started.%N")
print ("Its pid: ")
print (last_child_pid)
print ("%N")

end
end

end

feature -- the daemon

executeis
do
-- daemon stays alive for 20 seconds
sleep (20)

end

end

13.4 Logging messages and errors

AlthoughPOSIXdoesn’t have logging facilities, the Single Unix Specification does. This specification
requires the presence of thesyslogd daemon for centralizes logging facilities. The following
example shows you to write messages to this daemon

class EX_SYSLOG

inherit

SUS_CONSTANTS

SUS_SYSLOG_ACCESSOR

creation

make

feature

make is
do

syslog.open("test", LOG_ODELAY+ LOG_PID, LOG_USER)

Writing daemons 72

syslog.debug_dump("this is a debug message")
syslog.info("this is an informational message")
syslog.warning("this is a warning")
syslog.error("this is an error message")

syslog.close
end

end

Always use theSUS _SYSLOG _ACCESSORto access the syslog wrapper classSUS _SYSLOG.
SUS _SYSLOGis a singleton, it makes no sense to open a connection to the syslog daemon twice.

13.5 ULM based logging

e-POSIX has portable routines for logging in Windows NT and Unix. This is build using the ULM
(Universal Format for Logger Messages) specification. The specification itself can be found at
http://www.hsc.fr/gul/draft-abela-ulm-05.txt . It is a fixed format for
logging that makes it easier to extract data with other tools.

On Unix e-POSIX outputs messages to the syslog daemon, seesection 13.4. On Windows e-POSIX

logs to the event log. This makes this kind of logging specific to Windows NT based systems. It
will not work on Windows 9x based systems.

Below a short example of using ULM. The first step is to create a handler that does the actual
logging. The classEPX _LOG _HANDLERis operating system specific. If you compile on
Windows it gives NT event log logging, on Unix it gives syslog logging. There is no logging
mechanism for Windows 9x, but it should not be hard to write one. Just implementULM _LOG
_HANDLERand implement the deferred routines.

The second step is connecting that handler to the class that does ULM logging, theULM _LOGGING
class. Logging is now set up.

class EX_ULM

creation

make

feature -- Initialization

make is
local
logger: ULM_LOGGING
handler: EPX_LOG_HANDLER
field: ULM_FIELD
fields: ARRAY[ULM_FIELD]

do
-- Create handler and logger

http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt

73 ULM based logging

create handler.make(identification)
create logger.make(handler, system_name)

-- Log a simple message
logger.log_message(logger.Alert, subsystem_name,"Hello World.")

-- Log a message with a custom field
create fields.make(0, 0)
create field.make(logger.SRC_IP,"127.0.0.1")
fields.put(field, 0)
logger.log_event(logger.Usage, Void, fields)

end

feature -- Access

identification: STRINGis "example"

system_name: STRINGis "ex_ulm"

subsystem_name: STRINGis "none"

end

Two messages are written. Below the slightly formatted output Unix:

Jul 21 21:12:34 dellius example: DATE=20030721091234 \
HOST=dellius.nederware.nl PROG="ex_ulm.none" LVL=Alert \
MSG="Hello World."

Jul 21 21:12:34 dellius example: DATE=20030721091234 \
HOST=dellius.nederware.nl PROG="ex_ulm" LVL=Usage \
SRC.IP=127.0.0.1

The first message is in the default format. This will always log the date, the host where the message
originated and the program. The program field,PROG, consists of a system and subsystem name,
separated by dots. This subsystem name is the second parameter toULM _LOGGING. log
_message . It may be Void, in which case no subsystem is added to the system name. The level
field, LVL , contains the importance of the message. It is the first parameter toULM _LOGGING.
log _message . The classULM _LOG _LEVELShas the complete list of levels. And in most
cases the log ends with a simple message,MSG, that contains the message itself.

FeatureULM _LOGGING. log _event allows more control over the fields that are logged.
That is demonstrated in the second message. You can pass the fields that are logged. You can use
the fields listed inhttp://www.hsc.fr/gul/draft-abela-ulm-05.txt , or any
other field. There is noMSG field if you don’t specify one.

An interesting application of theULM specification is the NetLogger library, seehttp://www-didc.
lbl.gov/NetLogger/ . It is a protocol to measure response times for a distributed application.

On Windows NT you can use the suppliedmessages.dll file to avoid this message in the
event log:

http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www.hsc.fr/gul/draft-abela-ulm-05.txt
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/
http://www-didc.lbl.gov/NetLogger/

Writing daemons 74

The description for Event ID (some_number4) in Source
(some_name) cannot be found. The local computer may not have
the necessary registry information or message DLL files to
display messages from a remote computer.

Register this DLL under theHKLM/SYSTEM/CurrentControlSet/Services/Eventlog
/Application key. Add a new key which should have the name you have supplied to theEPX
_LOG _HANDLER. makeroutine. This key should have two values:

1. EventMessageFile, type REG_SZ. Its value is the full path to this messages.dll file.
2. TypesSupported, type DWORD. Its value should be 7.

In this chapter:

14
Writing CGI

programs

Although writing aCGI program doesn’t really belong toPOSIX, they still are very common, so I
decided to include a few classes to make this easier. And of course, they build upon the Standard
C classes.

STDC CURRENT PROCESS
+

XML GENERATOR
+

XHTML GENERATOR
+

EPX CGI
+

Figure 14.1 BON diagram ofEPX_CGI.

You inherit fromEPX _CGIand implementexecute . AsEPX _CGI itself inherits fromEPX
_XHTML _WRITERyou can call use the features of that class to generate XHTML.

class EX_CGI1

inherit

EPX_CGI

creation

Writing CGI programs 76

make

feature

executeis
do

content_text_html

doctype
b_html

b_head
title ("e-POSIX CGI example.")
e_head

b_body

p ("Hello World.")
extend("<p>you can use yourown tags.</p>")
b_p
puts ("or use any tag by using:")
e_p

start_tag ("table")
set_attribute("border", Void)
set_attribute("cols", "3")
start_tag ("tr")
start_tag ("td")
add_data("start_tag")
stop_tag
start_tag ("td")
add_data("stop_tag")
stop_tag
stop_tag
stop_tag

e_body
e_html

end

end

Output is accumulated in a string and written to stdout after yourEPX _CGI. execute method
has finished. The partially built string is accessible withEPX _XML _WRITER. unfinished
_xml . Generated output isXHTML , which usually displays fine with older browsers. If strict
XHTML is problematic, you can calldoctype _transitional instead ofdoctype .

77

It is important not to write to stdout as the output is only written after yourEPX _CGI. execute
has finished. If you want to write something to standard output, use theEPX _CGI. add _data
feature or its shortcut aliasputs . If you want to write real tags, useadd _raw . This last feature
allows you to write anything, whileputs escapes reserved characters like ’>’.

If you use provided features likeb _a , b _p and such, an attempt is made to produce good looking
source. Also your input is somewhat validated againstXHTML standards.

It is also easy to write aCGI program that displays a form and accepts submitted values. Even file
upload is supported. The following example uses the GET method to submit data:

class EX_CGI2

inherit

EPX_CGI

creation

make

feature

executeis
do
content_text_html

doctype
b_html

b_head
title ("e-POSIX CGI form example.")
e_head

b_body

b_form_get("ex_cgi2.bin")

b_p
puts ("Name: ")
b_input ("text", "name")
set_attribute("size", "32")
e_input
e_p

b_p
puts ("City: ")
input_text ("city", 40, "enter city here")
e_p

Writing CGI programs 78

b_p
b_button_submit("action", "GO!")
e_button_submit

nbsp

button_reset
e_p

e_form

hr

p ("In your last submit you entered:")
b_p
if not has_key("name") then
puts ("!!!!!")

end
puts ("name: ")
puts (value ("name"))
puts (", ")
puts ("city: ")
puts (raw_value ("city"))
e_p

e_body
e_html

end

end

You can useEPX _CGI. b _input to start an input element as shown for the input of a name.
Or you can useinput _text to start a simple text input as shown for the input of a city. Below
the line you see the value a user has submitted, if any. Usevalue to get values with certain meta--
characters removed. The output is still not save to be passed straight to a Unix Shell though! You
can useraw _value to get the contents as submitted by the user.

In the above example it doesn’t matter much if you useb _form _get or b _form _post .
But with the GET method, you cannot upload files. The following example demonstrates how files
can be uploaded:

class EX_CGI3

inherit

EPX_CGI

creation

79

make

feature

executeis
do
content_text_html

assert_key_value_pairs_created
save_uploaded_files

doctype
b_html

b_head
title ("e-POSIX CGI file upload example.")
e_head

b_body

b_form ("post", "ex_cgi3.bin")
set_attribute("enctype", mime_type_multipart_form_data)

b_p
puts ("Filename: ")
b_input ("file", "filename")
set_attribute("size", "32")
set_attribute("maxlength", "128")
e_input
e_p

b_p
b_button_submit("action", "Upload file(s)")
e_button_submit

nbsp

button_reset
e_p

e_form

e_body
e_html

end

Writing CGI programs 80

save_uploaded_filesis
local
kv: EPX_KEY_VALUE
buffer: STDC_BUFFER
target_name: STRING
target: STDC_BINARY_FILE

do
create buffer.allocate(8192)
from
cgi_data.start

until
cgi_data.after

loop
kv := cgi_data.item_for_iteration
if kv.file /= Void then
from
target_name:= "/tmp/" + kv.value
create target.create_write(target_name)
kv.file.read_buffer(buffer, 0, 8192)

until
kv.file.eof

loop
target.write_buffer(buffer, 0, kv.file.last_read)
kv.file.read_buffer(buffer, 0, 8192)

end
target.close
kv.file.close

end
cgi_data.forth

end
buffer.deallocate

end

end

It is important to set the encoding type. This example accepts a file and writes it to/tmp . Because
multiple files can be present, this example just loops over all key value pairs and checks if a file is
present. This example isn’t fool--proof with multiple users submitting the same file, but you should
get the idea.

Note that the first line isEPX _CGI. content _text _html : in case an exception occurs,
the web server is still able to output something back to the user.

After that we make sure that the key value pairs are created withassert _key _value
_pairs _created . They are automatically created if you callvalue , but in this case we
want the key value pairs themselves. InEX _CGI3. save _uploaded _files we use
theEPX _KEYVALUE. file feature to check if that key value pair is an uploaded file: if it is
not Void, it points to a temporary file. As this file will be deleted when it is closed or when your

81

program exits, we have to copy it to a new file. The filename is just the value part of this key value
pair. The filename is guaranteed to be free of directory parts.

In the last example we just print all key/value pairs to the filelist.txt in the temporary
directory. We redirect the user to another file.

class EX_CGI4

inherit

EPX_CGI

EPX_FACTORY

creation

make

feature

executeis
do
assert_key_value_pairs_created
save_values

extend("Location: /mydir/myfile.html")
new_line
new_line

end

save_valuesis
local
fout: STDC_TEXT_FILE
kv: EPX_KEY_VALUE

do
create fout.create_write(fs.temporary_directory+ "/list.txt")
from
cgi_data.start

until
cgi_data.after

loop
kv := cgi_data.item_for_iteration
fout.puts(kv.key)
fout.puts("%T")
fout.puts(kv.value)
fout.puts("%N")
cgi_data.forth

end

Writing CGI programs 82

fout.close
end

end

In this chapter:

15.1Error handling with exceptions
15.2Manual error handling

15
Error handling

This chapter describes the error handling strategies that are possible with e-POSIX. Basically there
are two strategies: using the Eiffel exception mechanism or doing the error handling all yourself.

15.1 Error handling with exceptions

The opinion of the author of e-POSIX is that Eiffel’s exception mechanism is very well suited to
deal with things like files that cannot be opened or directories that do not exist. Others disagree,
seesection 15.2. e-POSIX is designed such that when aPOSIX routine returns an error code, an
exception is thrown. Here my arguments why I favor this style of error handling:

1. We all know that exceptions are to be used for breach of contract. This idea is formulated in
(Xxxxxxxxxx, 0000) and is the best expressed opinion of exception handling I know.
So if you ask an e-POSIXmethod to open a file, it will do that for you. If it cannot open the file,
for whatever reason, it will raise an exception. The same argument hold if you ask it to go to a
directory, to start a program, or to open a connection to another machine.
This approach is also reflected in the names of e-POSIX’s features. The name isPOSIX _TEXT
_FILE. open _read and notPOSIX _TEXT _FILE. attempt _open _read .

2. It is usually not wise to trust clients with error handling. The larger a distance between a
software failure and the error report, the more difficult it is to make a correct diagnosis of what
went wrong (see (Xxxxxxxxxx, 0000)). e-POSIXuses the fail early, fail hard approach.

3. Error handling is often forgotten or left to some global general error handling mechanism.
In an interesting article (see (Xxxxxxxxxx, 0000)) James Whittaker describes how he modified
certain system calls to return legitimate, but unexpected return codes. Memory allocation failed
for example, or opening a file returned with no more file handles. Applications failed within
seconds, but it was usually completely unclear why.

4. It’s a lot easier for programmer’s. You don’t have to write any error handling. If your program
completed, you know that there wasn’t a single system call that failed, that you didn’t continue
despite some error. This will make it possible to write programs that do their work correctly if
no errors occur, or else do nothing.

First an example. Let’s take a look at the code you have to write in case you want to handle failure
of opening a file:

class EX_ERROR1

inherit

POSIX_CURRENT_PROCESS

creation

Error handling 84

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
do

fd := attempt_create_file
end

attempt_create_file: POSIX_FILE_DESCRIPTORis
local

attempt: INTEGER
still_exists: BOOLEAN

do
create Result.create_with_mode("myfile", O_CREAT+O_TRUNC+O_EXCL, 0)

rescue
still_exists := errno.value= EEXIST
attempt := attempt+ 1
if still_existsand then attempt<= 3 then

sleep (1)
retry

end
end

end

In this example we try to create a file exclusively. The create will fail if the file already exists. In
case this happens, we retry 3 times. Before retrying we wait 1 second. Note that if the error is not
EEXIST, we fail directly, without retrying.

In my opinion above’s code is just the code you want to write usually: do not worry about errors,
if something goes wrong, your application will fail.

My preferred way of error handling is (or sometimes should be) also reflected in the preconditions.
For example thePOSIX _FILE _SYSTEM. browse _directory has the precondition
that the given path should exist and should be a directory. Quite reasonable I think. The argument
against such preconditions is that it is somewhat strange: if a client has honoured the precondition
by checking that the directory exists, it should be able to assume that it safely can call the routine.
But between its own check and the actual call, the directory can be removed by another process.

This is the concurrent precondition paradox (see (Xxxxxxxxxx, 0000)). In my opinion it would not
be wise to remove this precondition. It is true that honouring it, will not make sure the contract is
not broken. But it still serves a very usefull purpose: documentation.

For example the routinePOSIX _FILE _SYSTEM. remove _file does not have the
precondition that the file should exist. That isn’t an oversight. This routine does not fail if the
file no longer exists for good reason: it honours its postcondition after all. So when you call this
routine, the file may or may not exist. The routine doesn’t care.

85 Manual error handling

15.2 Manual error handling

In spite of the arguments listed in the previous section, automatic error handling is perhaps tedious
to use when you expect a lot of errors. And some programmers just do not like Eiffel’s exception
mechanism. Therefore e-POSIX implements a completely different style of error handling. In this
case, e-POSIX continues when an error occurs, but it safes the errorcode, and you can check the
errorcode of the first error when you wish. This first errorcode has to be reset by the programmer.
An example:

class EX_ERROR2

inherit

STDC_SECURITY_ACCESSOR

creation

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
do

security.error_handling.disable_exceptions
create fd.create_write("myfile")
if fd.errno.first_value= 0 then

fd.put_string("1%N")
fd.put_string("2%N")
fd.close

else
fd.errno.clear_first

end
end

end

Exception handling is turned off by a call toSTDC _SECURITY _ACCESSOR. security.
error _handling. disable _exceptions . It can be enabled again by callingsecurity.
error _handling. enable _exceptions . In between, you’re on your own, just like
a C programmer. Ifmyfile cannot be opened, nothing happens, and thePOSIX _FILE
_DESCRIPTOR. put _string feature is called. Depending if you have enabled precondition
checking or not,put _string will fail. The precondition ifput _string is that the file has
to be open. Therefore, at certain points, you’re still forced to deal with errors. Every object has an
errno variable. This variable points to the globalSTDC _ERRNOobject (its a once routine).
So there basically is just onefirst _value error value. Whatever object caused the error, you

Error handling 86

can check theerrno. first _value of any e-POSIX object. The last error is still available
in errno. value .

If there is no error, the program continues writing. IfPOSIX _FILE _DESCRIPTOR. put
_string failed, the next one is still executed. If there is an error, we reset it withSTDC
_ERRNO. clear _first . This gives us the chance to catch another error value if an error
occurs. If this method is not called,first _value will keep its original value.

The following example is the same asEX _ERROR1. It shows how to open a file exclusively with
manual error handling.

class EX_ERROR3

inherit

POSIX_CURRENT_PROCESS

EXCEPTIONS

creation

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
do

security.error_handling.disable_exceptions
fd := attempt_create_file

end

attempt_create_file: POSIX_FILE_DESCRIPTORis
require

manual_error: not security.error_handling.exceptions_enabled
local

attempt: INTEGER
still_exists: BOOLEAN

do
from

attempt := 1
still_exists := True

until
not still_existsor else attempt> 3

loop
create Result.create_with_mode("myfile", O_CREAT+O_TRUNC+O_EXCL, 0)
still_exists := errno.first_value= EEXIST
if still_exists then

87 Manual error handling

sleep (1)
attempt := attempt+ 1

end
end
if still_exists then

raise ("failed to create file")
end

end

end

As you can see, manual error handling does not necessarily translate into less code.

The summary of this section is that you chould check each distinctive step when using manual error
handling. You don’t have to check intermediate steps.

In this chapter:

16.1Denial of service attacks
16.2Authorization bypass attacks

16
Security

e-POSIXis well--suited to write server applications likeCGI scripts and daemons. As these applications
can be hosted on servers that are attached to the Internet, they could be prone to attack. Applications
written with e-POSIX could be misused in a denial of service attack or to gain root access. e-POSIX

offers certain protection mechanisms that enable your applications to fend off such penetrations.

This chapter shows you how applications can be misused and what mechanisms e-POSIXoffers for
certain attacks.

“Programmers typically focus on "positive" aspects of programs, that is, what is the functionality
required for the task to be accomplished. Programmers rarely focus on the negative aspects
of programs, that is, what functionality is not required for the program to accomplish its
task. Attackers take advantage of proggrammers failure to consider negative functionality.
Perhaps a reason that programmers avoid negative functionality is that there is no good way
to specify what a program should not be permitted to do.”

16.1 Denial of service attacks

In a denial of service attack, crackers attempt to deplete one or more finite resources. Resources
can be software related like database connections orTCP/IP connections, but ultimately resources
are finite because of hardware limitations. This manual distinguishes the following hardware
resources:

• Memory.
• CPU.
• Disk space.
• Network bandwidth.

A denial of service attack succeeds if a cracker depletes these resources in such a way that the
server cannot handle request anymore, or handles them very slowly. For example, Linux 2.2 is
easy to bring to its knees if you keep on allocating memory. In normal situations your application
runs fine, and allocates only a limited amount of memory. But an attacker might have found a way
to make your application allocate much more memory. Even if you are sure that the code you have
written is not prone to such an attack, you might use a library based on e-POSIX that does have code
that is exploitable.

e-POSIX has some limited support to set limits on memory, file handle (a memory issue) and cpu
usage. When a set limit has been exceeded, an exception is raised.

To limit the amount of memory that can be allocated by theSTDC _BUFFERclass, inherit from
STDC _SECURITY _ACCESSORand callsecurity. memory. set _max _allocation .
Currently this limits the amount of memory that can be allocated withSTDC _BUFFER. It does
not limit the amount of memory that is allocated bySTRINGor other classes. You can also limit

89 Authorization bypass attacks

the amount of memory that can be allocated with a single call by callingsecurity. memory.
set _max _single _allocation .

You can limit the number of file handles a program can open by callingsecurity. files.
set _max _open _files . This works only with files and sockets opened by e-POSIXclasses
asSTDC _FILE andPOSIX _FILE _DESCRIPTOR, not with files opened through other
means. In this case you cannot rely on the garbage collection to close your file. Certain garbage
collectors do not allow calling other classes in theMEMORY. dispose method. e-POSIX needs
to do this to decrement its idea of the number of open handles. Only when you explicitly callSTDC
_FILE. close will the e-POSIXdecrease its open file handles.

You can limit the amount of CPU time by callingsecurity. cpu. set _max _process
_time . It is not possible to automatically halt your application when this time has exceeded. You
have to callsecurity. cpu. check _process _time to actually check the processor
time used.

Currently e-POSIXcannot check disk space or network bandwidth limitations.

Discuss here that decrementing only works for manual deallocations,
I’m very sorry about that, but this is a problem of ISE. I’m
thinking about ways to work around this.

16.2 Authorization bypass attacks

A hacker can bypass authorization if he or she, through your program, can gain the following
access:

• Access to more information than your program is written to provide. Security is not breached
here, but your program is used in an ‘innovative’ way. Note that if your program runs within
the root security context (suid root), security can be breached!

• Security is breached when your program is used to get more access rights than your program is
written to provide. Especially suid root programs are an attractive target here.

Usually Eiffel programs do not allocate buffers on the stack, so they are not prone to the so called
‘buffer overflow’ attack. As certain vendors might provide some ‘native’ class that allocate things
on the stack, leave precondition checking always on in suid root programs.

Currently e-POSIXdoesn’t offer much protection for suid root programs. Much better security will
be the topic of a next release.

In this chapter:

17.1Making C Headers available to Eiffel
17.2Distinction between Standard C andPOSIX

headers
17.3C translation details

17
Accessing C

headers

This chapter explains the conventions that e-POSIXuses to access the C--headers.

17.1 Making C Headers available to Eiffel

The most portable and safest header translation comes when a C function is not called verbatim,
but instead a translation function is used. For example to make the Standard C functionfopen
available within Eiffel a new header file is created which lists an Eiffel compatible way to call this
routine:

#include "eiffel.h"
#include <stdio.h>

EIF_POINTER posix_fopen(EIF_POINTER filename, EIF_POINTER mode);

Instead of using C types, we use Eiffel types here, which are made available by includingeiffel.
h.

The corresponding C file contains the following implementation:

#include "my_new_header.h"

EIF_POINTER posix_fopen(EIF_POINTER filename, EIF_POINTER mode)
{

return ((EIF_POINTER) fopen (filename, mode));
}

It simply calls the original function, returning the result. Type conversion between Eiffel and C
types shouldn’t pose problems this way.

To be able to call this function from Eiffel, anexternal feature needs to be written. For example:

class HEADER_STDIO

feature { NONE} -- C binding for stream functions

posix_fopen(path, a_mode: POINTER): POINTER is
-- Opens a stream

require
valid_mode: a_mode/= default_pointer

external "C"
end

91 Distinction between Standard C andPOSIX headers

Figure 17.1 e-POSIX

directory structure

end

Of course, the Eiffel function can have all Design By Contract features Eiffel programmers are
accustomed too.

To recapitulate: every header that is to be translated, needs:

1. a new header file, and
2. a corresponding C file, and
3. an Eiffel class.

For example to translate<stdio.h > a header file likeeiffel_stdio.h and a C file
eiffel_stdio.c is needed. The Eiffel class could be inheader_stdio.e .

17.2 Distinction between Standard C andPOSIX headers

However, POSIX sometimes defines extensions to existing Standard C headers. Simply using
a translation header file likeeiffel_stdio.h will not work for pure Standard C Eiffel
programs, as it can includePOSIXspecific extensions that might simply not be available on a given
platform.

Therefore, e-POSIXdivides the C headers in several groups:

1. The Standard C headers.
2. ThePOSIXheaders.
3. The Single Unix Specification headers.
4. Microsoft Windows headers (as far as they definePOSIXfunctions, this library does not translate

Microsoft Windows specific functions).

Every group gets its own translation header with its own prefix. A translated header has a prefix,
an underscore and next the original header name. The Standard C translation of<stdio.h > is
done inc_stdio.h andc_stdio.c . ThePOSIX extensions to this header are available inp
_stdio.h andp_stdio.c .

The corresponding Eiffel class follows similar conventions. It has the group’s prefix, next the string
‘API’, an underscore and next the name of the header. So all<stdio.h > functions are made
available inCAPI _STDIO.

In table 17.1all the groups with there translation header prefix and Eiffel class prefix are listed.
See also the directory structure infigure 17.1.

Accessing C headers 92

Group directory header prefix class prefix

Standard C src/capi c CAPI

POSIX src/[api p PAPI

Single Unix Specification src/sapi s SAPI

Windows src/wapi w WAPI

Table 17.1 e-POSIX prefix conventions

17.3 C translation details

This translation wants to do as less as possible at the C level. It attempts to just make available the
C constants and C functions and do the actual work in Eiffel.

A few details:

1. Constants, C macro definitions, are exported in the header file with the prefix ‘const_’ and next
the macro name. The Eiffel API class exports these constants with the original, uppercased
name.

2. Struct members are exported with getter and setter functions. The get function has the prefix
‘posix’, an underscore, the struct name, an underscore and as last the member name. The
set function has the prefix ‘posix’, an underscore, ‘set’, an underscore, the struct name, an
underscore and as last the member name.

In this chapter:

A
Posix function
to Eiffel class

mapping list

The following table defines exactly where a given Posix function is used in a Eiffel class mapping.
The table is sorted in alphabetic order. Note that when a STDC_ class is listed, the feature is also
available in the corresponding POSIX_ class. The same is true for the EPX_ classes. The EPX_
classes provide functionality portable between Unix and Windows. The corresponding POSIX_ or
SUS_ classes extend that functionality for or the Single Unix Specification.

Function Header Class Comment

abort <stdlib.h > STDC _CURRENT _PROCESS. abort
accept <sys/socket.h > EPX _TCP _SERVER _SOCKET. accept
access <unistd.h > ABSTRACT _FILE _SYSTEM. is _accessible
aio_cancel <aio.h > POSIX _ASYNC _IO _REQUEST. cancel
aio_error <aio.h > POSIX _ASYNC _IO _REQUEST. is _pending
aio_fsync <aio.h > POSIX _ASYNC _IO _REQUEST. synchronize
aio_read <aio.h > POSIX _ASYNC _IO _REQUEST. read
aio_return <aio.h > POSIX _ASYNC _IO _REQUEST. return _status
aio_suspend <aio.h > POSIX _ASYNC _IO _REQUEST. wait _for
aio_write <aio.h > POSIX _ASYNC _IO _REQUEST. write
alarm <unistd.h > POSIX _TIMED _COMMAND
asctime <time.h > STDC _TIME. default _format
atexit <stdlib.h > STDC _EXIT _SWITCH. install UseSTDC _EXIT _SWITCH

_ACCESSOR. exit _switch
to access this class.

bind <sys/socket.h > EPX _TCP _SERVER _SOCKET. listen _by _address
calloc <stdlib.h > STDC _BUFFER. allocate _and _clear
cfgetispeed <termios.h > POSIX _TERMIOS. input _speed
cfgetospeed <termios.h > POSIX _TERMIOS. output _speed
cfsetispeed <termios.h > POSIX _TERMIOS. set _input _speed
cfsetospeed <termios.h > POSIX _TERMIOS. set _output _speed
chdir <unistd.h > POSIX _FILE _SYSTEM. change _directory
chmod <sys/stat.h > POSIX _FILE _SYSTEM. change _mode
chown <unistd.h > POSIX _PERMISSIONS _PATH. apply _owner _and _group
clearerr <stdio.h > STDC _FILE. clear _error
clock <time.h > STDC _CURRENT _PROCESS. clock
clock_getcpuclockid <time.h >

clock_getres <time.h > SUS _SYSTEM. real _time _clock _resolution
clock_gettime <time.h > SUS _SYSTEM. real _time _clock
clock_nanosleep <time.h >

clock_settime <time.h >

close <unistd.h > EPX _FILE _DESCRIPTOR. close
closedir <dirent.h > POSIX _DIRECTORY

Posix function to Eiffel class mapping list 94

closelog <syslog.h > SUS _SYSLOG. close
confstr <unistd.h >

connect <sys/socket.h > EPX _TCP _CLIENT _SOCKET. open _by _address , open _by _name _and _port
creat <fcntl.h > EPX _FILE _DESCRIPTOR. create _read _write
ctermid <unistd.h >

ctime <time.h > Can be emulated withSTDC
_TIME.

cuserid <stdio.h > seegetlogin
daylight <time.h >

difftime <time.h > STDC _TIME
dup <unistd.h > EPX _FILE _DESCRIPTOR. make _as _duplicate
dup2 <unistd.h > EPX _FILE _DESCRIPTOR. make _as _duplicate
endgrent <grp.h >

endhostent <netdb.h >

endnetent <netdb.h >

endprotoent <netdb.h >

endpwent <pwd.h >
endservent <netdb.h >

execl <unistd.h > Seeexecvp .
execle <unistd.h > Seeexecvp .
execlp <unistd.h > Seeexecvp .
execv <unistd.h > Seeexecvp .
execve <unistd.h > Seeexecvp .

execvp <unistd.h > EPX _EXEC _PROCESS. execute
exit <stdlib.h > STDC _CURRENT _PROCESS. exit
_exit <unistd.h >

fchmod <sys/stat.h >

fchown <sys/stat.h >

fclose <stdio.h > STDC _FILE. close
fcntl <unistd.h > POSIX _FILE _DESCRIPTOR attempt _lock ,get

_lock , set _lock and
others.

fdatasync <unistd.h > POSIX _FILE _DESCRIPTOR. synchronize _data This function is not available
on many so calledPOSIX

systems. In such cases it
is mapped tofsync .

fdopen <stdio.h > POSIX _FILE. make _from _file _descriptor
feof <stdio.h > STDC _FILE. eof
ferror <stdio.h > STDC _FILE. error
fflush <stdio.h > STDC _FILE. flush
fgetc <stdio.h > STDC _FILE. get _character
fgetpos <stdio.h > STDC _FILE. get _position
fgets <stdio.h > STDC _FILE. get _string
fileno <stdio.h > POSIX _FILE _DESCRIPTOR. make _from _file
flockfile <stdio.h >

fopen <stdio.h > STDC _FILE various open creation features.

fork <unistd.h > POSIX _CURRENT _PROCESS. fork
fpathconf <unistd.h >

fprintf <stdio.h > not applicable.

fputc <stdio.h > STDC _FILE. putc
fputs <stdio.h > STDC _FILE. put _string
fread <stdio.h > STDC _FILE. read Also read _string and

read _character .

free <stdlib.h > STDC _BUFFER. deallocate
freopen <stdio.h > STDC _FILE. reopen

95

fseek <stdio.h > STDC _FILE. seek Alsoseek _from _current
andseek _from _end .

fsetpos <stdio.h > STDC _FILE. set _position
fstat <sys/stat.h > POSIX _STATUS Returned byEPX _FILE

_DESCRIPTOR. status .

fsync <unistd.h > POSIX _FILE _DESCRIPTOR. synchronize
ftell <stdio.h > STDC _FILE. tell
ftruncate <unistd.h >

ftrylockfile <stdio.h >

funlockfile <stdio.h >

fwrite <stdio.h > STDC _FILE. write
getc <stdioh > Seefgetc .
getchar <stdio.h > Seefgetc .

getcwd <unistd.h > POSIX _FILE _SYSTEM. current _directory
getegid <unistd.h > POSIX _CURRENT _PROCESS. effective _group _id
getenv <stdlib.h > STDC _ENV _VAR. value
geteuid <unistd.h > POSIX _CURRENT _PROCESS. effective _user _id
getgid <unistd.h > POSIX _CURRENT _PROCESS. real _group _id
getgrgid <grp.h > POSIX _GROUP. make _from _gid
getgrnam <grp.h > POSIX _GROUP. make _from _name
getgroups <unistd.h > POSIX _CURRENT _PROCESS. is _in _group
getlogin <unistd.h > POSIX _CURRENT _PROCESS. login _name
getpgrp <unistd.h > POSIX _CURRENT _PROCESS. process _group _id
getpid <unistd.h > POSIX _CURRENT _PROCESS. pid
getppid <unistd.h > POSIX _CURRENT _PROCESS. parent _pid
getpwnam <pwd.h > POSIX _USER. make _from _name
getpwuid <pwd.h > POSIX _USER. make _from _uid
gets <stdio.h > Seefgets .
gettimeofday <sys/time.h > SUS _TIME _VALUE
getuid <unistd.h > POSIX _CURRENT _PROCESS. real _user _id
gmtime <time.h > STDC _TIME. to _utc
inet_ntoa <arpa/inet.h > EPX _IP4 _ADDRESS. out
isatty <unistd.h > EPX _FILE _DESCRIPTOR. is _attached _to _terminal
htonl <netinet/in.h > SAPI _IN. posix _htonl
htons <netinet/in.h > SAPI _IN. posix _htons
ioctl <stropts.h > SAPI _STROPTS. posix _ioctl
kill <signal.h > POSIX _PROCESS. kill
link <unistd.h > POSIX _FILE _SYSTEM. link
lio_listio <aio.h >

localeconv <locale.h > STDC _LOCALE _NUMERIC
localtime <time.h > STDC _TIME. to _local
lseek <unistd.h > EPX _FILE _DESCRIPTOR. seek Alsoseek _from _current

andseek _from _end .

malloc <stdlib.h > STDC _BUFFER. allocate
memcpy <string.h > STDC _BUFFER. memory _copy See alsocopy _from .
memchr <string.h >

memcmp <string.h > CAPI _STRING. posix _memcmp
memmove <string.h > STDC _BUFFER. memory _move
memset <string.h > STDC _BUFFER. fill _with
mkdir <sys/stat.h > POSIX _FILE _SYSTEM. make _directory
mkfifo <sys/stat.h > POSIX _FILE _SYSTEM. create _fifo
mktime <time.h > STDC _TIME. set _date _time Alsoset _date andset

_time .
mlockall <sys/mman.h >

Posix function to Eiffel class mapping list 96

mlock <sys/mman.h >
mmap <sys/mman.h > POSIX _MEMORY _MAP
mprotect <sys/mman.h >
mq-receive <mqueue.h >
mq_close <mqueue.h >
mq_getattr <mqueue.h >
mq_notify <mqueue.h >
mq_open <mqueue.h >
mq_send <mqueue.h >
mq_setattr <mqueue.h >
mq_unlink <mqueue.h >
msync <sys/mman.h >
munlockall <sys/mman.h >
munlock <sys/mman.h >
munmap <sys/mman.h > POSIX _MEMORY _MAP
nanosleep <time.h > Efeature[SUS_CURRENT_PROCESS]nanosleep

ntohl <netinet/in.h > SAPI _IN. posix _ntohl
ntohs <netinet/in.h > SAPI _IN. posix _ntohs
open <fcntl.h > EPX _FILE _DESCRIPTOR. open Alsoopen _read , open

_read _write andopen
_write

opendir <dirent.h > POSIX _DIRECTORY
openlog <syslog.h > SUS _SYSLOG. open
pathconf <unistd.h > POSIX _DIRECTORY. max _filename _length
pause <unistd.h > EPX _CURRENT _PROCESS. pause
perror <stdio.h > e-POSIXgenerates exceptions

on error.

pipe <unistd.h > EPX _PIPE. make
printf <stdio.h > not applicable.
putc <stdio.h > Seefputc .
putchar <stdio.h > Seefputc .
puts <stdio.h > Seefputs .

raise <signal.h > STDC _SIGNAL. raise
rand <stdlib.h > STDC _CURRENT _PROCESS. random
read <unistd.h > EPX _FILE _DESCRIPTOR. read
readdir <dirent.h > POSIX _DIRECTORY
realloc <stdlib.h > STDC _BUFFER. resize
remove <stdio.h > POSIX _FILE _SYSTEM. remove _file
rename <unistd.h > POSIX _FILE _SYSTEM. rename _to
rewind <stdio.h > STDC _FILE. rewind
rewinddir <dirent.h > POSIX _DIRECTORY
rmdir <unistd.h > EPX _FILE _SYSTEM. remove _directory
scanf <stdio.h > not applicable.
select <sys/select.h > [EPX_SELECT]
sem_close <semaphore.h >

sem_destroy <semaphore.h >

sem_getvalue <semaphore.h >

sem_init <semaphore.h > POSIX _UNNAMED _SEMAPHORE. create _shared Andcreate _unshared .
sem_open <semaphore.h >

sem_post <semaphore.h > POSIX _SEMAPHORE. release
sem_trywait <semaphore.h > POSIX _SEMAPHORE. attempt _acquire
sem_unlink <semaphore.h >

sem_wait <semaphore.h > POSIX _SEMAPHORE. acquire
setbuf <stdio.h > STDC _FILE. set _buffer
setgid <unistd.h > POSIX _CURRENT _PROCESS. set _group _id Also restore _group

_id .

97

setlocale <locale.h > STDC _CURRENT _PROCESS. set _locale Alsoset _native _locale
andset _native _time .

setpgid <unistd.h > PAPI _UNISTD. posix _setsid
setsid <unistd.h > PAPI _UNISTD. posix _setsid
setuid <unistd.h > POSIX _CURRENT _PROCESS. set _user _id Also restore _user

_id .

setvbuf <stdio.h > STDC _FILE. set _no _buffering Alsoset _full _buffering
andset _line _buffering

shm_open <sys/mman.h > POSIX _SHARED _MEMORY. open _read _write And create _write ,
open _read , Efeatureopen_write.

shm_unlink <sys/mman.h > POSIX _FILE _SYSTEM. unlink _shared _memory _object
sigaction <signal.h > POSIX _SIGNAL
sigaddset <signal.h > POSIX _SIGNAL _SET. add
sigdelset <signal.h > POSIX _SIGNAL _SET. prune
sigemptyset <signal.h > POSIX _SIGNAL _SET. make _empty
sigfillset <signal.h > POSIX _SIGNAL _SET. make _full
sigismember <signal.h > POSIX _SIGNAL _SET. has
signal <signal.h > STDC _SIGNAL. raise
sigpending <signal.h > POSIX _SIGNAL _SET. make _pending
sigprocmask <signal.h > POSIX _SIGNAL _SET. add _to _blocked _signals Also remove _from _blocked

_signals andset _blocked
_signals

sigqueue <signal.h >

sigsuspend <signal.h > POSIX _SIGNAL _SET. suspend
sigtimedwait <signal.h >

sigwait <signal.h >

sigwaitinfo <signal.h >

sleep <unistd.h > POSIX _CURRENT _PROCESS. sleep
sprintf <stdio.h > Not applicable.

srand <stdlib.h > STDC _CURRENT _PROCESS. set _random _seed
sscanf <stdio.h > Not applicable.

stat <sys/stat.h > POSIX _STATUS
strftime <time.h > STDC _TIME. format
sysconf <unistd.h > POSIX _SYSTEM
syslog <syslog.h > SUS _SYSLOG Use features asnotice

or error .

system <stdlib.h > STDC _SHELL _COMMAND
tcdrain <unistd.h >

tcflow <unistd.h >

tcflush <unistd.h > POSIX _TERMIOS. flush _input
tcgetattr <unistd.h > POSIX _TERMIOS. make
tcgetpgrp <unistd.h >

tcsendbreak <unistd.h >

tcsetattr <unistd.h > POSIX _TERMIOS. apply _now Alsoapply _drain and
apply _flush

tcsetpgrp <unistd.h >

time <time.h > STDC _TIME. make _from _unix _time
timer_create <signal.h >

timer_create <time.h >

times <times.h >

tmpfile <stdio.h > STDC _TEMPORARY _FILE. make
tmpnam <stdio.h > STDC _FILE _SYSTEM. temporary _file _name
ttyname <unistd.h > POSIX _FILE _DESCRIPTOR. ttyname
tzset <time.h >

umask <sys/stat.h >

Posix function to Eiffel class mapping list 98

uname <sys/utsname.h > POSIX _SYSTEM Various queries.

ungetc <stdio.h > STDC _FILE. ungetc
unlink <unistd.h > POSIX _FILE _SYSTEM. unlink
utime <utime.h > POSIX _FILE _SYSTEM. utime See also itstouch method.
vfprintf <stdio.h > Not applicable.
vprintf <stdio.h > Not applicable.
vsprint <stdio.h > Not applicable.

wait <sys/wait.h > POSIX _CURRENT _PROCESS. wait
waitpid <sys/wait.h > POSIX _FORK _ROOT. wait _pid
write <unistd.h > EPX _FILE _DESCRIPTOR. write

This tabel does not contain the following category of functions:

1. Math functions.
2. String functions, including wide character/multibyte string. routines. The memory move/copy

functions are included, some of them even supported.
3. No type conversion functions.
4. No functions from<ctype.h >.
5. No functions from<setjmp.h >.
6. No functions from<stdarg.h >.
7. No string formatting functions likesscanf . I suggest you use the Formatter library for that.

You can download this library athttp://www.pobox.com/~berend/eiffel/ .

Functions in above categories are either not applicable, already present in Eiffel or are better off in
a different library.

http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/
http://www.pobox.com/~berend/eiffel/

To do

ABSTRACT_DIRECTORY

1. ABSTRACT _DIRECTORY. forth _recursive raises an exception when it encounters
a symbolic link that does no longer point to a file. Because it tries to retrieve the statistics, and
that call fails.

EPX_FILE_SYSTEM

1. MakeEPX _DIRECTORY.

STDC_FILE

1. read_integer, read_double, read_boolean should perhaps be different for the binary or text files.
Now they’re satisfy the mico/e definition, so useful for text files only.

STDC_LOCALE_NUMERIC

1. Complete the list of properties

STDC_PATH

1. make some escape char functionality with ‘%’ or so.

STDC_TIME

1. Add elapsed seconds

POSIX_DAEMON

1. Closing the first three file descriptors is not likened by SmartEiffel. So leaves them open. Have
to fix this some how.

POSIX_EXEC_PROCESS

To do 100

1. Turn off Eiffel exception handling after the final execvp, else you get back signals not captured
by child process as your signals, or so it seems (or perhaps you’re killing the Eiffel process, but
not the subprocess it generated??)
Killing subprocesses works sometimes, but not always.
Remove exception handling just before execvp?

2. how about capture to /dev/null?
3. can we capture i/o for every forked process? If so, move this code to POSIX_FORK_ROOT.
4. Perhaps option to influence environment variables to pass to subprocess?

POSIX_FILE_DESCRIPTOR

1. possible to open exclusively and so?
2. complete support for nonblocking i/o.

POSIX_MEMORY_MAP

1. Cannot change protection.
2. No locking.

POSIX_SEMAPHORE

1. not valid for named semaphore I think.
2. have to add various close/unlink functions.

POSIX_SIGNAL

1. Add synchronous waiting for signals likesigwait .
2. (Re)enable sending Eiffel exception on signal? i.e. set_exception_handler or so.
3. Resend signal as Eiffel exception in signal handler.

POSIX_STATUS

1. return STDC_TIME instead of unix time
2. Not all stat member fields are currently available.

POSIX_MQUEUE

1. Solaris x86 says it supports it, so have to work on that.

Security

Add base security class that specifies programs intent. Default is to allow anything, but security
can be tightened:

101 Windows code

1. Call toopen or creat (used?), use real user id, not effective user id.
2. Assume we’re free from buffer attacks if preconditions are enabled.
3. exec/system call only allowed when effective user is not root, unless otherwise specified. Or

exec only allowed for specific files.
4. Protect against writing specific files/directories. Perhaps substitute vulnerable filenames for

other ones.
5. Emulate atomic calls. Or add atomicaccess andopen call. Shouldn’t be done by setting

su??
6. When appending/writing to files, check if symbolic link.
7. ABSTRACT _FILE _SYSTEM. force _remove _directory is potentially unsafe

because it follows links so it can be used to destroy things not under that directory.
8. remove tmpnam function.
9. Make sure the once functions in STDC_BASE are called from within the security initialization,

so they’re allocated and do not generate an out-of-memory exception themselves.

Idea from ‘Remediation of Application Specific Security Vulnerabilities at Runtime’ article in
IEEE Computer sep/oct 2000.

Windows code

1. chmod also available on Windows.
2. Add permissions to status: read/write.
3. set_binary_mode should do something for the posix factory, i.e., when compiling with cygwin.

Perhaps separateCYGWIN _APIor so inPOSIXdir with the window specific stuff.
Currently cygwin uses text mode for file descriptors, the windows variant uses binary.

4. utime can be supported by using SetFileTime.

Other

1. remove ugly const_ prefix from constants. Uppercase should be good enough.
Almost done, only const_EOF remains, not easy to replace perhaps.

2. Compare POSIX_SIGNAL with ISE UNIX_SIGNAL: They have an is_caught function, useful?
Means this signal generates an exception.

Known bugs

• The error code is perhaps not always set for everySTDC _BASE. raise _posix _error .
• does STRING_HELPER leak memory in to_external? How is memory used for these conversions

being freed? Is memory used there?
• If a child process is signalled (terminated), the functionPOSIX _FORK _ROOT. is _terminated

_normally sometimes returns True.

Bibliography

1
2
3
4
5
6
7

Index

) 56
/src/library.xace 7, 8, 8
[5, 25, 69, 96

93
_errno 5
_exit 94

a
abort 93
abort

STDC_CURRENT_PROCESS93
ABSTRACT_FILE_DESCRIPTOR 7, 17,

23, 33, 36
accept 93
accept

EPX_TCP_SERVER_SOCKET93
access 93, 101
acquire

POSIX_SEMAPHORE 96
add

POSIX_SIGNAL_SET 97
add_data

EPX_CGI 77
add_raw

EPX_CGI 77
add_to_blocked_signals

POSIX_SIGNAL_SET 97
aio.h 93, 95
aio_cancel 93
aio_error 93
aio_fsync 93
aio_read 93
aio_return 93
aio_suspend 93
aio_write 93
alarm 93
allocate

STDC_BUFFER 95
allocate_and_clear

STDC_BUFFER 19, 93
ANY 5, 6
apply

POSIX_SIGNAL 48

apply_drain
POSIX_TERMIOS 97

apply_flush
POSIX_TERMIOS 97

apply_now
POSIX_TERMIOS 97

apply_owner_and_group
POSIX_PERMISSIONS_PATH 93

arpa/inet.h 95
asctime 93
assert_key_value_pairs_created

EPX_CGI 80
atexit 93
attempt_acquire

POSIX_SEMAPHORE 96
attempt_lock

POSIX_FILE_DESCRIPTOR 94
attempt_open_read

POSIX_TEXT_FILE 83

b
b_a

EPX_CGI 77
b_form_get

EPX_CGI 78
b_form_post

EPX_CGI 78
b_input

EPX_CGI 78
b_p

EPX_CGI 77
backslash 27
BeOS 7

non-blocking i/o 7
big endian 20
binary file 27
binary mode 33
binary stdin 33
binary stdout 33
bind 93
browse_directory

POSIX_FILE_SYSTEM 42, 84

Index 104

c
c_stdio.c 91
c_stdio.h 91
calloc 93
cancel

POSIX_ASYNC_IO_REQUEST 93
CAPI_STDIO 10, 91
C compiler

Borland 2, 5
lcc 2
Microsoft 2
Microsoft Visual C

+ 5
cecil.se 6
cfgetispeed 93
cfgetospeed 93
cfsetispeed 93
cfsetospeed 93
cgi 75

enumerating all values81
file upload 77
redirect 81

change_directory
POSIX_FILE_SYSTEM 93

change_mode
POSIX_FILE_SYSTEM 93

chdir 93
chmod 93
chown 93
clear_error

STDC_FILE 93
clear_first

STDC_ERRNO 86
clearerr 93
clock 93
clock

STDC_CURRENT_PROCESS93
clock_getcpuclockid 93
clock_getres 93
clock_gettime 93
clock_nanosleep 93
clock_settime 93
close 93
close

EPX_FILE_DESCRIPTOR 93
EPX_SMTP_CLIENT 69
STDC_FILE 89, 94
SUS_SYSLOG 94

closedir 93
closelog 94
compiler.se 16
configure 1, 7
confstr 94
connect 94
Content-Length 66
content_text_html

EPX_CGI 80
copy_from

STDC_BUFFER 95
creat 94, 101
create_fifo

POSIX_FILE_SYSTEM 16, 95
create_read_write

EPX_FILE_DESCRIPTOR 94
create_shared

POSIX_UNNAMED_SEMAPHORE 96
create_unshared

POSIX_UNNAMED_SEMAPHORE 96
create_write

POSIX_SHARED_MEMORY 97
ctermid 94
ctime 94
Ctrl

C 46, 48
ctype.h 98
current_directory

POSIX_FILE_SYSTEM 95
cuserid 94
cygwin 7
Cygwin 8
cygwin 11
CYGWIN 33
CYGWIN_API 101

d
daylight 94
deallocate

STDC_BUFFER 94
default_format

POSIX_TIME 53
STDC_TIME 93

DELETE request 66
detach

POSIX_DAEMON 70
difftime 94

105

directory
browse 42
change 40
create 40
remove 40
test_suite 18

dirent.h 93, 96
dispose

MEMORY 89
doctype

EPX_XML_WRITER 76
doctype_transitional

EPX_XML_WRITER 76
dup 94
dup2 94

e
EEXIST 84
effective_group_id

POSIX_CURRENT_PROCESS95
effective_user_id

POSIX_CURRENT_PROCESS95
ehlo

EPX_SMTP_CLIENT 69
eiffel.h 90
Eiffel Forum Freeware Licensev
elj-win32 2
endgrent 94
endhostent 94
endnetent 94
endprotoent 94
endpwent 94
endservent 94
ENOSYS 16
environment variable 27

CFLAGS 8
CYGWIN 33
EPOSIX 1

Environment variable
expansion 28

environment variable
GOBO_CC 1, 2, 3
GOBO_EIFFEL 3
set 55

eof
POSIX_TEXT_FILE 26
STDC_FILE 94

EPX_CGI vi, 75

EPX_CURRENT_PROCESS17, 33, 47
EPX_DIRECTORY 99
EPX_EXEC_PROCESS17
EPX_FILE_DESCRIPTOR 16, 17
EPX_FILE_SYSTEM 16, 17
EPX_HTTP_10_CLIENT 62
EPX_HTTP_CONNECTION 66
EPX_HTTP_SERVER 63, 64, 66
EPX_LOG_HANDLER 72
EPX_MIME_EMAIL 69
EPX_MIME_PARSER 56
EPX_MIME_PART 56
EPX_PIPE 17
EPX_SMTP_CLIENT 68
EPX_SMTP_MAIL 69
EPX_SOCKET 7
EPX_SYSTEM 55
EPX_TCP_CLIENT_SOCKET 7
EPX_URI 63
EPX_XHTML_WRITER 75
epxc 11
epxs 11
errno 10
errno

POSIX_FILE_DESCRIPTOR 85
errno.first_value

POSIX_FILE_DESCRIPTOR 86
errno.value

POSIX_FILE_DESCRIPTOR 86
error

STDC_FILE 94
SUS_SYSLOG 97

error handling 83
EX_ERROR1 86
EX_HTTP_SERVLET2 65
execl 94
execle 94
execlp 94
execute

EPX_CGI 75, 76, 77
EPX_EXEC_PROCESS94
POSIX_DAEMON 70
POSIX_FORK_ROOT 50
POSIX_SHELL_COMMAND 45

execv 94
execve 94
execvp 94
exit 94

Index 106

exit
STDC_CURRENT_PROCESS94

exit_switch
STDC_EXIT_SWITCH_ACCESSOR 93

EXP_FTP_CLIENT 62
expand_path

POSIX_FILE_SYSTEM 27

f
fchmod 94
fchown 94
fclose 94
fcntl 94
fcntl.h 94, 96
fd_stdin

EPX_CURRENT_PROCESS33
fd_stdout

EPX_CURRENT_PROCESS33
fdatasync 7, 7, 7, 94
fdopen 94
feof 94
ferror 94
fflush 94
fgetc 94, 95
fgetpos 94
fgets 94, 95
file

EPX_KEYVALUE 80
file

read entire 25
filename manipulation 38
fileno 94
file pointer 28
fill_with

STDC_BUFFER 95
first_value

POSIX_FILE_DESCRIPTOR 85
STDC_ERRNO 86

flockfile 94
flush 34
flush

STDC_FILE 94
flush_input

POSIX_TERMIOS 97
fopen 90, 94
force_remove_directory

ABSTRACT_FILE_SYSTEM 101
fork 94

fork
POSIX_CURRENT_PROCESS50, 94

format
POSIX_TIME 53
STDC_TIME 97

forth_recursive
ABSTRACT_DIRECTORY 99

forum.txt v
fpathconf 94
fprintf 94
fputc 94, 96
fputs 94, 96
fread 94
free 94
FreeBSD 7
freopen 94
fseek 95
fsetpos 95
fstat 95
fsync 7, 7, 7, 94, 95
ftell 95
ftruncate 95
ftrylockfile 95
funlockfile 95
fwrite 95

g
geant 1
get_body

EX_HTTP_SERVLET 66
get_character

STDC_FILE 94
get_header

EX_HTTP_SERVLET 66
get_lock

POSIX_FILE_DESCRIPTOR 16, 31, 94
get_position

POSIX_FILE 28
STDC_FILE 94

get_string
STDC_FILE 94

getc 95
getchar 95
getcwd 95
getegid 95
getenv 95
geteuid 95
getgid 95

107

getgrgid 95
getgrnam 95
getgroups 95
getlogin 94, 95
getpgrp 95
getpid 13, 95
getppid 95
getpwnam 95
getpwuid 95
gets 95
gettimeofday 95
getuid 95
gexace 4
glibc 7
gmtime 95
Gobo 23, 36
grp.h 94, 95

h
has

POSIX_SIGNAL_SET 97
htonl 95
htons 95
HTTP 11

i
inet_ntoa 95
input_speed

POSIX_TERMIOS 93
input_text

EPX_CGI 78
install

STDC_EXIT_SWITCH 93
ioctl 95
IRC_CLIENT 68
is_accessible

ABSTRACT_FILE_SYSTEM 93
is_attached_to_terminal

EPX_FILE_DESCRIPTOR 95
is_blocking_io

ABSTRACT_FILE_DESCRIPTOR 36
is_in_group

POSIX_CURRENT_PROCESS95
is_modifiable

POSIX_FILE_SYSTEM 40
is_pending

POSIX_ASYNC_IO_REQUEST 93

is_readable
POSIX_FILE_SYSTEM 41

is_terminated_normally
POSIX_FORK_ROOT 101

isatty 95
ISE Eiffel 2
ISE Eiffel 5.5 5

k
KI_CHARACTER_INPUT_STREAM 23,

36
KI_CHARACTER_OUTPUT_STREAM 23
kill 95
kill

POSIX_PROCESS 95

l
last_string

POSIX_TEXT_FILE 26
libeposix_ise_msc.lib 3
libeposix_ise_msc.lib 2
libeposix_se.a 3, 16
libeposix_ve_msc.lib 6
libmteposix_ise_msc.lib 2
library.xace 4
license v
link 95
link

POSIX_FILE_SYSTEM 95
lio_listio 95
listen_by_address

EPX_TCP_SERVER_SOCKET93
little endian 20
local_date_string

POSIX_TIME 53
local_time_string

POSIX_TIME 53
locale.h 95, 97
localeconv 95
localtime 95
lock 30
log_event

ULM_LOGGING 73
log_message

ULM_LOGGING 73
login_name

POSIX_CURRENT_PROCESS95
lseek 95

Index 108

m
mail

EPX_SMTP_CLIENT 69
make

EPX_LOG_HANDLER 74
EPX_PIPE 96
POSIX_TERMIOS 97
STDC_TEMPORARY_FILE 97

make.exe 2
make_as_duplicate

EPX_FILE_DESCRIPTOR 94
POSIX_FILE_DESCRIPTOR 34

make_directory
EXP_FTP_CLIENT 62
POSIX_FILE_SYSTEM 95

make_empty
POSIX_SIGNAL_SET 97

make_expand
STDC_PATH 40

make_from_file
POSIX_FILE_DESCRIPTOR 94

make_from_file_descriptor
POSIX_FILE 94

make_from_gid
POSIX_GROUP 95

make_from_name
POSIX_GROUP 95
POSIX_USER 95

make_from_now
POSIX_TIME 53

make_from_uid
POSIX_USER 95

make_from_unix_time
STDC_TIME 97

make_full
POSIX_SIGNAL_SET 97

make_pending
POSIX_SIGNAL_SET 97

malloc 95
max_filename_length

POSIX_DIRECTORY 96
max_open_files 55
memchr 95
memcmp 95
memcpy 95
memmove 95
memory_copy

STDC_BUFFER 95

memory_move
STDC_BUFFER 95

memset 95
MIME 11
minicom 34
mkdir 95
mkfifo 7, 7, 16, 95
mktime 95
mlock 96
mlockall 95
mmap 96
modem 34
mprotect 96
mq-receive 96
mq_close 96
mq_getattr 96
mq_notify 96
mq_open 96
mq_send 96
mq_setattr 96
mq_unlink 96
mqueue.h 96
msync 96
multi-threaded programming2
munlock 96
munlockall 96
munmap 96

n
nanosleep 96
netdb.h 94
netinet/in.h 95, 96
non-blocking i/o 23, 36
notice

SUS_SYSLOG 97
ntohl 96
ntohs 96

o
open 96, 101
open

EPX_FILE_DESCRIPTOR 96
POSIX_FILE 10
SUS_SYSLOG 96

open_by_address
EPX_TCP_CLIENT_SOCKET 94

open_by_name_and_port
EPX_TCP_CLIENT_SOCKET 94

109

open_read
EPX_FILE_DESCRIPTOR 96
POSIX_FILE 10
POSIX_SHARED_MEMORY 97
POSIX_TEXT_FILE 83

open_read_write
EPX_FILE_DESCRIPTOR 96
POSIX_SHARED_MEMORY 97

open_write
EPX_FILE_DESCRIPTOR 96

opendir 96
openlog 96
Open Source v
out

EPX_IP4_ADDRESS 95
output_speed

POSIX_TERMIOS 93

p
p_stdio.c 91
p_stdio.h 91
PAPI_UNISTD 10
parent_pid

POSIX_CURRENT_PROCESS95
parse

STDC_PATH 40
pathconf 96
path name 27
pause 96
pause

EPX_CURRENT_PROCESS96
peek_int16

STDC_BUFFER 20
peek_int16_big_endian

STDC_BUFFER 20
peek_int16_little_endian

STDC_BUFFER 20
peek_int32

STDC_BUFFER 20
peek_uint16

STDC_BUFFER 20
permissions

POSIX_FILE_SYSTEM 41
perror 96
pid

POSIX_CURRENT_PROCESS13, 95
pipe 96

poke_int32_big_endian
STDC_BUFFER 20

poll v
POSIX_ASYNC_IO_REQUEST 37
POSIX_BASE 10
POSIX_BINARY_FILE 23
POSIX_BUFFER 19, 19, 20
POSIX_CONSTANTS 12
POSIX_CURRENT_PROCESS50
POSIX_DAEMON 70, 70
POSIX_DIRECTORY 42, 43, 93, 96
POSIX_EXEC_PROCESSvi, 45
POSIX_FILE 23, 23
POSIX_FILE_DESCRIPTOR 17, 29, 89, 94
POSIX_FILE_SYSTEM 40
POSIX_FORK_ROOT 13, 50
posix_htonl

SAPI_IN 95
posix_htons

SAPI_IN 95
posix_ioctl

SAPI_STROPTS 95
posix_memcmp

CAPI_STRING 95
POSIX_MEMORY_MAP 21, 96
posix_ntohl

SAPI_IN 96
posix_ntohs

SAPI_IN 96
POSIX_PERMISSIONS 41, 42
posix_setsid

PAPI_UNISTD 97
POSIX_SHARED_MEMORY 19
POSIX_SHELL_COMMAND 45
POSIX_SIGNAL 97
POSIX_SIGNAL_HANDLER 48, 49
POSIX_STAT 42
POSIX_STATUS 42, 95, 97
POSIX_SYSTEM 55, 97, 98
POSIX_TEXT_FILE 23, 30
POSIX_TIMED_COMMAND 93
printf 96
process_group_id

POSIX_CURRENT_PROCESS95
prune

POSIX_SIGNAL_SET 97
put_string

POSIX_FILE_DESCRIPTOR 85, 86

Index 110

STDC_FILE 94
putc 96
putc

STDC_FILE 94
putchar 96
PUT request 64
puts 96
puts

EPX_CGI 77
pwd.h 94, 95

q
QNX 7
quit

EPX_SMTP_CLIENT 69

r
raise 96
raise

STDC_SIGNAL 96, 97
raise_posix_error

STDC_BASE 101
rand 96
random

STDC_CURRENT_PROCESS96
raw_value

EPX_CGI 78
read 7, 96
read

ABSTRACT_FILE_DESCRIPTOR 7, 36
EPX_FILE_DESCRIPTOR 96
POSIX_ASYNC_IO_REQUEST 37, 93
POSIX_FILE 26
STDC_FILE 94

read_buffer
POSIX_FILE 26

read_character
STDC_FILE 94

read_line
[25
ABSTRACT_FILE_DESCRIPTOR 33

read_string
[25
ABSTRACT_FILE_DESCRIPTOR 23
POSIX_TEXT_FILE 26
STDC_FILE 94

readdir 96

real_group_id
POSIX_CURRENT_PROCESS95

real_time_clock
SUS_SYSTEM 93

real_time_clock_resolution
SUS_SYSTEM 93

real_user_id
POSIX_CURRENT_PROCESS95

realloc 96
recv 7
redirect standard error34
reestablish

STDC_SIGNAL_HANDLER 49
refresh

POSIX_PERMISSIONS 42
register_dynamic_resource

EPX_HTTP_SERVER 67
register_fixed_resource

EPX_HTTP_SERVER 67
release

POSIX_SEMAPHORE 96
remap_http_method

EPX_HTTP_CONNECTION 66
remove 96
remove_directory

EPX_FILE_SYSTEM 96
EXP_FTP_CLIENT 62

remove_file
EXP_FTP_CLIENT 62
GENERAL 5, 6
POSIX_FILE_SYSTEM 5, 84, 96

remove_from_blocked_signals
POSIX_SIGNAL_SET 97

rename 96
rename_to

EXP_FTP_CLIENT 62
POSIX_FILE_SYSTEM 96

reopen
STDC_FILE 94

request_form_fields
EPX_HTTP_CONNECTION 67

resize
STDC_BUFFER 96

REST 64
restore_group_id

POSIX_CURRENT_PROCESS96
restore_user_id

POSIX_CURRENT_PROCESS97

111

return_status
POSIX_ASYNC_IO_REQUEST 93

rewind 96
rewind

STDC_FILE 96
rewinddir 96
rmdir 96

s
save_uploaded_files

EX_CGI3 80
scanf 96
security.cpu.check_process_time

STDC_FILE 89
security.cpu.set_max_process_time

STDC_FILE 89
security.error_handling.disable_exceptions

STDC_SECURITY_ACCESSOR85
security.error_handling.enable_exceptions

STDC_SECURITY_ACCESSOR85
security.files.set_max_open_files

STRING 89
security.memory.set_max_allocation

STDC_SECURITY_ACCESSOR88
security.memory.set_max_single_allocation

STRING 89
seek 28
seek

EPX_FILE_DESCRIPTOR 95
POSIX_FILE 28
STDC_FILE 95

seek_from_current
EPX_FILE_DESCRIPTOR 95
STDC_FILE 95

seek_from_end
EPX_FILE_DESCRIPTOR 95
STDC_FILE 95

select v, 96
sem_close 96
sem_destroy 96
sem_getvalue 96
sem_init 96
sem_open 96
sem_post 96
sem_trywait 96
sem_unlink 96
sem_wait 96
semaphore.h 96

sendmsg 7
servlet 64
set_allow_anyone_read

POSIX_PERMISSIONS 42
set_allow_group_write

POSIX_PERMISSIONS 42
set_blocked_signals

POSIX_SIGNAL_SET 97
set_blocking_io

ABSTRACT_FILE_DESCRIPTOR 36
set_buffer

POSIX_ASYNC_IO_REQUEST 37
STDC_FILE 96

set_count
POSIX_ASYNC_IO_REQUEST 37

set_date
STDC_TIME 95

set_date_time
STDC_TIME 95

set_full_buffering
STDC_FILE 97

set_group_id
POSIX_CURRENT_PROCESS96

set_handler
POSIX_SIGNAL 48, 49

set_input_speed
POSIX_TERMIOS 93

set_line_buffering
STDC_FILE 97

set_locale
STDC_CURRENT_PROCESS97

set_lock
POSIX_FILE_DESCRIPTOR 94

set_native_locale
STDC_CURRENT_PROCESS97

set_native_time
STDC_CURRENT_PROCESS97

set_no_buffering
STDC_FILE 97

set_offset
POSIX_ASYNC_IO_REQUEST 37

set_output_speed
POSIX_TERMIOS 93

set_position
POSIX_FILE 28
STDC_FILE 95

set_random_seed
STDC_CURRENT_PROCESS97

Index 112

set_serve_xhtml_if_supported
EPX_HTTP_SERVER 64

set_time
STDC_TIME 95

set_user_id
POSIX_CURRENT_PROCESS97

setbuf 96
setgid 96
setjmp.h 98
setlocale 97
setpgid 97
setsid 97
setuid 97
setvbuf 97
shm_open 97
shm_unlink 97
sigaction 97
sigaddset 97
SIGCHLD 49
sigdelset 97
sigemptyset 97
sigfillset 97
sigismember 97
signal 97
signal.h 95, 96, 97
signal handler 48
signalled

POSIX_SIGNAL_HANDLER 48, 49
sigpending 97
sigprocmask 97
sigqueue 97
sigsuspend 97
sigtimedwait 97
sigwait 97, 100
sigwaitinfo 97
slash 27
sleep 97
sleep

EPX_CURRENT_PROCESS47
POSIX_CURRENT_PROCESS97

SmallEiffel vi
SmartEiffel 2
Solaris 8
sprintf 97
srand 97
src/library.xace 1, 6
sscanf 97, 98
stat 42, 97

status
EPX_FILE_DESCRIPTOR 95
POSIX_FILE_DESCRIPTOR 42

STC_TEMPORARY_FILE 15
stdarg.h 98
STDC_BASE 10
STDC_BINARY_FILE 15, 33
STDC_BUFFER 15, 19, 19, 88
STDC_CONSTANTS 12, 15
STDC_CURRENT_PROCESS15
STDC_ENV_VAR 15, 54
STDC_ERRNO

POSIX_FILE_DESCRIPTOR 85
STDC_FILE 23, 89, 94
STDC_FILE_SYSTEM 15
STDC_LOCALE_NUMERIC 95
STDC_PATH 38
STDC_SECURITY_ACCESSOR88
STDC_SHELL_COMMAND 15, 97
stdc_signal_switch_switcher

6
STDC_SYSTEM 15
STDC_TEXT_FILE 15, 33
STDC_TIME 15, 94
stderr 34
stdin

binary 33
stdin

EPX_CURRENT_PROCESS33
stdio.h 91, 91, 93, 94, 95, 96, 97, 98
stdioh 95
stdlib.h 93, 94, 95, 96, 97
stdout 34

binary 33
stdout

EPX_CURRENT_PROCESS33
store

EXP_FTP_CLIENT 62
stream buffer 34
strftime 97
STRING 88
string.h 95
stropts.h 95
support

commercial v
supports_nonblocking_io

ABSTRACT_FILE_DESCRIPTOR 7, 36
SUS_BASE 11

113

SUS_ENV_VAR
STDC_ENV_VAR 55

SUS_SYSLOG 72, 97
SUS_SYSLOG_ACCESSOR72
SUS_TIME_VALUE 95
suspend

POSIX_SIGNAL_SET 97
synchronize

POSIX_ASYNC_IO_REQUEST 37, 93
POSIX_FILE_DESCRIPTOR 95

synchronize_data
POSIX_FILE_DESCRIPTOR 94

sys/mman.h 95, 96, 97
sys/select.h 96
sys/socket.h 93, 94
sys/stat.h 93, 94, 95, 97
sys/time.h 95
sys/utsname.h 98
sys/wait.h 98
sysconf 97
syslog 97
syslog.h 94, 96, 97
system 97
system.se 16
system.xace 4, 6

t
tcdrain 97
tcflow 97
tcflush 97
tcgetattr 97
tcgetpgrp 97
tcsendbreak 97
tcsetattr 97
tcsetpgrp 97
tell

POSIX_FILE 28
STDC_FILE 95

temporary_file_name
STDC_FILE_SYSTEM 97

temporary file 15, 80
terminal 31

password 31
termios.h 93
TEST_IRC_CLIENT 68
text mode 33
time 97
time.h 93, 94, 95, 96, 97

timer_create 97
times 97
times.h 97
tmpfile 97
tmpnam 97
to_local

POSIX_TIME 53
STDC_TIME 95

to_utc
POSIX_TIME 53
STDC_TIME 95

touch
POSIX_FILE_SYSTEM 98

ttyname 97
ttyname

POSIX_FILE_DESCRIPTOR 97
tzset 97

u
ULM_LOG_HANDLER 72
ULM_LOG_LEVELS 73
ULM_LOGGING 72
umask 97
uname 98
unfinished_xml

EPX_XML_WRITER 76
ungetc 98
ungetc

STDC_FILE 98
unistd.h 93, 94, 95, 96, 97, 98
unlink 10, 98
unlink

POSIX_FILE_SYSTEM 98
unlink_shared_memory_object

POSIX_FILE_SYSTEM 97
URI 11, 63
utime 98
utime

POSIX_FILE_SYSTEM 98
utime.h 98

v
value

EPX_CGI 78, 80
STDC_ENV_VAR 95

VE_BIN 6
vfprintf 98
Visual Eiffel vi

Index 114

VisualEiffel 2, 6
vprintf 98
vsprint 98

w
wait 98
wait

POSIX_CURRENT_PROCESS13, 98
wait_for

POSIX_ASYNC_IO_REQUEST 37, 93
POSIX_CHILD 13
POSIX_EXEC_PROCESS46

wait_pid
POSIX_FORK_ROOT 98

waited_child_pid
POSIX_CURRENT_PROCESS13

waitpid 98
Windows 2000 8
WINDOWS_PAGING_FILE_SHARED_MEMORY

21
WINDOWS_SYSTEM 55
write 7, 98
write

ABSTRACT_FILE_DESCRIPTOR 7, 36
EPX_FILE_DESCRIPTOR 98
POSIX_ASYNC_IO_REQUEST 37, 93
STDC_FILE 95

x
XM_UNICODE_CHARACTER_CLASSES

6

115

