e-POSIX

The definitive and complete
Eiffel to Standard C and
POSIX 1003.1 binding

written by Berend de Boer

Contents

1 Requirements and installation 1
1.1 Requirements 1
1.2 Compiling the C code 1
1.2.1 Compiling on Unix 1
1.2.2 Compiling on Windows 2
123 Library naming conventions 2
2 Using eposIx 3
2.1 Usinglibrary.xace 3
2.2 Vendor specific notes 4
2.2.1 ISE Eiffel 4
222 SmallEiffel 4
2.2.3 Visual Eiffel 4
2.2.4 Halstenbach Eiffel 5
2.3 Platform specific notes 5
2.3.1 Linux 5
2.3.2 FreeBSD 5
2.3.3 Cygwin 5
2.3.4 BeOS 6
2.35 QNX 6
2.3.6 Win32 6

3 Design notes 7
3.1 Why an entire reimplementation? 7
3.2 Goals and guidelines 7
3.3 Class structure 8
3.4 Clients of this library 9
3.5 Forking 11
3.6 Books 12

4 Basic Posix examples 13
4.1 Working with files 13
4.2 Working with file descriptors 18
4.3 Working with the file system 21
4.4 Executing a child command 25
4.5 Current time 26
4.6 Accessing environment variables 28
4.7 Allocating memory 28
4.8 Redirecting stderr to stdout 29
5 Advanced Posix examples 30
5.1 Catching a signal 30

5.2 General wait for child handler 31

5.3
5.4
55
5.6
5.7
5.8

6.1
6.2
6.3
6.4

,
7.1
7.2
7.3
7.4
7.5

8

9

9.1
9.2
9.3

Forking a child process
Creating a daemon
Asynchronous I/O
Talking to your modem
Using shared memory
More examples

Single Unix Specification classes

Environment variables
Logging messages and errors
Sockets

HTTP client

Standard C examples

Allocating memory

Accessing environment variables
Working with streams

Working with the file system
Catching a signal

Writing CGI programs

e-Posixin Windows

Compiling POSIX programs in Windows
Native Windows
Binary mode versus text mode

10 Error handling
10.1 Error handling with exceptions
10.2 Manual error handling

11 Security
11.1 Denial of service attacks
11.2 Authorization bypass attacks

12 Accessing C headers
12.1 Making C Headers available to Eiffel

12.2 Distinction between Standard C andsix headers

12.3 C translation details

A Posix function to Eiffel class mapping list

B Short (flat) listing of Standard C classes

B.1
B.2
B.3
B.4
B.5
B.6
B.7

STDC_BASE
STDC_BUFFER
STDC_CONSTANTS
STDC_CURRENT_PROCESS
STDC_ENV_VAR
STDC_FILE
STDC_FILE_SYSTEM

32

34
35
36

38
39

40
40
40
41
42

43
43
44
44
45
47

49

57
57

58
59

61
61
63

66
66
67

68

68
69
69

71

76
76
77
81
83
84
85
90

B.8 STDC_SECURITY

B.9 STDC_SIGNAL

B.10 STDC_SIGNAL_HANDLER
B.11 STDC_SYSTEM

B.12 STDC_TIME

C Short listing of abstract classes

C.1 ABSTRACT_CURRENT_PROCESS
C.2 ABSTRACT_EXEC_PROCESS

C.3 ABSTRACT_FILE_DESCRIPTOR
C.4 ABSTRACT_FILE_SYSTEM

C.5 ABSTRACT_PIPE

C.6 ABSTRACT_STATUS

D Short (flat) listing ofPosIx classes
D.1 POSIX_ASYNC_IO_REQUEST
D.2 POSIX_BASE

D.3 POSIX_CHILD_PROCESS
D.4 POSIX_CONSTANTS

D.5 POSIX_CURRENT_PROCESS
D.6 POSIX_DAEMON

D.7 POSIX_DIRECTORY

D.8 POSIX_EXEC_PROCESS
D.9 POSIX_FILE

D.10 POSIX_FILE_DESCRIPTOR
D.11 POSIX_FILE_SYSTEM

D.12 POSIX_FORK_ROOT

D.13 POSIX_GROUP

D.14 POSIX_LOCK

D.15 POSIX_MEMORY_MAP
D.16 POSIX_PERMISSIONS

D.17 POSIX_PIPE

D.18 POSIX_SEMAPHORE

D.19 POSIX_SIGNAL

D.20 POSIX_SIGNAL_SET

D.21 POSIX_STATUS

D.22 POSIX_SYSTEM

D.23 POSIX_TERMIOS

D.24 POSIX_TIMED_COMMAND
D.25 POSIX_USER

D.26 POSIX_USER_DATABASE

E Short (flat) listing of Single Unix Specification classes
E.1 SUS_CONSTANTS

E.2 SUS ENV_VAR

E.3 SUS FILE_SYSTEM

E.4 SUS _HOST

E.5 SUS_SERVICE

91
92
93
94
95

98
98
100
102
106
109
110

111
111
113
114
115
122
123
124
125
128
129
135
138
140
141
142
144
147
148
149
150
152
153
155
157
158
159

160
160
162
163
164
165

E6 SUS _SOCKET ADDRESS
E7 SUS_SYSLOG
E.8 SUS_TCP_SOCKET

F Short (flat) listing of Standard C bonus classes
F1 EPX_CGI

F.2 EPX_SOAP_WRITER

F.3 EPX_URI

F.4 EPX_XML_WRITER

F5 EPX_XHTML_WRITER

G Short (flat) listing of Single Unix Specification bonus classes
G.1 EPX_HTTP_10_CLIENT
G.2 ULM_LOGGING

To do
EPX_FILE_SYSTEM
STDC _FILE
STDC_LOCALE_NUMERIC
STDC_PATH
POSIX_STATUS
STDC_TIME
POSIX_EXEC_PROCESS
POSIX FILE_DESCRIPTOR
POSIX_MEMORY_MAP
POSIX_SEMAPHORE
POSIX_SIGNAL
MQUEUE
Security
Windows code
Other
Known bugs

Bibliography

Index

166
167
168

169
169
172
174
176
180

184
184
186

190
190
190
190
190
190
190
190
191
191
191
191
191
191
192
192
192

193

194

Introduction

It has been a great pleasure for me when | could announce the first public alpha release of this
manual. And then came the betas and the first release. Writing libraries like this is boring stuff.
Every Eiffel programmer should have had access to all those Standard Ebamnxdoutines long

ago. Anyway, now you and me have. Whatever a C programmer can do, you can. And even
more safe as this library protects you of inadvertently calling routines that are not portable (because
they’re simply not there :-)).

Writing libraries like this also seems to be a never ending story, as we now are at version 1.5. And
my to do list hasn’t shrinked, so stay tuned!

| will support this library, so bug reports and wishes are gladly accepted. In the future, | hope to be
able to expand this library to add more stuff from the Open Unix Specification, particularly sockets
and curses. Perhaps the authors of the existing Eiffel implementations forthesee willing to
create one single unified library.

Have fun using this library and | like to hear about applications!

Licensing

This software is licensed under the Eiffel Forum Freeware License, version 1. This license can be
found in theforum. txt file. Basically this license allows you to do anything with it, i.e. use it

for commercial or Open Source software without restrictions. But don’t sue me if something goes
wrong. And give me some credits.

Also explicitly allowed is copying parts of this library to your own, for example copying certain
Standard C or POSIX header wrappings. | prefer linking, but you don’t have to retype everything
if you don’t want to link.

Support

e-PosiIxis a fully supported program. You can send requests for help directly to me. But to help
others profit from the discussion, and perhaps to get feedback when I'm short on time, it is suggested
that support messages are serg[iosix@yahoogroups.com

Latestversions and announcements are availableifram: //groups . yahoo . com/group/eposix/.

Commercial support

I'm available to give companies or organisations a one or two day course ps#ig and in
particularly this library. Prices are $1000 NZD a day, excluding VAT, travel and hotel expenses.
Contact me aberend@pobox.com

mailto:eposix@yahoogroups.com
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
mailto:berend@pobox.com

Vi

Acknowledgements

| like to thank people who, one way or another, have helped me in creating this library. They're
listed in order they have been involved with this library or manual:

Eugene Melekhov<eugene melekhov@object-tools.com compiled it with Visual Eiffel.
As Visual Eiffel is the most strict compiler, he found a great many oversights that SmallEiffel
didn’t catch.

mico/E team | got many ideas for my C interface from the mico/E project. Sometime ago
Andreas Schulzwrote me that the micoe team wanted to uswstxin mico/E. Andreas also
reported problems and suggested improvements, especially iBRKe CGlclass. And he
continues to send bug reports, thanks!

Ida de Boer <ida@gameren.nt>: it was she who provided you with theosix to Eiffel
mapping table irappendix A.

Steve Harris <scharris@worldnet.att.net>: suggested improvements, found a CAT call
problem and we had an interesting discussion about forking.

Jorgen Tegnér <teg@post.netlink.sexeported a problem with an example, and a bug in
POSIX_EXEC_PROCESS

Marcio Marchini <mgm@magma.ca> contributed a lot to @osix He gave very useful
advice, submitted code, and supplied patches to comgitesexbetter on Windows. | think it
is fair to say that you thank the Windows support ir@sixto Marcio.

Eric Bezault: I've had some insightful discussions with Eric regarding architecture of libraries
such as erosix | think we never agreed :-), but the alternative error handling is due to his
comments!

Andreas Leitner: Discussions about using eposix which will lead to even closer integration
with Gobo in subsequent releases.

Colophon

The text of this manual was entered with GNU Emacs 20.7.1 on RedHat Linux 7.1. It was
typeset with pdfX using the CongXt macro package, seettp://www.pragma-ade.com.
BON diagrams were created wWithE TAPOST.

mailto:eugene_melekhov@object-tools.com
mailto:eugene_melekhov@object-tools.com
mailto:eugene_melekhov@object-tools.com
http://www.math.uni-goettingen.de/micoe/
http://www.math.uni-goettingen.de/micoe/
mailto:ascholz@math.uni-goettingen.de
mailto:ascholz@math.uni-goettingen.de
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:scharris@worldnet.att.net
mailto:scharris@worldnet.att.net
mailto:scharris@worldnet.att.net
mailto:teg@post.netlink.se
mailto:teg@post.netlink.se
mailto:teg@post.netlink.se
mailto:mqm@magma.ca
mailto:mqm@magma.ca
mailto:mqm@magma.ca
mailto:ericb@gobosoft.com
mailto:ericb@gobosoft.com
mailto:nozone@sbox.tugraz.at
mailto:nozone@sbox.tugraz.at
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com

1
Requirements
and installation

1.1 Requirements
e-PosIx has three requirements:

1. ePosix requires Gobo release 3.0 or higher. You can download Gobc@at: //www.
gobosoft.com/. Gobo must be installed.

2. eposixrequires that the environment varial0SIX is set to the root directory where the
e-Posixare unpacked.

3. On Windows, erosixrequires that the environment varialgigB0_CC is set to the name of the
C compiler you are using. Failure to do so will result in link errors. Perhaps in a fyéatet
release this will be set automatically.

1.2 Compiling the C code

Before eposixcan be used, a few C files need to be compiled into a library. The steps differ if you
are using a Unix derivative, or a Windows based system.

1.2.1 Compiling on Unix
Before the C files can be compiledpesixmust be configured. If you have just one Eiffel compiler
on your system, this should be sulfficient:

./configure --prefix=$EPOSIX
make

If you have multiple Eiffel compilers, you can specify the compiler with:
./configure --with-compiler=ve --prefix=$EPOSIX
The--prefix switch is a trick to make sure that you can type:
make install

after the make was successful. With this step the library is installed intd $ABOSIX/1ib
directory. This is the location wherer®SIXS src/library.xace expects it. Without the
--prefix switch the library will usually be installed itusr/local/1ib.

More information aboutonfigure options can be displayed with:

./configure --help

http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/

Requirements and installation 2

1.2.2 Compiling on Windows
For Windows system, I've supplied a tool —build withressix— that can build the necessary
e-Posixlibrary for your Eiffel and C compiler.
Type:
makelib
to get help. Type:
makelib -ise -msc
to compile the C code with Microsoft’s Visual C compiler targeting the ISE Eiffel compiler.
Only the Microsoft supplied library did work, i.e. link, with VisualEiffel:
makelib -ve -msc
Type:
makelib -se -bcc
to compile the C code with Borland’s C compiler targeting SmallEiffel. It was tested with the free
Borland C version 5.5 compiler.
Type:
makelib -se -lcc
to compile the C code with elj-win32’s Icc C compiler.

If you have both the Borland C compiler and Icc installed, make suredke. exe in your path is
the correct one!

1.2.3 Library naming conventions

The name of this library starts withibeposix. On Unix the name of the Eiffel vendor is appended,
SOlibeposix_se.a is the library for SmallEiffel. On Windows systems the name of the Eiffel
vendor and the C compiler are appended. On Windows different C compilers have incompatible
libraries, so they need to be distinguishes. On Windows thesexlibrary for ISE Eiffel compiled

with the Microsoft Visual C compiler is calleibeposix ise msc.lib.

The vendor names are derived from the names the Gobo Eiffel package uses,d0ROtHEIFFEL
environment variable.

2
Using ePOsSIX

2.1 Usinglibrary.xace

Since Gobo 3.0 Eiffel library writes have a new great tool at their dispgseace. Eiffel library
writers have to write and maintain just a single filebrary.xace. You can this file file in the
e-+PosIX src subdirectory.

Typically, alibrary.xace is included in asystem.xace. A typical example, including all
required Gobo files, is:

<?xml version="1.0"7>

<system name="eposix_test">

<description>
system: "getest for eposix"
author: "Berend de Boer [berend@pobox.com]"
copyright: "Copyright (c) 2002, Berend de Boer"
license: "Eiffel Forum Freeware License vl (see forum.txt)"
date: "$Date: $"
revision: "$Revision: $"
</description>

<root class="EPOSIX_TEST" creation="make"/>

<option unless="${DEBUG}">
<option name="assertion" value="all"/>
<option name="garbage_collector" value="none"/>
<option name="finalize" value="true" unless="${GOBO_EIFFEL}=ve"/>
</option>
<option if="${DEBUG}">
<option name="assertion" value="all"/>
<option name="garbage_collector" value="internal"/>
<option name="finalize" value="false"/>
</option>

<option name="linker" value="microsoft" if="${GOBO_EIFFEL}=ve"/>

<cluster name="testgen" location="TESTGEN"/>
<cluster name="test" location="${EPOSIX}/test_suite/abstract/system"/>

<mount location="${EP0SIX}/src/library.xace"/>
<mount location="${GOB0}/library/test/library.xace"/>

Using ePOsIX 4

<mount location="${GOB0}/library/lexical/library.xace"/>
<mount location="${G0OB0}/library/kernel/library.xace"/>
<mount location="${GOB0}/library/structure/library.xace"/>
<mount location="${GOB0}/library/parse/library.xace"/>
<mount location="${GOBO}/library/utility/library.xace"/>
<mount location="${GOB0}/library/pattern/library.xace"/>
<mount location="${GOB0}/library/kernel.xace"/>

</system>

2.2 \Vendor specific notes

2.2.1 ISE Eiffel

e-PosiIxsupports ISE Eiffel 5.1. eosixhas not yet been tested with version 5.2asixhas been
tested under the following conditions:

1. lused Microsoft Windows 2000, Service Pack 2.

2. lused the Borland C 5.5 and Microsoft Visual C++ 6.0 compiler.

2.2.2 SmallEiffel

e-PosIxwas developed using SmallEiffel -0.75 on FreeBSD and Linux.

Because SmallEiffel has a tendency to provide lots of non-ELKS routines in its kernel classes, a
bad thing in my opinion, | had to write a nedNY. My ANY rename$GENERAL.remove_filao |
wouldn’t get a conflict withPOSIX_FILE_SYSTEM.remove _file

There is no reason for the presenceGENERAL.remove_filé expect this to be removed soon
so myANY can be deleted when this has happened.

2.2.3 Visual Eiffel
e-PosiIxhas been tested with two of ObjectTool’s offerings:
1. Their free VisualEiffel 4 for Linux.

2. VisualEiffel Professional 4 for Windows.

3. If you use 4.0, VisualEiffel's STRING class must be patched,iseg: //groups.yahoo.
com/group/visual-eiffel/message/673

Follow these steps to compile with VisualEiffel 4 on Windows:

1 I wrote that two years ago.

http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673

5 Platform specific notes

1. Make sure the VE_BIN environment variable is set to the Bin directory in the VisualEiffel
subdirectory. On my system it is setMo/Program Files/ObjectTools/VisualEiffel
/Bin.

2. Create th@ibeposix ve msc.lib library using the Microsoft Visual C compiler:

makelib -ve -msc
3. Usegexace to generate anesd file.

4. Make sure to set the linker supplier option to Microsoft in yeygtem . xace file! So an option
like this should be present:

<option name="linker" value="microsoft" if="\${GOBO_EIFFEL}=ve"/>

2.2.4 Halstenbach Eiffel

e-PosIxhas not been tested with the Halstenbach Eiffel compiler.

2.3 Platform specific notes

Although eposix should, in principle, run on every platform that supports Standard €oerx,

it cannot be tested on every platform by me alone. This section gives details about the platforms
I've used. The main thing you need to do is to edR@sIXs src/library.xace to the proper
libraries for your platform are linked. The defasltc/1library.xace is suited for Linux only.

2.3.1 Linux

The latest version of eosixwas tested with RedHat 7.1 with kernel 2.4.19.

2.3.2 FreeBSD

The latest version of eosix was tested with FreeBSD 4.4-STABLE. FreeBSD doesn'’t support
fdatasync, SO we do &syncthere. Cases like that are automatically detected by éhéigure
script.

You have to edit/src/library.xace to link the proper library for FreeBSD. Look at the com-
ments.

2.3.3 Cygwin

The latest version of eosixwas tested with Cygwin 1.3.x. Some remarks:
1. Locking doesn’t seem to be supported.

2. fifo’s (mkfifo) are not supported.

3. No support foffdatasync, so we do &syncthere.

Using ePOsIX 6

2.3.4 BeOS

The latest version of eosix was tested with BeOS 5.03. BeOS has a miosix compatibility
layer. Some remarks:

1. Locking doesn't seem to be supported.

2. fifo's (mkfifo) are not supported.

3. Hard links are not supported, only symbolic links.

4. No support forfdatasync, So we do & syncthere.

5. BeOS does nottreat sockets as file descriptorspsrseés SUS_TCP_SOCKEdoes not work.
Perhaps when I've adde@cvandsendmsgand such it will be usuable.

2.3.5 QNX

The latest version of eosixwas tested with QNX 2.

2.3.6 Win32

The latest version of eosixwas tested with Windows 2000, Service Pack 2. On Win32, Standard
C is fully supported. With e20siXs abstract layer, parts esixand the Single Unix Specification
are also supported. Support isn’t as extensive as using the Cygwin tools.

3
Design notes

3.1 Why an entire reimplementation?

One might wonder why | reimplemented the entire Standard C reogiX library when most
vendors also have classes that deal with files, the file system, signals and such. Unfortunately,
these classes are nor complete nor very portable between vendors. For someone who wants to
compile against all the major vendors —and there are good reasons to do this— there is currently
no portable solution. That's why many portable Eiffel programs more or less contain the same code
again and again. There are some attempts to write more portable libraries, for examplexthe
File/Directory Handling Cluster by Friedrich Dominicus, but they also are not complete nor is

the implementation satisfactory. For example they usually have much logic at the C level. | wanted
only C glue code: all intelligence should be in the Eiffel code.

Another attempt is done by the Gobo cluster: it attempts to provide users with a set of classes that
work accross all Eiffel vendors by using only the native facilities offered by each implementation.
This approach has the advantage that no C compilation is necessary. The disadvantages are:

1. The contract for these classes is probably not specifiable: for which platforms and which
assumptions are the contracts valid? Are these contracts the same in all implementations?

2. ltisincomplete, i.e. it doesn’t cover most of thesixroutines.

That's why | started to make the entire Standard C aodix routines available to Eiffel pro-
grammers. All these routines are nicely wrapped in classes. | spend a lot of time designing and
refactoring these, comments and improvements about its structure are very appreciated.

The advantage of makingpsix available to Eiffel programmers is that someone doesn’t need to
think about creating a set of portable file and directory classes that work on every known operating
system.posixis available on many platforms and for other systems there either is an emulation or
aPosIX mapping available. It's better to reuse that, instead of reinventing work that took years to
complete.

3.2 Goals and guidelines
The goals and guidelines for this library were:
1. A complete Standard C implementation for those who didn’t have accessboroutines.

2. A completerosiximplementation.

http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm

Design notes 8

10.

11.

Do the job in such a way that it will become the official Eiffelsix mapping.
All classes should satisfy the demands posed by the query—-command separation principle.

The native Standard C amsix routines should be available to those who don’t want to go
through a certain class layer.

The names in use in tir@sixworld like file descriptor or memory map are used as class hames.
This should make it easy to find a class if one knowsrthsix name.

If a command fails, an exception code is raised. This differs frorrtisax routines where one
is expected to test for error and query thenovariable. The only exception imlink: when
the file does not exist, no exception is raised.

pPosIxassumptions should be made explicit. For Eiffel this means specifying explicit pre- and
postconditions.

Use of constants to influence the way a method should be avoided by providing clearly named
methods. So instead of passing a constants t&Pt8IX_FILE.operunction to open a file
read-only, one can also calpen_read

Attempt to create non-deferred class that refer to an entity that exists rote world.
Creation of an object is binding to that entity, or creation of that entity.

Names should be clear, and Eiffel-like. They should not differ in just one characisrx
names are also made available to ease use of this library for programmers thadsirwell.

3.3 Class structure

e-POosIX makes available all the Standard C arwkix headers in classes likeAPI_STDIOand
PAPI_UNISTD More details about the header translation arehiapter 12

However, making the plain C API available is not a very interesting addition to an Eiffel program-
mer’s toolkit. Therefore, this library’s second attempt was to make an effective OO-wrapper, while
making a careful distinction between what is available in the Standard C and what is available in
posix This distinction is reflected in osIXs directory structure, sefggure 3.1

The raw Standard C APl is availablednc/capi, the OO-wrapper is available #rc/standardc.
The rawPosIXAPI is available insrc/papi, the OO-wrapper is available Brc/posix.

Every Standard C anebsixwrapper is derived from a common root, see digore 3.2

1.

If a class builds upon facilities available on Standard C, its name starts with the prefix STDC_
and it inherits from'STDC_BASE

If a class builds upon facilities availablersix, its name starts with the prefix POSIX_and it
inherits fromPOSIX_BASE

If a class builds upon facilities available in the Single Unix Specification, its name starts with
the prefix SUS__and it inherits fro®US_BASEThe support for the Single Unix Specification
is not yet complete, but is continually enhanced.

Because we live in a world dominated by Microsoft Windows, and Microsoft Windows does
not doposix, this would mean that many users only could ugeeXs Standard C facilities.

9 Clients of this library

g e

= &3 eposix
Cadoc
C3lib
3 makelib

= S sre
3 akstract
C3capi
C3epxc
CDepxp
CIepxs
(3 papi
3 posix
3 sapi
~ &3 spec
Caise
Case
Cave
3 standardc
3 support
3 supportc
Casus
3 wapi
Cawindows
- Cotest suite
Z3 util

Figure 3.1 e-POSIX
directory structure

These facilities are extremely limiting, for example there is no change directory command in
Standard C. Therefore mesix makes available an abstraction layer that covers routines that
have an equivalent irposixand the Single Unix Specification. These classes start with the name
EPX_. They always inherit from classes starting with ABSTRACT . These abstract classes
implement the common code. Seeapter 9.2for more details.

Note that by using Cygwin you have a fedbsix emulation layer on Windows. In that specific
environment you can userm®sixXs entireposixand Single Unix Specification layer.

The wrapper classes should be fully command-query separated and use clear names. Often the
POsIxname, if applicable, is also made available as an alias. If this is a good thing, I'm not sure. |
hope it facilitates working with the wrapper classes if you already kpogix.

Besides these directoriespesix provides a number of extensions to the pure StandardrOsix
routines. These can be found in the subdirectories that starswithepx. A single letter indicates
if the classes only built upon routines available in Standard Bsix

1. epxc: Standard C based extensions like URI resolving, a MIME parsexsndyeneration.

2. epxs: Single Unix Specification based extension like an HTTP client.

3.4 Clients of this library

For client classes, two important classes 81 @OC_CONSTANT&dPOSIX _CONSTANTSee
figure 3.3 The wrapper classes tend to avoid having routines whose behavior drastically depends

Design notes 10

Figure 3.2 Inheritance structure

Figure 3.3 Standard
C andposix constants

on passed constants. But if you need to use constants, your client class can just inherit from these
classes and every Standard C aagix constant is available.

11 Forking

3.5 Forking
Implementing forking posed some interesting challenges. | started with the basic idea that every
process has a pid:

class PROCESS

feature
pid: INTEGER

end
| wanted to be able to write two kinds of forking. The first one is forking a child as in:
class PARENT

inherit
POSIX_CURRENT_PROCESS
feature

makeis
local
child: POSIX_CHILD_PROCESS
do
print ("My pid: ")
print (pid)
print ("%N")
fork (child)
print (“child’s pid: ")
print (child.pid)
print ("%N")
child.wait_for (True)
end

end
However, | also wanted to fork myself, because that basically is what forking is!
class PARENT

inherit
POSIX_CURRENT_PROCESS
POSIX_CHILD_PROCESS

feature

Design notes 12

makeis
do
fork (Currenf
wait
end

executeis
do
-- forked code
end

end

The above code gives a name clash, bec@®B8IX_CURRENT_PROCESS.@da call to the
PosIXroutinegetpid, while the child’s pid is a variable, which gets a variable after forking. You
can solve this name clash yourself, but it is most easy to inherit FG&IX_FORK_ROOQOTa clash
which has solved this clash already.

If you fork a child, you must wait for it. For a child process, you can &SIX_CHILD.
wait_for, if you fork yourself, you must us®OSIX_CURRENT_PROCESS.waithe variable
waited_child_pidwill be set with the pid of the child process thahit waited for.

3.6 Books

Books that have been helpful during the development pbsx where [43], see the biography
section apage 193

4
Basic Posix ex-
amples

Instead of describing every class and every feature, | decided to show short and simple examples
of common ways to use the Posix library features. If you don't have Posix available, you can try to
replace the POSIX prefix by STDC. Most of the time the POSIX classes are based on the STDC
classes, seehapter 7.

4.1 Working with files

The basic class for working with files, or streams as they are also callB$$X_FILE There

are two kinds of files:POSIX_TEXT_FILEand POSIX_BINARY_FILEAccording to thePosix
standard, there is no distinction between binary and text files. But on certain systems you must use
POSIX programs through an emulation layer. For example, on Windows Cygwin is a well-known
POSIX emulator. To maintain compatibility with other Windows programs, Cygwin distinguishes
between text and binary files. If you use Cygwin to compile yeosiX programs, this distinction

is therefore still important.

The first example shows how to open a text file, see also the corresponding BON diagram in
figure 4.1

classEX_FILE1
creation

make
feature

makeis
local
file: POSIX_TEXT_FILE
do
create file.open_read"/etdgroug’)
from
file.read_string(256)
until
file.eof

Basic Posix examples 14

p—

Figure 4.1 BON diagram of opening a text file.

loop
print (file.last_string
file.read_string(256)
end
file.close
end

end

It simply opens a file for reading and prints every line in it. Note that you have to specify the
maximum number of characters you are prepared to read. The minimum characters read are 256,
but perhaps you want to be able to read text files consisting of 1024 characters per line.

Every line that is read includes the end-of-line character if one was present. This is unlike Pascal
for example, but more like Perl. masix provides the featur®OSIX_TEXT_FILE.chowhich
removes the last characterlakt_stringif and only if it is an end-of-line character. And that is
unlike Perl, which removes any character. With@six it is not necesary to test for the end-of-

line characters if you just want to remove it in case one is present.

At the end, the file is closed. You don't need to explicitly close a file as it will be closed when your
object is garbaged collected. But | think it's a good thing not to rely or depend on this, but to close
your external resources as soon as you're done using them. For example many systems have easily
reached limits on the number of files a process can have open.

Reading binary files is almost the same loop, only you read it in chunks:

15 Working with files

classEX_FILE2
creation
make
feature
chunk_sizeINTEGERIs 512

makeis
local
file: POSIX_BINARY_FILE
buffer POSIX_BUFFER
do
create file.open_read("/bin/sh")
create buffer.allocate(chunk_sizg
from
file.read_buffer(buffer, 0, chunk_size
until
file.eof
loop
file.read_buffer(buffer, 0, chunk_size
end
file.close
end

end

This example uses a more safe version of buffer readd@51X_FILE.read_bufferThere is an
untyped varianPOSIX_FILE.readvhich accepts a pure pointer. There is no need to mention that
you need to watch buffer overflows carefully with this last one!

Correctly looping through files, takes care. For example the following loop also works, but is less
correct:

classEX WRONG1
creation
make
feature
makeis
local
file: POSIX_TEXT_FILE

do
create file.open_read("/etdgroug’)

Basic Posix examples 16

from

until
file.eof

loop
file.read_string(256)
print (file.last_string

end

file.close

end

end

After POSIX_TEXT_FILE.read_stringofmight be True. Because the string is empty in that case,
nothing will be printed. You will make an unnecessary extra loop. The correctly coded variant is:
class EX_ WRONG2

creation
make
feature
makeis
local
file: POSIX_TEXT_FILE
do
create file.open_read("/etdgroup’)
from
until
file.eof
loop
file.read_string(256)
if not file.eofthen
print (file.last_string
end
end
file.close
end
end

I myself prefer the first example, as the check is only inthgl part, and not repeated in the loop.
The following examples shows how a binary file is created and a string is written to it.
classEX_FILE3

inherit

POSIX_FILE_SYSTEM

17 Working with files

creation
make
feature

makeis

local
file: POSIX_BINARY_FILE

do
create file.create_write(expand_path("$HOMEmyfile.tmp))
file.write_string ("hello world.%N’)
file.close

end

end
Depending on the platform you are running a backslash is turned into a slash or vice versa.

This example also demonstrates how path names —file and directory names— can be expanded: if
you callPOSIX_FILE_SYSTEM.expand_pathy environment variables in the path are expanded.
Backslashes and slashes are always translated, but environment variable expansion has to be done
explicitly.

You can move the file pointer with two different metho®@SIX_FILE.see&ndset_position The
seekworks with files up to 2 GBset_positiorhas no such limits. Ustell to get a position that can
be passed teeek Useget_positiorto get a position that can be passedéd position

class EX_FILE5
creation

make
feature

makeis

local
file: POSIX_BINARY_FILE
posl INTEGER
pos2 STDC_FILE_POSITION

do
create file.create_read_writg"test.birt)
file.write_string ("one")
pos1 := file.tell
pos2 := file.get_position
file.write_string ("two")
file.seek(pos))
-- or file.set_position (pos2)
file.read_string(3)

Basic Posix examples 18

if not file.last_string.is_equa("twa") then
print ("unexpected read.%W\
end
file.close
end

end

4.2 Working with file descriptors

The file descriptors classes are quite equal to the file classes. The following example opens a file
usingPOSIX_FILE_DESCRIPTO&nd reads the first 64 bytes.

classeX_FD1
creation

make
feature

makeis
local
fd: POSIX_FILE_DESCRIPTOR
do
create fd.open_read("/etdgroup")
fd.read_string(64)
print (fd.last_string
fd.close
end

end

Unlike POSIX_TEXT_FILEthere is no easy way to detect end of line and end of file conditions.
However, a file descriptor can easily be turned into a file as the following example demonstrates.

classeX_FD2
creation
make
feature
makeis
local

fd: POSIX_FILE_DESCRIPTOR
file: POSIX_TEXT_FILE

19 Working with file descriptors

do
create fd.open_read("/etdgroup")
create file.make_from_file_descriptdfd, "r")
from
file.read_string(256)
until
file.eof
loop
print (file.last_string
file.read_string(256)
end
file.close
fd.close
end

end

A file descriptor can also be used to lock, unlock or test for locks on a given file as the following
example demonstrates. See also the accompanying BON diagfayarmn4.2.

classEX_FD4
creation

make
feature

makeis

local
some_lock,
lock: POSIX_LOCK
fd: POSIX_FILE_DESCRIPTOR

do
create fd.create_read_writg"test.tmp)
fd.write_string ("Test)

create lock.make
lock.set_allow_read
lock.set_start(2)
lock.set_length(1)
some_lock= fd.get_lock(lock)
if some_lock/= Void then
print ("There is already a locRAoN")
end

-- create exclusive lock
lock.set_allow_none

Basic Posix examples 20

lock.set_start(0)
lock.set_length(4)
fd.set_lock(lock)

fd.close
end

end

POSIX_FILE_DESCRIPTOR.get_loskcommand-query separated, that is why it returns a new
lock when queried and there is a lock. If there is no Igek lockreturns Void. The passed lock is

not modified.

*
POSIX_BASE

--

Figure 4.2 BON diagram of locking a portion of a file.

+
IX_FILE_DESCRIP

A file descriptor also gives you access to the attached terminal, if any. The following example
demonstrates how to read a password without the password appearing on the screen.

classEX_FD3
inherit
POSIX_CURRENT_PROCESS
creation
make
feature
makeis
do

print ("Password ")
stdout.flush

21 Working with the file system

-- turn off echo
fd_stdin.terminal.set_echo_inp(false
fd_stdin.terminal.apply_flush

-- read password
fd_stdin.read_string256)

-- turn echo back on
fd_stdin.terminal.set_echo_inp(itrue
fd_stdin.terminal.apply_now

print ("%NYour password was')
print (fd_stdin.last_striny
end

end

4.3 Working with the file system

posix defines many commands to navigate a file system. They're made available P@ 81X _-
FILE_SYSTEMThe following example navigates to the user’s home directory, create a directory
and removes it.

classEX_DIR1
inherit
POSIX_FILE_SYSTEM
creation
make
feature

makeis
do
change_directory(expand_path("™))
make_directory("qqtest.xyz.tmp
remove_directory("qqtest.xyz.tmp
end

end
To get access to the file system, inheriting from@@SIX_FILE_SYSTEMass is easiest.

There are also lots of functions to test for existence, readability or writability of files. idJse
modifiableto test if a file is readable and writable.

Basic Posix examples

22

classEX_DIR2
inherit
POSIX_FILE_SYSTEM
creation
make
feature

makeis

local
perm POSIX_PERMISSIONS

do
print_info (is_existing("/tmp"), "existing)
print_info (is_executablg/bin/Is"), "executabl®
print_info (is_readable("/etdpasswd), "readablé)
print_info (is_writable ("/etdpasswd), "writable")
print_info (is_modifiable("/etdpasswd), "readable and writabl§

perm := permissiong’/etdpasswd)

if perm.allow_group_readhen

print ("Group is allowed to readetdpasswd.%N)
else

print ("Group is not allowed to readetdpasswd.%N)
end

if perm.allow_anyone_read_writdnen

print ("Anyone is allowed to read file.tmp.%N
else

print ("Anyone is not allowed to read file.tmp.%N
end

end

print_info (ok BOOLEAN what STRING is
do
print ("is_")
print (whaf
print (" returned")
print (ok)
print (".%N")
end

23 Working with the file system

end

Be aware thaPOSIX_FILE_SYSTEM.is_readahises the real user and group IDs instead of the
effective ones.

As can be seen in the above example, one can test for the permissions of a file ust@stbe -
PERMISSIONSIass. A new permissions class is created for eP&@IX FILE_SYSTEM.permis-
sionscall, so it is best to cache this object. If the permissions change on the file system, this class
does not reflect reality anymore, because it caches the permission®O0&E PERMISSIONS.
refreshto update the contents. Uset_allow_group_writeset_allow_anyone_reaahd such to set
permissions.

e-Posixalso gives you access to theatfunction using thePOSIX _STATUSlass.
classEX_DIR4

inherit
POSIX_FILE_SYSTEM
creation
make
feature

makeis

local
stat POSIX_STATUS

do
stat := status ("/etdpasswd)
print ("size ")
print (stat.size.oyt
print (".%N")
print (“uid: ")
print (stat.permissions.u)d
print (".%N")

end

end

The POSIX_STATand through itPOSIX_PERMISSIONSre also returned bPOSIX_FILE_-
DESCRIPTOR.status

Browsing adirectory can be done by allocatét2S1X DIRECTOR¥lass throughtheOSIX_FILE_SYSTEM.
browse_directorfeature:

class EX_DIR3
inherit

POSIX_FILE_SYSTEM

Basic Posix examples 24

creation
make
feature

makeis
local
dir: POSIX_DIRECTORY
do
from
dir := browse_directory(".")
dir.start
until
dir.exhausted
loop
print (dir.item)
print ("%N")
dir.forth
end
dir.close
end

end

As can be seerROSIX_DIRECTORYollows EiffelBase conventions.

When browsing a directory, all entries in that directory are returned. You might want to be interested
only in certain files. erosixhas the ability to define arbitrary filters. Standareiasix comes with
an extension filter that only shows files with a certain extension:

classEX_DIR6
inherit
POSIX_FILE_SYSTEM
creation
make
feature
makeis
local
dir: POSIX_DIRECTORY
do

from
dir := browse_directory(".")

25 Executing a child command

dir.set_extension_filte".€")
dir.start

until
dir.exhausted

loop
print (dir.item)
print ("%N")
dir.forth

end

dir.close

end

end

4.4 Executing a child command
Any command line can be executed by using #@SIX_SHELL_COMMANDIass. Just pass a
command line andxecutat.

classEX_CMD

creation
make
feature

makeis
local
command POSIX_SHELL_COMMAND
do
create command.maké"/bin/ls *")
command.execute
print ("Exit code ")
print (command.exit_codle
print ("%N")
end

end

Often one wants to redirect the output of the program that is being executed. For such cases use the
POSIX_EXEC_PROCES%ss.

classEX_EXEC1
inherit

POSIX_CURRENT_PROCESS

Basic Posix examples 26

creation
make
feature

makeis
local
Is: POSIX_EXEC_PROCESS
do
-- list contents of current directory
create Is.make_capture_outpytls”, <<"-1", ".">>)
Is.execute
print ("Is pid: ")
print (Is.pid)
print ("%N")
from
Is.stdout.read_strind512)
until
Is.stdout.eof
loop
print (Is.stdout.last_string
Is.stdout.read_strind512)
end

-- close captured io
Is.stdout.close

-- wait for process
Is.wait_for (True)
end

end

Besides capturing output, you can also capture the standard input and standard error of the executed
process.

Itis important to wait for the child that has been executed at some point in time, just likeoany
would have to do. If you do not wait for a child process, memory in the kernel is not released
and eventually you would run out of processes. Also, aftePB&IX_EXEC_PROCESS.wait_for
command, the exit code of the process becomes available.

4.5 Currenttime

e-Posixhas a very complete class to work with times. A time can be set from the current time
by usingPOSIX_TIME.make_from_nowBefore a time can be printed, it needs to be converted
to either local time ouTc. Do this by callingto_localor to_utc Date and times can be printed

27 Current time

using features adefault_formatlocal_date_stringlocal_time_stringor a custom format through
format

classEX_TIMEL1
creation

make
feature

makeis

local
timel,
time2 POSIX_TIME

do
create timel.make_from_now
timel.to_local
print_time (time2)
timel.to_utc
print_time (timeJ)
create time2.make_timg0, 0, 0
print_time (time2
create time2.make_date_tim@g970, 10, 31, 6, 55,)0
time2.to_utc
print_time (time2

if time2 < timel then
print ("time2 is less than timel as expected.%N
else
print ("I time2 is not less than timel.%N
end
end

print_time (time POSIX_TIMB is
do

print ("Date ")
print (time.yeajy
print ("-")

print (time.month
print ("-")

print (time.day
print (" ")

print (time.hou)
print (":")

print (time.minutg
print (":")

print (time.secony

Basic Posix examples 28

print ("%N")
print ("Weekday ")
print (time.weekday
print ("%N")
print ("default string ")
print (time.default_format
print ("%N")
end

end

4.6 Accessing environment variables

With the clas?OSIX_ENV_VARhe contents of environment variables can be queried.
classeEX_ENV1

creation
make
feature

makeis
local
env POSIX_ENV_VAR
do
create env.make("HOME")
print (env.valug
print ("%N")
end

end

Unfortunately, it is not possible irosIxto set an environment variable. This is possible with the
Single Unix Specification classes, se=tion 6.1

4.7 Allocating memory

Allocating dynamic memory is very useful, but not portably available for Eiffel programmers. With
POSIX_BUFFERmemory can be allocated, read and written to.

classEX_MEM
creation

make

29 Redirecting stderr to stdout

feature

makeis

local
mem POSIX_BUFFER
byte INTEGER

do
create mem.allocate(256)
mem.poke_uint&2, 57)
byte := mem.peek_uint82)
mem.resizg512)
mem.deallocate

end

end
For more information about the dynamic memory classsseéon 7.1

4.8 Redirecting stderr to stdout

If you want to redirect all output written by your program or any child you spawn to stdout, you
can use th€OSIX_FILE_DESCRIPTOR.make_as_dupliczati

classEX_REDIRECT1
inherit
POSIX_CURRENT_PROCESS
creation
make
feature
makeis
do
-- flush stream buffers, else output may be in wrong order
stdout.flush
stderr.flush
fd_stderr.make_as_duplicaigd_stdou}
-- all output written to stderr goes to stdout now

end

end

It's a good idea to call this at the beginning of your program, before you have written anything to
stderr or stdout. If you do that, you don'’t have to flush the stream buffers.

5
Advanced Posix
examples

5.1 Catching a signal

Every class can become a signal handler by inheriting fR@BS5IX_SIGNAL_HANDLERmM-
plement thesignalledmethod as that is the function that is called when the signal occurs. Use
POSIX_SIGNAL.set_handlar make your class a signal handler and ealply to start receiving
signals when they occur.

The following examples demonstrates a program that can be safely interrupted by pressing Ctrl+C:
class EX_SIGNAL1

inherit
POSIX_CURRENT_PROCESS
POSIX_CONSTANTS
POSIX_SIGNAL_HANDLER
creation
make
feature
handled BOOLEAN
makeis
local
signat POSIX_SIGNAL
do

create signal.make(SIGINT)
signal.set_handlefCurren)

signal.apply

31 General wait for child handler

print ("Wait 30s or press CtHC.%N")
sleep (30)
if handledthen
print ("Ctrl+C pressed.%R)
else
print ("Ctrl+C not pressed.%N
end
end

signalled (signal_value INTEGER is
do

handled:= True
end

end

All precautions and warnings when handling signals in C apply equally well in Eiffel of course.
While in a signal handler, the signal will not be delivered again. GaAIDC_SIGNAL _HANDLER.
reestablisito make your signal handler interruptable.

You can write a single signal handler, that handles multiple signals. This makes it possible to have
signal handling codeinjustone place. Create a class thatinheritff@shX_SIGNAL_HANDLER

Pass this class to tHeOSIX_SIGNAL.set_handlésr every signal you want to catch. The signal
value is passed as parametePtoSIX_SIGNAL_HANDLER.signallesb you can write amspect
statement based on the value.

5.2 General wait for child handler

If you do not want to wait for every child process explicitly, you can write a simple SIGCHLD
handler that just does a wait (I found this idea in [43]):

class EX_SIGNAL2

inherit
POSIX_CURRENT_PROCESS
POSIX_CONSTANTS
POSIX_SIGNAL_HANDLER

creation
make

feature

makeis
local

Advanced Posix examples 32

signat POSIX_SIGNAL

do
create signal.make(SIGCHLD
signal.set_handle(Curren)

signal.apply

-- spawn child processes here
-- you dont have to wait for them
end

signalled (signal_value INTEGER is
do
wait
end

end

In Unix 98 you should be able to set the ignore handler for this signal. Inpose systems the
behaviour of the ignore handler is unspecified.

5.3 Forking a child process

Forking is very easy with this Eiffatosiximplementation. The steps:

1. Write a child by inheriting fronfPOSIX_FORK_ROO&nd implementing itexecutemethod.
2. The class that will do the forking, should inherit frdd®SIX_CURRENT_PROCESS

3. Pass the child to the inherited featt®®SIX_CURRENT_PROCESS.farkd the forking has
begun.

The following class shows the process that forks the child.

class
EX_FORK1
inherit
POSIX_CURRENT_PROCESS
POSIX_FILE_SYSTEM
creation
make

feature

33 Forking a child process

POSIX_CURRENT_PROCESS POSIX_CHILD_PROCESS

POSIX_FORK_ROO

v

Figure 5.1 BON diagram of forking a child process.

makeis

local
reader POSIX_TEXT_FILE
stop_sign BOOLEAN
child: FORK_CHILD

do
-- necessary for SmallEiffel before -0.75 beta 7
ignore_child_stop_signal

unlink ("berend.tmp)

create_fifo("berend.tmp, S_IRUSR+ S_IWUSR
create child

fork (child)

-- we will now block until file is opened for writing
create reader.open_read"berend.tmp)
from
stop_sign:= False
until
stop_sign
loop
reader.read_string(128

Advanced Posix examples 34

print (reader.last_striny

stop_sign:= equalreader.last_string,"stop%N’)
end
reader.close

-- now wait for the writer to terminate
child.wait_for (True)

unlink ("berend.tmp)
end

end

This class just displays anything that the writer, the child class, writes tortbaVhen it recognizes

stop, the reader stops after waiting for the child it has spawned. Note that this is very important!
Wait for any child you have spawned else you might get spurious errors if the process exits and a
child has not yet finished.

The following class shows the forked child.
class FORK_CHILD

inherit

POSIX_FORK_ROOT

feature
executeis
local
writer: POSIX_TEXT_FILE
do
create writer.open_append"berend.tmp)
writer.write_string ("first%N")
writer.write_string ("stop%N)
writer.close
-- we give the reader some time to process these messages
sleep (10)
end
end

5.4 Creating a daemon

Creating a simple daemon is easy if you inherit fre@SIX_DAEMON Implement theexecute
method, and you're done. At run-time, cd#ttachto fork off a child. You can caltletachas many
times as you want to spawn daemons.

35 Asynchronous I/O

class EX_DAEMON
inherit
POSIX_DAEMON
ARGUMENTS
creation
make
feature -- the parent

makeis

do
-- necessary under SmallEiffel
ignore_child_stop_signal

if argument_count 0 then
print ("Options%N")
print ("-d start daemon%N
else
if equalargumenfl), "-d") then
detach
print ("Daemon started.%N
print ("Its pid: ")
print (last_child_pid
print ("%N")
end
end
end

feature -- the daemon

executeis

do
-- daemon stays alive for 20 seconds
sleep (20)

end

end

5.5 Asynchronous I/O

e-PosIX supports the asynchronous i/o featureso$ix Not all Free Unices seem to support this
feature, nor does their support seems to be error free.

Advanced Posix examples 36

Take a look at the following example:
classEX_ASYNC1

creation
make
feature

makeis

local
fd: POSIX_FILE_DESCRIPTOR
request POSIX_ASYNC_I0_REQUEST

do
create fd.create_read_writg"test.tmp)
create request.makéfd)
request.set_offs€D)
request.write_string"hello world.")
request.wait_for
fd.close

end

end

The basic idea is that each asynchronous request is a separate object, Mo ¥yASYNC-
_10_REQUESTYou prepare it through calls likeet_bufferset_counaindset_offsetYou execute
the request by callingead or write.

You can wait for the request to be complete by callimgit_for. It should be possible to force
open requests to be synchronized to the disk sjtichronizebut this does give strange results on
Linux. So far | haven’t got access to a machine that also implements asynchronous i/o to test if my
code is correct.

5.6 Talking to your modem

With e-PosIxyou can talk to your modem. The implementation contains not all the details to write
a full-featured program as minicom, but they will be added upon request.

The following example tries to talk to your modem —which is expected to beat/modem—
and queries its manufacturer.

class EX_MODEM
inherit
POSIX_CURRENT_PROCESS

creation

37

Talking to your modem

feature

end

makeis
local

modem POSIX_FILE_DESCRIPTOR
term POSIX_TERMIOS

-- assume there is a /dev/imodem device

create modem.open_read_writ€/devmodert)

term := modem.terminal

term.flush_input

print ("Input speed")

print (term.speed_to_baud_rafgerm.input_speéeql
print ("%N")

print ("Output speed")

print (term.speed_to_baud_rafgerm.output_spegil
print ("%N")

term.set_input_spee(B9600
term.set_output_speg@9600
term.set_receivéTrue)
term.set_echo_inputFalse
term.set_echo_new_ling-alse
term.set_input_contro{(True)
term.apply_flush

-- expect modem to echo commands
modem.write_string"AT%N")
modem.read_string64)

print (“Command ")

print (modem.last_string
modem.read_string64)

print ("Responsgexpect ok ")
print (modem.last_string
modem.write_string"ATIO%N")
modem.read_string64)

print ("Command ")

print (modem.last_string
modem.read_string64)

print ("Response")

print (modem.last_string
modem.close

end

Advanced Posix examples 38

*

POSIX_BASE

+
IX_FILE_DESCRIP

—(POSIX_TERMIOS

Figure 5.2 BON diagram of talking to a modem.

5.7 Using shared memory

You can use shared memory to exchange data between different processes. It's dependent on your
posixversion if this is supported, so check for this capability explicitly!

class EX_SHARED MEM1
inherit
POSIX_SYSTEM
POSIX_CURRENT_PROCESS
POSIX_FILE_SYSTEM
creation
make
feature

makeis
local
fd: POSIX_SHARED_MEMORY
do
if not supports_shared_memory_objeti®n

stderr.puts("Shared memory objects not supported.9N
exit_with_failure
end

39 More examples

create fd.create_read_writg"/test.berent)

fd.write_string ("Hello world.%N?")

fd.close

unlink_shared_memory_obje€ttest.berent)
end

end

Make sure you always start a shared memory object with a slash. Else the behaviour is undefined
or processes might not be able to find your shared memory.

5.8 More examples

If you are looking for more examples, you might take a look at the classes itetfte suite
directory. These classes should demonstrate and test almost every feature availabigixhe

classes.

6

Single Unix
Specification
classes

6.1 Environment variables

UsingSUS_ENV_VAS$et value it is possible to set environment variables.

6.2 Logging messages and errors

AlthoughpPosixdoesn't have logging facilities, the Single Unix Specification does. This specifica-
tion requires the presence of thgslogd daemon for centralizes logging facilities. The following
example shows you to write messages to this daemon

classeEX_SYSLOG
inherit
SUS_CONSTANTS
SUS_SYSLOG_ACCESSOR
creation
make
feature
makeis
do
syslog.open("test’, LOG_ODELAY+ LOG_PID, LOG_USER
syslog.debug_dum@'this is a debug messafe
syslog.info("this is an informational messafe
syslog.warning("this is a warning)

syslog.error("this is an error messagge

syslog.close
end

41 Sockets

end

Always use theSUS_SYSLOG_ACCESS@Raccess the syslog wrapper cl&&9S_SYSLOG
SUS_SYSLOG a singleton, it makes no sensen to open a connection to the syslog daemon twice.

6.3 Sockets

e-PosIX currently has initial socket support. It will work only arosix systems, support for
Windows through the EPX layer will be added in a future release.

The following example demonstrates a simple echo client:
classEX_ECHO1

creation
make
feature
hello: STRINGis "Hello World.%N

makeis

local
host SUS_HOST
service SUS_SERVICE
echa SUS_TCP_SOCKET
sa SUS_SOCKET_ADDRESS

do
-- create host.make_from_name ("localhost")
create host.make_from_nam@bmach)
create service.make_from_nan&echd, "tcp")

create sa.make(host, servicg

create echo.open_by addregsa)
echo.write_string(hello)
echo.read_string256)

if not echo.last_string.is_equghello) then

print ("!! got ")
print (echo.last_striny
end

end

end

Single Unix Specification classes 42

6.4 HTTP client

The following example demonstrates retrieval of a file through HTTP usirgfxe HTTP_10_ CLIENT
class:

classeX _HTTP1
creation
make
feature
url: STRINGis "http://www.freebsd.orindex. htmil

makeis
local
uri: EPX_URI
client EPX_HTTP_10_CLIENT
do
create uri.make (url)
create client.make(uri.authority) -- www.freebsd.org
client.get (uri.path) -- /index.html
client.read_response
print (client.body.as_string
end

end

It also demonstrates the use of tBBX_URIclass to parse an URI into its components.

7
Standard C ex-
amples

If you don’t have access to ROSIX compatible system, you can use the underlying Standard

C classes. Standard C is quite restricted in certain respects: you cannot change directories for
example. On the other hand, this library gives you access to all Standard C routines, so you can use
what'’s there and write an extremely portable program.

All Standard C classes start wiHtpbc_. They are:
1. STDC_TEXT_FILEaccess text files.

2. STDC_BINARY_FILEaccess binary files.

3. STC_TEMPORARY_FILEreate a temporary file, a file that is removed when it is closed or
when the program terminates.

4., STDC_CONSTANTSccess Standard C constants like error codes and such.

5. STDC_BUFFERallocate dynamic memory.

6. STDC_ENV_VARaccess environment variables.

7. STDC_FILE_SYSTEMilelete and rename files.

8. STDC_SHELL_COMMANIDpass an arbitrary command to the native shell.

9. STDC_SYSTEMaccess information about the system the program is running on.

10.STDC_CURRENT_PROCES&cess to current process related information like its standard
input, output and error streams.

11.STDC_TIME access current time. Also can format a given time in various formats.

7.1 Allocating memory

You can dynamically allocate memory wiiTDC_BUFFERvhich works just likePOSIX_BUFFER
class EX_MEM2

creation
make

feature

Standard C examples 44

makeis

local
mem STDC_BUFFER
byte INTEGER

do
create mem.allocate_and_clea128
mem.poke_uint&2, 57)
byte := mem.peek_uint§2)
mem.resizg256)
mem.deallocate

end

end
With the feature&STDC_BUFFER.allocate_and_clearemory is allocated and cleared to all zeros.

STDC_BUFFERontains many routines to read bytes and strings from the memory it manages like
peek_intl6peek_uintlpor peek int32 It supports reading and writing 16 and 32 bit integers in
little and big endian order with routines peek_int16_big_endiapeek_int16_little endigrand
poke_int32_big_endian

7.2 Accessing environment variables

Standard C supports reading environment variables 8ltAC_ENV_VAR
classEX_ENV2

creation
make
feature

makeis
local
env STDC_ENV_VAR
do
create env.make("HOME")
print (env.valug
print ("%N")
end

end

7.3 Working with streams

Working with text files is equal to theosix classes, only you use tisac prefix.
classeX_FILE4

45 Working with the file system

creation
make
feature
makeis
local
file: STDC_TEXT_FILE
do
create file.open_read("/etdgroug’)
from
file.read_string(256)
until
file.eof
loop
print (file.last_string
file.read_string(256)
end
file.close
end
end

Its BON diagram, seégure 7.1is therefore quite equal to tlmosixone, sedigure 4.1.

p—

Figure 7.1 BON diagram of
opening a Standard C text file.

7.4 Working with the file system

Standard C doesn'’t offer much for file systems. You can only delete and rename files.
class EX_DIR5

Standard C examples

46

inherit
STDC_FILE_SYSTEM
creation
make
feature
makeis
do
rename_to("qqtest.abc.tmp "ggtest.xyz.tmip
remove_file("qgtest.xyz.tnip
end
end

The BON diagram is shown iiigure 7.2,

%

STDC_BASE

Figure 7.2 BON diagram of deleting and

renaming files with Standard C.

47 Catching a signal

7.5 Catching a signal

You can catch signals with Standard C. The following example demonstrates a program that can be
safely interrupted by pressing Ctrl+C:

class EX_SIGNAL3

inherit
EPX_CURRENT_PROCESS
STDC_CONSTANTS
STDC_SIGNAL_HANDLER

creation
make

feature
handled BOOLEAN

makeis
local
signat STDC_SIGNAL
do
create signal.make(SIGINT)
signal.set_handlefCurrent)

signal.apply

print ("Wait 10s or press CtHC.%N")
sleep (10)
if handledthen
print ("Ctrl+C pressed.%N
else
print ("Ctrl+C not pressed.%N
end
end

signalled (signal_value INTEGER is
do

handled:= True

end

end

As Standard C doesn’t have a sleep command, this progranEiesCURRENT _PROCES$®
get either thesleepfrom pPosix or from Windows.

Standard C examples

48

More explanation about the program itself can be founskiction 5.1

8
Writing CGlI
programs

Although writing acGl program doesn't really belong w®osix, they still are written often, so |
decided to include a few classes to make this easier. And of course, they build upon the Standard
C classes.

+
XML_GENERATOR

STPC_CURRENT_PROCHESS KHTML_GENERATOJ

Figure 8.1 BON diagram ofEPX_CGlI

You just inherit fromEPX_CGland start calling its features.
classeX_CGI1

inherit
EPX_CGI

creation

Writing CGI programs 50

make
feature

executeis
do
content_text_html

doctype
b_html

b_head
title ("e-POSIX CGI exampl§.
e _head

b_body

p ("Hello World")

extend("<p>you can use yourb>owr tags</p>")
b_p

puts ("or use any tag by using

e_p

start_tag ("table")
set_attribute("border", Void)
set_attribute("cols’, "3")
start_tag ("tr")

start_tag ("td")
add_data("start_tagd)
stop_tag

start_tag ("td")
add_data("stop_tad)
stop_tag

stop_tag

stop_tag

e_body
e_html

end

end
Output is written to stdout, but also made availablemg_xml Generated output iSHTML,
which usually displays fine with older browsers. If striciTML is problematic, you can call
doctype_transitionainstead ofdoctype

It is important not to mix writing to stdout with the features you inherit fraPX_CGIl EPX_CGI
does some caching, so after a tag is starte@B}_CGl.start_tagt is not yet written to standard

51

output. If you want to write something to standard output, useethE_CGl.add_datdeature or
its shortcut aliagputs If you want to write real tags, usextend This last feature allows you to
write anything, whileputsescapes reserved characters like ">’

If you use provided features like a b_pand such, an attempt is made to produce good looking
source. Also your input is somewhat validated agaxrstvL standards.

It is also easy to write @Gl program that displays a form and accepts submitted values. Even file
upload is supported. The following example uses the GET method to submit data:

classEX_CGI2
inherit
EPX_CGI
creation
make
feature

executeis
do
content_text_html

doctype
b_html

b_head
title ("e-POSIX CGI form exampl®.
e_head

b_body
b_form_get("ex_cgi2.bif)

b_p

puts ("Name ")

b_input ("text’, "name)
set_attribute("size', "32")
e_input

ep

b_p

puts ("City: ")

input_text("city", 40, "enter city herg&)
e_p

Writing CGI programs 52

b_p
b_button_submi{"action', "GO!")
e_button_submit

nbsp

button_reset
e_p

e_form

hr

p ("In your last submit you entereg)

b_p
if not has_key("namé) then

end
puts ("name ")
puts (value ("name))

puts (*, ")

puts (“city: ")

puts (raw_value ("city™))
ep

e_body
e_html

end

end

You can us&ePX_CGl.b_inputo start an input element as shown for the input of a name. Or you
can usdnput_textto start a simple text input as shown for the input of a city. Below the line you
see the value a user has submitted, if any. Wseaeto get values with certain meta—characters
removed. The output is still not save to be passed straight to a Unix Shell though! You can use
raw_valueto get the contents as submitted by the user.

In the above example it doesn’'t matter much if you bséorm_getor b_form_post But with
the GET method, you cannot upload files. The following example demonstrates how files can be
uploaded:

classEX_CGI3
inherit
EPX_CGI

creation

53

make
feature

executeis
do
content_text_html

assert_key value pairs_created
save_uploaded_files

doctype
b_html

b_head
title ("e-POSIX CGI file upload examplg.
e _head

b_body

b_form ("post', "ex_cgi3.bit)
set_attribute("enctyp&, multipart_encodiny

b_p

puts ("Filename ")

b_input ("file", "filenamé)
set_attribute("size', "32")
set_attribute("maxlength, "128")
e_input

€e_p

b_p

b_button_submi("action’, "Upload filgs)")
e_button_submit

nbsp

button_reset
e_p

e form

e_body
e_html

end

Writing CGI programs 54

save_uploaded_filels
local
kv. EPX_KEY_VALUE
buffer. STDC_BUFFER
target_name STRING
target STDC_BINARY_FILE
do
create buffer.allocate(8192
from
cgi_data.start
until
cgi_data.after
loop
kv := cgi_data.item_for_iteration
if kv.file /= Void then
from
target_name= "/tmp" + kv.value
create target.create_write(target_namg
kv.file.read_buffer(buffer, 0, 8192
until
kv.file.eof
loop
target.write_buffer(buffer, 0, kv.file.last_read
kv.file.read_buffer(buffer, 0, 8192
end
target.close
kv.file.close
end
cgi_data.forth
end
buffer.deallocate
end

end

It is important to set the encoding type. This example accepts a file and write&itpo Because
multiple files can be present, this example just loops over all key value pairs and checks if a file is
present. This example isn’t fool-proof with multiple users submitting the same file, but you should
get the idea.

Note that the first line iEPX_CGl.content_textn case an exception occurs, the web server is still
able to output something back to the user.

After that we make sure that the key value pairs are createdasgibrt_key value pairs_created
They are automatically created if you cathlug but in this case we want the key value pairs
themselves. X _CGl3.save_uploaded_filee use theePX_KEYVALUE filéeature to check if

that key value pair is an uploaded file: if it is not Void, it points to a temporary file. As this file
will be deleted when it is closed or when your program exits, we have to copy it to a new file.

55

The filename is just the value part of this key value pair. The filename is guaranteed to be free of
directory parts.

In the last example we just print all key/value pairs to theTfilet . txt in the temporary directory.
We redirect the user to another file.

classEX_CGl4
inherit
EPX_CGI
EPX_FACTORY
creation
make
feature

executeis
do
assert_key value pairs_created
save_values

extend("Location /mydir/myfile.htmil)
new_line

new_line

end

save_valuess
local
fout STDC_TEXT_FILE
kv. EPX_KEY_VALUE
do
create fout.create_write(fs.temporary_directory+ "/list.txt")
from
cgi_data.start
until
cgi_data.after
loop
kv := cgi_data.item_for_iteration
fout.puts (kv.key
fout.puts("%T")
fout.puts (kv.valué
fout.puts ("%N")
cgi_data.forth
end

Writing CGI programs

56

fout.close
end

end

9
e-POoSIX INn
Windows

e-Posixoffers three alternatives to writing programs that run on both Unix and Windows platforms:

1.

Write programs that only rely on Standard C. If you use only Standard C classes your program
is probably quite portable. Standard C doesn't offer that much however.

Write programs that are based eosix You use aPosix emulator to compile and run your
program unchanged on Windows. The only thing you have to be aware of is the distinction
between binary and text files.

Write programs that are based upoRasixs EPX_XXXX layer. This layer is based on e-
POsIXs ABSTRACT _XXXX classes, that covers code that is common between Windows and
apPosixplatform.

Previous versions of eosixused a factory class approach to access this common code. Thisis
no longer needed. The ABSTRACT_XXXX are maded effective through EPX_XXXX classes
when compiling for Windows or foposIx.

The following sections offer more details about the last two approaches.

9.1 Compiling POSIX programs in Windows

You can also use a very large subsepofix under Windows with a&@osix emulator. I've tested
this using SmallEiffel and Cygwin’s freely available emulator. Here the steps:

1.

2.

3.

Download the Cygwin toolkit fromittp://sources.redhat.com/cygwin.
Set the compiler ikompiler.se to gcc. Leave the system igystem. se to Windows.

Configure erosixas described ih.2and creatd ibeposix se.a

A few things are not available under Cygnesisix emulation:

1.

2.

POSIX_FILE_SYSTEM.create_fifonot supported. Any attempt to use it will rettEROSYS.

I'm not sure if returning an error is the correct solution for applications that recuaisex
compatibility, because you are only warned at run-time. Another solution would be to include
a call tomkfifoand if you use it, let the linker complain.

There is no locking, so calls ®OSIX_FILE_DESCRIPTOR.get_loaid such will fail.

http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin

e-Posixin Windows 58

3. CertainPosix tests assume that a more Unix like environment is available, so not all tests will
run. For example the standard Cygwin distribution doesn’'t hamera utility. If you make a
symbolic link fromless tomore the child process test will run.

4. The current list of implemented functions is available fraptp: //sources.redhat.com
/cygwin/faq/faq 3.html#SEC17.

9.2 Native Windows

Previous versions of eosix used a factory class approach to access Windowsoerx specific
code. This is obsolete.

If you want to write code that is portable between Windows radix use the EPX_XXXX class

layer. For example you can use tB@X_FILE_DESCRIPTORb use file descriptors that are
completely portable between these two OSes. BBX_FILE_SYSTEMo have access to file
system specific code to change directories or get the temporary directory.

In general you can replace the POSIX_ prefix with EPX_ to compile most of the examples presented
in the previousrosix specific chapters. The classes currently available in the EPX_XXXX layer
are:

e EPX_CURRENT_PROCESS
e EPX_EXEC_PROCESS

e EPX_FILE_DESCRIPTOR
e EPX_FILE_SYSTEM

e EPX_PIPE

Figure one shows hoe tHePX_FILE_DESCRIPTORIass is derived fromABSTRACT_FILE_-
DESCRIPTORBoth Windows an@éosixhave an effectiveEPX_FILE_ DESCRIPTO#lass. Class-
es asPOSIX_FILE_DESCRIPTOmRplementrosix specific functionality for a file descriptor.

An example of using thePX_FILE_SYSTEMIass is shown below:
classEX_EPX1

inherit
EPX_FILE_SYSTEM
creation
make
feature

makeis
local

http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17

a1

9 Binary mode versus text mode

*

POSIX_BASE ABSTRACT_FD WINDOWS_BASE

I*
I*

b o
00/

Figure 9.1 How EPX_XXXX classes are related to thesix and Windows classes

dir: STRING
do
print ("Current directory ")
dir := current_directory
print (dir)
print ("%N")
change_directory("..")
change_directory(dir)
make_directory("abc’)
rename_to("abc’, "def")
remove_directory("def")
end

end

In appendix Call abstract classes are listed. There deferred features are made effectiverr the
class for the operating system you’re compiling for.

9.3 Binary mode versus text mode

Independent of what layer you use to write Windows programs, you have to deal with binary and
text modes. And if you usually write Unix programs and want them to work on Windows too, you
have to bother with it too.

e-Posixin Windows 60

On Windows, each line of a text files ends with a carriage return character followed by a line
feed character. In Eiffel this is the string;R%N". If you use streamsSTDC_TEXT_FILEand
STDC_BINARY_FILRhis distinction is transparently handled.

For file descriptions, it depends. If you use Cygwin, file descriptors can either be binary or text.
This depends on Cygwin settings. If you use the EPX layer, file descriptors are binary, period.
The reason for this is that the underlying code is the Win32 file APl which is binary only. This
is usually no problem. Reading a line will still stop when’&i’ is encountered. If you use the
ABSTRACT_FILE_DESCRIPTOR.chop_last_strmeghod, it automatically removes anyR’ if

there was such a character just before i’ .

At this moment, there is no explicit support for creating text files using file descriptors with the
proper Windows end of file characteiSTDC_TEXT_FILBvorks fine here work fine here.

If you want to use binary standard input or binary standard output, use the file descriptors available
in EPX_CURRENT_PROCESSfd_stdinandfd_stdout

For Cygwin users, the following information can be helpful to get the binary versus text file
distinction correct:

e Mount the volume in binary mode.
e Set the environment variable CYGWIN to ‘binary’.

More information about Cygwin and CR/LF handling can be foundap: //sources.redhat.
com/cygwin/faq/faq toc.html#TOC62.

http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62

10
Error handling

This chapter describes certain error handling strategies that are possible raithxeBasically
there are two strategies: using the Eiffel exception mechanism or doing the error handling all
yourself.

10.1 Error handling with exceptions

The opinion of the author of eosix s that Eiffel's exception mechanism is very well suited to
deal with things like files that cannot be opened or directories that do not exist. Others disagree,
seesection 10.2 ePosixis designed such that whenPa@six routine returns an error code, an
exception is thrown. Here my arguments why | favor this style of error handling:

1.

We all know that exceptions are to be used for breach of contract. This idea is formulated in
[43]and is the best expressed opinion of exception handling | know.

So if you ask an eosixmethod to open a file, it will do that for you. If it cannot open the file,
for whatever reason, it will raise an exception. The same argument hold if you ask it to go to a
directory, to start a program, or to open a connection to another machine.

This approach is also reflected in the names pbeixs features. The name BOSIX_TEXT_-
FILE.open_reachnd notPOSIX_TEXT_FILE.attempt_open_read

It is usually not wise to trust clients with error handling. The larger a distance between a
software failure and the error report, the more difficult it is to make a correct diagnosis of what
went wrong (see [43]). eosixuses the fail early, fail hard approach.

Error handling is often forgotten or left to some global general error handling mechanism. In
an interesting article (see [43]) James Whittaker describes how he modified certain system calls
to return legitimate, but unexpected return codes. Memory allocation failed for example, or
opening a file returned with no more file handles. Applications failed within seconds, but it was
usually completely unclear why.

It's a lot easier for programmer’s. You don’t have to write any error handling. If your program
completed, you know that there wasn't a single system call that failed, that you didn’t continue
despite some error. This will make it possible to write programs that do their work correctly if
no errors occur, or else do nothing.

First an example. Let'’s take a look at the code you have to write in case you want to handle failure
of opening a file:

classEX_ERROR1

inherit

Error handling 62

POSIX_CURRENT_PROCESS
creation

make
feature

makeis
local
fd: POSIX_FILE_DESCRIPTOR
do
fd ;= attempt_create_file
end

attempt_create_filtePOSIX_FILE_DESCRIPTOIR
local
attempt INTEGER
still_exists BOOLEAN
do
create Result.create_with_modgmyfilé'’, O_ CREATO_TRUNGO_EXCL, 0
rescue
still_exists:= errno.value= EEXIST
attempt:= attempt+ 1
if still_existsand then attempt<= 3 then
sleep(1)
retry
end
end

end

In this example we try to create a file exclusively. The create will fail if the file already exists. In
case this happens, we retry 3 times. Before retrying we wait 1 second. Note that if the error is not
EEXIST, we falil directly, without retrying.

In my opinion above’s code is just the code you want to write usually: do not worry about errors,
if something goes wrong, your application will fail.

My preferred way of error handling is (or sometimes should be) also reflected in the preconditions.
For example th®OSIX_FILE_SYSTEM.browse_directbigs the precondition that the given path
should exist and should be a directory. Quite reasonable | think. The argument against such
preconditions is that it is somewhat strange: if a client has honoured the precondition by checking
that the directory exists, it should be able to assume that it safely can call the routine. But between
its own check and the actual call, the directory can be removed by another process.

This is the concurrent precondition paradox (see [43]). In my opinion it would not be wise to
remove this precondition. Itis true that honouring it, will not make sure the contract is not broken.
But it still serves a very usefull purpose: documentation.

63 Manual error handling

For example the routinPOSIX_FILE_SYSTEM.remove_filees not have the precondition that
the file should exist. That isn’t an oversight. This routine does not fail if the file no longer exists
for good reason: it honours its postcondition after all. So when you call this routine, the file may
or may not exist. The routine doesn’t care.

10.2 Manual error handling

In spite of the arguments listed in the previous section, automatic error handling is perhaps tedious
to use when you expect a lot of errors. And some programmers just do not like Eiffel's exception
mechanism. Thereforemasiximplements a completely different style of error handling. In this
case, ePOSIX continues when an error occurs, but it safes the errorcode, and you can check the
errorcode of the first error when you wish. This first errorcode has to be reset by the programmer.
An example:

classEX_ERROR2
inherit
STDC_SECURITY_ACCESSOR
creation
make
feature

makeis
local
fd: POSIX_FILE_DESCRIPTOR
do
security.error_handling.disable_exceptions
create fd.create_write("myfilé")
if fd.errno.first_value= 0 then
fd.write_string ("1%N")
fd.write_string ("2%N")
fd.close
else
fd.errno.clear_first
end
end

end

Exception handlingis turned off by a call8@DC_SECURITY_ACCESSOR:.security.error_handling.
disable_exceptiondt can be enabled again by callisgcurity.error_handling.enable_exceptions

In between, you're on your own, just like a C programmemylfile cannot be opened, nothing
happens, and theOSIX_FILE_DESCRIPTOR.write_strirfigature is called. Depending if you
have enabled precondition checking or natite _stringwill fail. The precondition ifwrite_string

Error handling 64

is that the file has to be open. Therefore, at certain points, you're still forced to deal with errors.
Every object has amrrno variable. This variable points to the gloddTDC_ERRN®bject (its

a once routine). So there basically is just dingt_valueerror value. Whatever object caused the
error, you can check therrno.first_valueof any ePosix object. The last error is still available in
errno.value

If there is no error, the program continues writing. POSIX_FILE_DESCRIPTOR.write_string
failed, the next one is still executed. If there is an error, we reset it34thC_ERRNO.clear_first

This gives us the chance to catch another error value if an error occurs. If this method is not called,
first_valuewill keep its original value.

The following example is the same BX_ERROR1It shows how to open a file exclusively with
manual error handling.

class EX_ERRORS3

inherit
POSIX_CURRENT_PROCESS
EXCEPTIONS

creation
make

feature

makeis
local
fd: POSIX_FILE_DESCRIPTOR
do
security.error_handling.disable_exceptions
fd := attempt_create_file
end

attempt_create fitePOSIX_FILE_DESCRIPTOR
require
manual_error not security.error_handling.exceptions_enabled
local
attempt INTEGER
still_exists BOOLEAN

do
from
attempt:= 1
still_exists:= True
until

not still_existsor else attempt> 3
loop

65 Manual error handling

create Result.create_with_modgmyfilé'’, O_CREAFO_TRUNGO_EXCL, 0
still_exists:= errno.first_value= EEXIST
if still_existsthen
sleep(1)
attempt:= attempt+ 1
end
end
if still_existsthen
raise ("failed to create filg)
end
end

end
As you can see, manual error handling does not necessarily translate into less code.

The summary of this section is that you chould check each distinctive step when using manual error
handling. You don’t have to check intermediate steps.

11
Security

e-Posixis well-suited to write server applications likesi scripts and daemons. As these appli-
cations can be hosted on servers that are attached to the Internet, they could be prone to attack.
Applications written with erosIx could be misused in a denial of service attack or to gain root
access. @osixoffers certain protection mechanisms that enable your applications to fend off such
penetrations.

This chapter shows you how applications can be misused and what mechamssig effers for
certain attacks.

“Programmers typically focus on "positive™ aspects of programs, that is, what is the function-
ality required for the task to be accomplished. Programmers rarely focus on the negative
aspects of programs, that is, what functionality is not required for the program to accomplish
its task. Attackers take advantage of proggrammers failure to consider negative functional-
ity. Perhaps a reason that programmers avoid negative functionality is that there is no good
way to specify what a program should not be permitted to do.”

11.1 Denial of service attacks

In a denial of service attack, crackers attempt to deplete one or more finite resources. Resources can
be software related like database connectionsosriP connections, but ultimately resources are
finite because of hardware limitations. This manual distinguishes the following hardware resources:

e Memory.

e CPU.

e Disk space.

e Network bandwidth.

A denial of service attack succeeds if a cracker depletes these resources in such a way that the
server cannot handle request anymore, or handles them very slowly. For example, Linux 2.2 is easy
to bring to its knees if you keep on allocating memory. In normal situations your application runs
fine, and allocates only a limited amount of memory. But an attacker might have found a way to
make your application allocate much more memory. Even if you are sure that the code you have
written is not prone to such an attack, you might use a library basedrosigthat does have code

that is exploitable.

e-PosIx has some limited support to set limits on memory, file handle (a memory issue) and cpu
usage. When a set limit has been exceeded, an exception is raised.

To limit the amount of memory, inherit froBTDC_SECURITY_ACCESS@Rd callsecurity.
memory.set_max_allocatiourrently this limits the amount of memory that can be allocated with

67 Authorization bypass attacks

STDC_BUFFERIt does not limit the amount of memory that is allocatedSWRINGor other
classes. You can also limit the amount of memory that can be allocated with a single call by calling
security.memory.set_max_single_allocation

You can limitthe number of file handles a program can open by calBogrity.files.set_max_open_files
This works only with files and sockets opened byasix classes aSTDC_FILEandPOSIX_-
FILE_DESCRIPTORnot with files opened through other means. In this case you cannot rely on the
garbage collection to close your file. Certain garbage collectors do not allow calling other classes
in the MEMORY .disposemethod. erosixneeds to do this to decrement its idea of the number of
open handles. Only when you explicitly c8TDC_FILE.closavill the e-POSIX decrease its open

file handles.

You can limit the amount of CPU time by callirgecurity.cpu.set_max_process_timeis not
possible to automatically halt your application when this time has exceeded. You have to call
security.cpu.check_process_titneactually check the processor time used.

Currently eposix cannot check disk space or network bandwidth limitations.

Discuss here that decrementing only works for manual deallocations, I’m very
sorry about that, but this is a problem of ISE. I’m thinking about ways to work
around this.

11.2 Authorization bypass attacks

A hacker can bypass authorization if he or she, through your program, can gain the following
access:

e Access to more information than your program is written to provide. Security is not breached
here, but your program is used in an ‘innovative’ way. Note that if your program runs within
the root security context (suid root), security can be breached!

e Security is breached when your program is used to get more access rights than your program is
written to provide. Especially suid root programs are an attractive target here.

Usually Eiffel programs do not allocate buffers on the stack, so they are not prone to the so called
‘buffer overflow’ attack. As certain vendors might provide some ‘native’ class that allocate things
on the stack, leave precondition checking always on in suid root programs.

Currently eposixdoesn’t offer much protection for suid root programs. Much better security will
be the topic of a next release.

12
Accessing C
headers

This chapter explains the conventions th&®six uses to access the C-headers.

12.1 Making C Headers available to Eiffel

The most portable and safest header translation comes when a C function is not called verbatim, but
instead a translation function is used. For example to make the Standard C fungemavailable
within Eiffel a new header file is created which lists an Eiffel compatible way to call this routine:

#include "eiffel.h"
#include <stdio.h>

EIF_POINTER posix_fopen(EIF_POINTER filename, EIF_POINTER mode);
Instead of using C types, we use Eiffel types here, which are made available by incltudite] . h.
The corresponding C file contains the following implementation:

#include "my_new_header.h"

EIF_POINTER posix_fopen(EIF_POINTER filename, EIF_POINTER mode)

{
return ((EIF_POINTER) fopen (filename, mode));

}

It simply calls the original function, returning the result. Type conversion between Eiffel and C
types shouldn't pose problems this way.

To be able to call this function from Eiffel, eaxternal feature needs to be written. For example:
classHEADER_STDIO

feature {NONE -- C binding for stream functions

posix_fopen(path, a_modePOINTER: POINTERIs
-- Opens a stream
require
valid_mode a_mode/= default_pointer
external "C"
end

end

69 Distinction between Standard C armbsix headers

Of course, the Eiffel function can have all Design By Contract features Eiffel programmers are
accustomed too.

To recapitulate: every header that is to be translated, needs:
1. anew header file, and

2. acorresponding C file, and

3. an Eiffel class.

For example to translatestdio.h> a header file likeeiffel_stdio.h and a C fileeiffel
_stdio.c is needed. The Eiffel class could behigader_stdio.e.

12.2 Distinction between Standard C ambsix headers

However, POsIX sometimes defines extensions to existing Standard C headers. Simply using a
translation header file likeiffel stdio.h will not work for pure Standard C Eiffel programs, as
it can includerosix specific extensions that might simply not be available on a given platform.

Therefore, erosixdivides the C headers in several groups:
1. The Standard C headers.

2. Theposixheaders.

3. The Single Unix Specification headers.

4. Microsoft Windows headers (as far as they defiosixfunctions, this library does not translate
Microsoft Windows specific functions).

Every group gets its own translation header with its own prefix. A translated header has a prefix, an
underscore and next the original header name. The Standard C translatisndifo . h> is done

in c_stdio.h andc_stdio.c. ThePosix extensions to this header are availableigtdio.h
andp_stdio.c.

The corresponding Eiffel class follows similar conventions. It has the group’s prefix, next the string
‘API’, an underscore and next the name of the header. Sestldio.h> functions are made
available inCAPI_STDIO

In table 12.1all the groups with there translation header prefix and Eiffel class prefix are listed.
See also the directory structurefigure 12.1

12.3 C translation details

This translation wants to do as less as possible at the C level. It attempts to just make available the
C constants and C functions and do the actual work in Eiffel.

A few details:

Accessing C headers

L

= &3 eposix

Cadoc
C3lib

3 makelib

= S sre
3 akstract

C3capi
C3epxc
CDepxp
CIepxs
(3 papi

3 posix

3 sapi
~ &3 spec
Caise
Case
Cave

3 standardc

3 support
3 supportc

Casus
3 wapi

Cawindows
- Cotest suite

(23 util

Figure 12.1 e-POSIX
directory structure

Group directory header prefix| class prefix
Standard C src/capi | C CAPI
POSIX src/[api | p PAPI
Single Unix Specification| src/sapi | S SAPI
Windows src/wapi | W WAPI

Table 12.1 e-posIX prefix conventions

1. Constants, C macro definitions, are exported in the header file with the prefix ‘const_" and next
the macro name. The Eiffel API class exports these constants with the original, uppercased

name.

2. Struct members are exported with getter and setter functions. The get function has the prefix
‘posix’, an underscore, the struct name, an underscore and as last the member name. The
set function has the prefix ‘posix’, an underscore, ‘set’, an underscore, the struct name, an

underscore and as last the member name.

A

Posix function
to Eiffel class

mapping list

The following table defines exactly where a given Posix function is used in a Eiffel class mapping.
The table is sorted in alphabetic order. Note that when a STDC_ class is listed, the feature is also
available in the corresponding POSIX_ class.

Function Header Class Comment
abort <stdlib.h> STDC_CURRENT_PROCESS.abort

access <unistd.h> ABSTRACT_FILE_SYSTEM.is_accessible

aio_cancel <aio.h> POSIX_ASYNC_IO_REQUEST.cancel

aio_error <aio.h> POSIX_ASYNC_IO_REQUEST.is_pending

aio_fsync <aio.h> POSIX_ASYNC_IO_REQUEST.synchronize

aio_read <aio.h> POSIX_ASYNC_IO_REQUEST.read

aio_return <aio.h> POSIX_ASYNC_IO_REQUEST.return_status

aio_suspend <aio.h> POSIX_ASYNC_IO_REQUEST.wait_for

aio_write <aio.h> POSIX_ASYNC_IO_REQUEST.write

alarm <unistd.h> POSIX_TIMED_COMMAND

asctime <time.h> STDC_TIME.default_format

atexit <stdlib.h> probably not applicable.
calloc <stdlib.h> STDC_BUFFER.allocate_and_clear

cfgetispeed <termios.h> POSIX_TERMIOS.input_speed

cfgetospeed <termios.h> POSIX_TERMIOS.output_speed

cfsetispeed <termios.h> POSIX_TERMIOS.set_input_speed

cfsetospeed <termios.h> POSIX_TERMIOS.set_output_speed

chdir <unistd.h> POSIX_FILE_SYSTEM.change_directory

chmod <sys/stat.h> POSIX_FILE_SYSTEM.change_mode

chown <unistd.h> POSIX_PERMISSIONS_PATH.apply_owner_and_group
clearerr <stdio.h> STDC_FILE.clear_error

clock <time.h> STDC_CURRENT_PROCESS.clock

clock_getres <time.h>

clock_gettime <time.h>

clock_settime <time.h>

close <unistd.h> POSIX_FILE_DESCRIPTOR:.close

closedir <dirent.h> POSIX_DIRECTORY

creat <fcntl.h> POSIX_FILE_DESCRIPTOR.create_read_write

ctermid <unistd.h>

ctime <time.h> Canbe emulated witBTDC_TIME
cuserid <stdio.h> Seegetlogin
difftime <time.h> STDC_TIME

dup <unistd.h> POSIX_FILE_DESCRIPTOR.make_as_duplicate

dup2 <unistd.h> POSIX_FILE_DESCRIPTOR.make_as_duplicate

execl <unistd.h> Seeexecvp.
execle <unistd.h> Seeexecvp.
execlp <unistd.h> Seeexecvp.
execv <unistd.h> Seeexecvp.
execve <unistd.h> Seeexecvp.

Posix function to Eiffel class mapping list

72

execvp
exit
_exit
fclose
fentl

fdatasync

fdopen
feof
ferror
fflush
fgetc
fgetpos
fgets
fileno
fopen

fork
fpathconf
fprintf
fputc
fputs
fread
free
freopen
fseek

fsetpos
fstat

fsync
ftell
fwrite
getc
getchar
getcwd
getegid
getenv
geteuid
getgid
getgrgid
getgrnam
getgroups
getlogin
getpgrp
getpid
getppid
getpwnam
getpwuid
gets
gettimeofday
getuid
gmtime
isatty
kill
link

<unistd.h>
<stdlib.h>
<unistd.h>
<stdio.h>

<unistd.h>

<unistd.h>

<stdio.h>
<stdio.h>
<stdio.h>
<stdio.h>
<stdio.h>
<stdio.h>
<stdio.h>
<stdio.h>
<stdio.h>

<unistd.h>
<unistd.h>
<stdio.h>
<stdio.h>
<stdio.h>
<stdio.h>
<stdlib.h>
<stdio.h>
<stdio.h>

<stdio.h>
<sys/stat.h>

<unistd.h>
<stdio.h>
<stdio.h>
<stdioh>
<stdio.h>
<unistd.h>
<unistd.h>
<stdlib.h>
<unistd.h>
<unistd.h>
<grp.h>
<grp.h>
<unistd.h>
<unistd.h>
<unistd.h>
<unistd.h>
<unistd.h>
<pwd.h>
<pwd.h>
<stdio.h>
<sys/time.h>
<unistd.h>
<time.h>
<unistd.h>
<signal.h>
<unistd.h>

POSIX_EXEC_PROCESS.execute
STDC_CURRENT_PROCESS.exit

STDC_FILE.close
POSIX_FILE_DESCRIPTOR

POSIX_FILE_DESCRIPTOR.synchronize_data

POSIX_FILE.make_from_file_descriptor
STDC_FILE.eof

STDC_FILE.error

STDC_FILE.flush

STDC_FILE.get_character
STDC_FILE.get_position
STDC_FILE.get_string
POSIX_FILE_DESCRIPTOR.make_from_file
STDC_FILE

POSIX_CURRENT_PROCESS.fork

STDC_FILE.putc
STDC_FILE.put_string
STDC_FILE.read
STDC_BUFFER.deallocate
STDC_FILE.reopen
STDC_FILE.seek

STDC_FILE.set_position
POSIX_STATUS

POSIX_FILE_DESCRIPTOR.synchronize

STDC_FILE.tell
STDC_FILE.write

POSIX_FILE_SYSTEM.current_directory

POSIX_CURRENT_PROCESS.effective_group_id

STDC_ENV_VAR.value
POSIX_CURRENT_PROCESS.effective_user _id
POSIX_CURRENT_PROCESS.real_group_id
POSIX_GROUP.make_from_gid
POSIX_GROUP.make_from_name
POSIX_CURRENT_PROCESS.is_in_group
POSIX_CURRENT_PROCESS.login_name

POSIX_CURRENT_PROCESS.process_group_id

POSIX_CURRENT_PROCESS.pid
POSIX_CURRENT_PROCESS.parent_pid
POSIX_USER.make_from_name
POSIX_USER.make_from_uid

POSIX_CURRENT_PROCESS.real_user _id
STDC_TIME.to_utc

POSIX_FILE_DESCRIPTOR.is_attached_to_terminal

POSIX_PROCESS.kill
POSIX_FILE_SYSTEM.link

attempt_loclget_lockset_lock
and others.

This function is not avail-
able on many so called
posixsystems. Insuch cas-
es it is mapped tdsync.

various open creation fea-
tures.

not applicable.

Alsoread_stringandread_character

Alsoseek_from_currersnd

seek_from_end

Returned bPOSIX_FILE_DESCRIPTOR.
status

Seefgetec.
Seefgetc.

Seefgets.
SUS_TIME_VALUE

73

lio_listio
localeconv
localtime
1lseek

malloc
memcpy
memchr
memcmp
memmove
memset
mkdir
mkfifo
mktime
mlockall
mlock
mmap
mprotect
mg-receive
mg_close
mq_getattr
mg_notify
mq_open
mqg_send
mq_setattr
mg_unlink
msync
munlockall
munlock
munmap
nanosleep
open

opendir
pathconf
pause
perror

pipe
printf
putc
putchar
puts
raise
rand
read
readdir
realloc
remove
rename
rewind
rewinddir
rmdir
scanf
sem_close
sem_destroy
sem_getvalue
sem_init
sem_open

<aio.h>
<locale.h>
<time.h>
<unistd.h>

<stdlib.h>
<string.h>
<string.h>
<string.h>
<string.h>
<string.h>
<sys/stat.h>
<sys/stat.h>
<time.h>
<sys/mman.h>
<sys/mman.h>
<sys/mman.h>
<sys/mman.h>
<mqueue.h>
<mqueue.h>
<mqueue.h>
<mqueue.h>
<mqueue.h>
<mqueue.h>
<mqueue.h>
<mqueue.h>
<sys/mman.h>
<sys/mman.h>
<sys/mman.h>
<sys/mman.h>
<time.h>
<fcntl.h>

<dirent.h>
<unistd.h>
<unistd.h>
<stdio.h>

<unistd.h>
<stdio.h>
<stdio.h>
<stdio.h>
<stdio.h>
<signal.h>
<stdlib.h>
<unistd.h>
<dirent.h>
<stdlib.h>
<stdio.h>
<unistd.h>
<stdio.h>
<dirent.h>
<unistd.h>
<stdio.h>

<semaphore.h>
<semaphore.h>
<semaphore.h>
<semaphore.h>
<semaphore.h>

STDC_LOCALE_NUMERIC
STDC_TIME.to_local
POSIX_FILE_DESCRIPTOR.seek

STDC_BUFFER.allocate
STDC_BUFFER.memory_copy

STDC_BUFFER.memory_move
STDC_BUFFER fill_with
POSIX_FILE_SYSTEM.make_directory
POSIX_FILE_SYSTEM.create_fifo
STDC_TIME.set_date_time

POSIX_MEMORY_MAP

POSIX_MEMORY_MAP
POSIX_FILE_DESCRIPTOR.open

POSIX_DIRECTORY
POSIX_DIRECTORY.max_filename_length
POSIX_CURRENT_PROCESS.pause

POSIX_PIPE.make

STDC_SIGNAL.raise
STDC_CURRENT_PROCESS.random
POSIX_FILE_DESCRIPTOR.read
POSIX_DIRECTORY
STDC_BUFFER.resize
POSIX_FILE_SYSTEM.remove_file
POSIX_FILE_SYSTEM.rename_to
STDC_FILE.rewind

POSIX_DIRECTORY
POSIX_FILE_SYSTEM.remove_directory

POSIX_UNNAMED_SEMAPHORE.create_shared

Alsoseek_from_currersnd

seek_from_end

See als@opy_from

Alsoset_datandset_time

Alsoopen_readopen_read_write

andopen_write

e-POSIX generates excep-

tions on error.

not applicable.
Seefputec.
Seefputec.
Seefputs.

not applicable.

And create_unshared

Posix function to Eiffel class mapping list 74

sem_post
sem_trywait
sem_unlink

<semaphore.h>
<semaphore.h>
<semaphore.h>

POSIX_SEMAPHORE.release
POSIX_SEMAPHORE.attempt_acquire

sem_wait <semaphore.h> POSIX_SEMAPHORE.acquire

setbuf <stdio.h> STDC_FILE.set_buffer

setgid <unistd.h> POSIX_CURRENT_PROCESS.set_group_id Also restore_group_id

setlocale <locale.h> STDC_CURRENT_PROCESS.set_locale Alsoset_native_localand
set_native_time

setpgid <unistd.h> PAPI_UNISTD.posix_setsid

setsid <unistd.h> PAPI_UNISTD.posix_setsid

setuid <unistd.h> POSIX_CURRENT_PROCESS.set_user_id Also restore_user_id

setvbuf <stdio.h> STDC_FILE.set_no_buffering Alsoset_full_bufferingnd
set_line_buffering

shm_open <sys/mman.h> POSIX_SHARED_MEMORY.open_read_write Andcreate_writgopen_read
Efeatureopen_write.

shm_unlink <sys/mman.h> POSIX_FILE_SYSTEM.unlink_shared_memory_object

sigaction <signal.h> POSIX_SIGNAL

sigaddset <signal.h> POSIX_SIGNAL_SET.add

sigdelset <signal.h> POSIX_SIGNAL_SET.prune

sigemptyset <signal.h> POSIX_SIGNAL_SET.make_empty

sigfillset <signal.h> POSIX_SIGNAL_SET.make_full

sigismember <signal.h> POSIX_SIGNAL_SET.has

signal <signal.h> STDC_SIGNAL.raise

sigpending <signal.h> POSIX_SIGNAL_SET.make_pending

sigprocmask <signal.h> POSIX_SIGNAL_SET.add_to_blocked_signals Alsoremove_from_blocked_signals
andset_blocked_signals

sigqueue <signal.h>

sigsuspend <signal.h> POSIX_SIGNAL_SET.suspend

sigtimedwait <signal.h>

sigwait <signal.h>

sigwaitinfo <signal.h>

sleep <unistd.h> POSIX_CURRENT_PROCESS.sleep

sprintf <stdio.h> Not applicable.

srand <stdlib.h> STDC_CURRENT_PROCESS.set_random_seed

sscanf <stdio.h> Not applicable.

stat <sys/stat.h> POSIX_STATUS

strftime <time.h> STDC_TIME.format

sysconf <unistd.h> POSIX_SYSTEM

system <stdlib.h> STDC_SHELL_COMMAND

tcdrain <unistd.h>

tcflow <unistd.h>

tcflush <unistd.h> POSIX_TERMIOS.flush_input

tcgetattr <unistd.h> POSIX_TERMIOS.make

tcgetpgrp <unistd.h>

tcsendbreak <unistd.h>

tcsetattr <unistd.h> POSIX_TERMIOS.apply_now Alsoapply_drainandapply_flush

tcsetpgrp <unistd.h>

time <time.h> STDC_TIME.make_from_unix_time

timer_create <signal.h>

timer_create <time.h>

times <times.h>

tmpfile <stdio.h> STDC_TEMPORARY_FILE.make

tmpnam <stdio.h> STDC_FILE_SYSTEM.temporary_file_name

ttyname <unistd.h> POSIX_FILE_DESCRIPTOR.ttyname

tzset <time.h>

umask <sys/stat.h>

uname <sys/utsname.h> POSIX_SYSTEM Various queries.

ungetc <stdio.h> STDC_FILE.ungetc

unlink <unistd.h> POSIX_FILE_SYSTEM.unlink

75

utime <utime.h> POSIX_FILE_SYSTEM.utime See also itsouchmethod.
viprintf <stdio.h> Not applicable.
vprintf <stdio.h> Not applicable.
vsprint <stdio.h> Not applicable.

wait <sys/wait.h> POSIX_CURRENT_PROCESS.wait

waitpid <sys/wait.h> POSIX_FORK_ROQOT.wait_pid

write <unistd.h> POSIX_FILE_DESCRIPTOR.write

This tabel does not contain the following category of functions:

1.

2.

Math functions.

String functions, including wide character/multibyte string. routines. The memory move/copy
functions are included, some of them even supported.

No type conversion functions.
No functions from<ctype.h>.
No functions from<set jmp.h>.
No functions from<stdarg.h>.

No string formatting functions likescanf. | suggest you use the Formatter library for
that. You can download this excellent librarytattp: //www.eiffel-forum.org/archive
/dominicu/format.htm.

Functions in above categories are either not applicable, already present in Eiffel or are better off in
a different library.

http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm

B

Ing of Stan-

dard C classes

B.1 STDC_BASE

classinterface STDC_BASE
feature(s) from STDC_BASE
-- errno
errno. STDC_ERRNO
invariant
accessing_real_singletorsecurity is_real_singleton
end of STDC_BASE

77 STDC_BUFFER

B.2 STDC_BUFFER

classinterface STDC_BUFFER
creation
allocate (a_capacity INTEGER
-- allocate memory ofa_capacitybytes
allocate_and_cleara_capacity INTEGER
-- allocate memory ofa_capacitybytes, make sure its zeroed out
make_from_pointefa_pointer POINTER a_capacity INTEGER a_become_owneBOOLEAN
-- attach a pointer to this object. H become_owneis
-- True, it will deallocate the pointer whecloseis
-- called, or when this object is garbage collected.
feature(s) from STDC_BUFFER
-- Creation
allocate (a_capacity INTEGER
-- allocate memory ofa_capacitybytes
allocate_and_clear(a_capacity INTEGER
-- allocate memory ofa_capacitybytes, make sure its zeroed out
make_from_pointefa_pointer POINTER a_capacity INTEGER a_become_owneBOOLEAN
-- attach a pointer to this object. H become_owneis
-- True, it will deallocate the pointer whecloseis
-- called, or when this object is garbage collected.
feature(s) from STDC_BUFFER
-- Other allocation commands
resize (new_capacity INTEGER
-- Resize memory tmew_capacitybytes. Expanded memory is not
-- guaranteed to be zeroed out.
feature(s) from STDC_ BUFFER
-- Access
resource_usage_can_be_increas8DOLEAN
-- Can the number of allocated resources increased eafracity?
feature(s) from STDC_BUFFER
-- Copy data internally or externally
copy_from(source STDC_BUFFER src_offset, dest offset, bytd I TEGER
-- Move data from another buffer into ourselves.
-- Start at offsetsrc_offset into
-- offset dest_offsetmoving bytesbytes
-- Memory may overlap.
memory_copysource POINTER src_offset INTEGER dest_offset, bytedNTEGER
-- Copy data fromsource offset src_offset to location
-- dest_offsein this buffer, for bytesbytes.
-- Memory may not overlap, usmoveto copy within buffer
-- or memory_moveo copy from potentially overlapping buffer.
memory_movésource POINTER src_offset INTEGER dest_offset, bytedNTEGER
-- Copy data fromsource offset src_offset to location
-- dest_offsein this buffer, for bytesbytes.
-- Memory may overlap.

Short (flat) listing of Standard C classes

78

move (src_offset, dest offSetNTEGER bytes INTEGER
-- Move data around in buffer itself from offsetc_offsetto
-- offset dest_offsetmoving byteshbytes.
-- Memory may overlap.
feature(s) from STDC_BUFFER
-- Set/get bytes (8-bit data)
peek_uint8(index INTEGER: INTEGER
-- consider memory an array of 8 bit values.
infix "@" (index INTEGER: INTEGER
-- consider memory an array of 8 bit values.
poke_uint8(index, value INTEGER
peek_int8(index INTEGER: INTEGER
-- consider memory an array of 8 hit values.
poke_int8(index, value INTEGER
feature(s) from STDC_BUFFER
-- Set/get integers (16-bit data)
peek_intl6(index INTEGER: INTEGER
-- Read signed 16 bit value at offsgtdex in native
-- endian format.
peek_intl6_nativgindex INTEGER: INTEGER
-- Read signed 16 bit value at offsetdex in native
-- endian format.
peek_uintl6(index INTEGER: INTEGER

-- Read unsigned 16 bit value at offsetdex in native format.

peek_uintl6_nativéindex INTEGER: INTEGER

-- Read unsigned 16 bit value at offsedex in native format.

peek_intl6_big endiafindex INTEGER: INTEGER

-- Read 16 bit value at offséhdex in big endian format.
peek_intl16_little_endiarfindex INTEGER: INTEGER

-- Read 16 bit value at offsahdexin little endian format.
poke_intl6(index INTEGER value INTEGER

-- Write 16 bit value at offsetndex in native endian format.

poke_intl6_nativdindex INTEGER value INTEGER

-- Write 16 bit value at offsetndex in native endian format.

poke_intl6_big endiaindex INTEGER value INTEGER
-- Write 16 bit value at offsetndex in big endian format.
poke_int16_little_endiarfindex INTEGER value INTEGER
-- Write 16 bit value at offseindex in little endian format.
feature(s) from STDC_BUFFER
-- Set/get integers (32-bit data)
peek_int32_nativgindex INTEGER: INTEGER
-- Read 32 bit value at offséhdex assume its byte order
-- is native, and return it.
peek_integerindex INTEGER: INTEGER
-- Read 32 bit value at offséhdex assume its byte order
-- is native, and return it.
peek_int32_big_endiafindex INTEGER: INTEGER

79 STDC_BUFFER

-- Read 32 bit value at offséhdex assume its byte order
-- is big endian, and return it in native format.
peek_int32_little_endiarfindex INTEGER: INTEGER
-- Read 32 bit value at offséhdex assume its byte order
-- is little endian, and return it in native format.
peek _uint32_nativéindex INTEGER: INTEGER
-- Read 32 bit unsigned int at offs@tdex assume native
-- byte order.
peek_uint32_big_endiafindex INTEGER: INTEGER
-- Read 32 bit unsigned int at offsgidex assume its
-- byte order is big endian, and return it in native format.
peek uint32_little_endiafindex INTEGER: INTEGER
-- Read 32 bit unsigned int at offsatdex assume its
-- byte order is big endian, and return it in native format.
poke_integer(index INTEGER value INTEGER
-- Write 32 bit value at offseindex in native endian format.
poke_int32_nativdindex INTEGER value INTEGER
-- Write 32 bit value at offseindex in native endian format.
poke_int32_big_endiafindex INTEGER value INTEGER
-- Write 32 bit value at offseindex in big endian format.
poke_int32_little_endiarfindex INTEGER value INTEGER
-- Write 32 bit value at offseindex in little endian format.
feature(s) from STDC_BUFFER
-- Set/get characters
peek_characte(index INTEGER: CHARACTER
-- return value at positioiindex as a character
poke_character(index INTEGER value CHARACTER
-- set character aposition index to value
c_substring_with_strinddest STRING start_index, end_indeXNTEGER
-- As c_substringbut useddestas the destination.
c_substring(start_index, end_indeXNTEGER: STRING
-- Create a substring containing all characters from
-- start_index up to encountering a %U or when end_index is
-- reached, whatever happens first.
substring (start_index, end_indeXNTEGER: STRING
-- Create a substring containing all characters
-- from start_index to end_index inclusive.
feature(s) from STDC_BUFFER
- Fill
fill_at (start_index, a_countINTEGER byte INTEGER
-- Starting at positiorstart_index write byte for a_countbytes
feature(s) from STDC_ BUFFER
-- Searching
locate_character(other. CHARACTER start_index INTEGER: INTEGER
-- Return index ofother in buffer, or -1.
-- Search begins agtart_index
locate_string(other. STRING start_index INTEGER: INTEGER

Short (flat) listing of Standard C classes 80

Does buffer contain other?
- Returns index wherether is found.
- Returns -1 if not found
- searching starts at positicstart_index
feature(s) from STDC_BUFFER
-- Queries
is_valid_index(index INTEGER: BOOLEAN
is_valid_range(from_index, to_indexINTEGER: BOOLEAN
-- Returns True if from_index..to_index is a valid and
-- meaningfull range
feature(s) from STDC_BUFFER
-- Low level handle functions
do_close BOOLEAN
-- Close resource, return error if any, or zero on
-- success. This routine may never call another object, else
-- it cannot be used safely idispose
unassigned_valuePOINTER
-- The value that indicates thdtandleis unassigned.
invariant
accessing_real_singletorsecurity is_real_singleton
capacity_not_negativecapacity >= 0;
valid_capacity is_allocated= capacity > 0;
open_implies_handle_assigned_allocated= ptr /= unassigned_valye
owned_implies_operis_ownerimplies is_allocated
owned_implies_handle_assigndd_ownerimplies ptr /= unassigned_valye
end of STDC_BUFFER

81 STDC_CONSTANTS

B.3 STDC_CONSTANTS

classinterface STDC_CONSTANTS
feature(s) from STDC_CONSTANTS
-- error codes
edom INTEGER
-- Math argument out of domain of function
erange INTEGER
-- Math result not representable
feature(s) from STDC_CONSTANTS
-- standard streams
stream_stdin POINTER
stream_stdoutPOINTER
stream_stderr POINTER
feature(s) from STDC_CONSTANTS
-- characters
const_eof INTEGER
-- signals EOF
feature(s) from STDC_CONSTANTS
-- buffering
iofbf: INTEGER
-- full buffering
iolbf: INTEGER
-- line buffering
ionbf: INTEGER
-- no buffering
feature(s) from STDC_CONSTANTS
-- file positioning
seek setINTEGER
seek cur INTEGER
seek_endINTEGER
feature(s) from STDC_CONSTANTS
-- Signal related constants
sig_dft POINTER
sig_err. POINTER
sig_ign POINTER
feature(s) from STDC_CONSTANTS
-- Signals
sigabrt INTEGER
sigfpe INTEGER
-- erroneous arithmetic operation, such as zero divide or an
-- operation resulting in overflow
sigill: INTEGER
-- illegal instruction
sigint INTEGER
-- receipt of an interactive attention signal
sigsegv INTEGER

Short (flat) listing of Standard C classes

82

-- invalid access to storage
sigterm INTEGER
feature(s) from STDC_CONSTANTS
-- random numbers
rand_max INTEGER
-- maximum value returned by thendom function
feature(s) from STDC_CONSTANTS
-- category constants
Ic_ctype INTEGER
Ic_numeric INTEGER
Ic_time INTEGER
Ic_collate INTEGER
Ic_monetary INTEGER
Ic_all: INTEGER
feature(s) from STDC_CONSTANTS
-- various
clocks_per_secINTEGER
feature(s) from STDC_CONSTANTS
-- exit codes
exit_failure INTEGER
-- exit status when something has gone wrong
exit_successINTEGER
-- exit status upon success
end of STDC_CONSTANTS

83 STDC_CURRENT_PROCESS

B.4 STDC_CURRENT_PROCESS

classinterface STDC_CURRENT_PROCESS
feature(s) from STDC_SECURITY_ACCESSOR
-- The singleton, available to any because its used in preconditions
security STDC_SECURITY
-- Singleton entry point for security.
feature(s) from STDC_BASE
-- errno
errno. STDC_ERRNO
feature(s) from STDC_CURRENT_PROCESS
-- my stdandard input/output/error
stdin STDC_TEXT_FILE
stdout STDC_TEXT_FILE
stderr. STDC_TEXT_FILE
invariant
accessing_real_singletorsecurity_is_real_singletgn
end of STDC_CURRENT_PROCESS

Short (flat) listing of Standard C classes

84

B.5 STDC_ENV_VAR

classinterface STDC_ENV_VAR
creation
make (a_name STRING
feature(s) from STDC_ENV_VAR
-- Access
exist BOOLEAN
-- Is this environment variable defined?
name STRING
-- Name of environment variable.
value STRING
-- Current value of environment variable.
invariant
accessing_real_singletorsecurity_is_real_singleton
end of STDC_ENV_VAR

85 STDC_FILE

B.6 STDC_FILE

STDC_FILEis a deferred class. UsSTDC_TEXT_FILHor accessing and creating text files, or
STDC_BINARY_FILEor binary files.

deferred classinterface STDC_FILE
feature(s) from STDC_FILE
-- Initialization
create_read_writg(path STRING
-- Open file for update (reading and writing). If the file
-- already exists, it is truncated to zero length.
-- So permissions seem to remain.
create_write(path STRING
-- create new file for writing. If the file already exists,
-- it is truncated to zero length.
-- So permissions seem to remain.
open (path, a_mode STRING
-- open file in given mode
open_appendpath STRING
-- append to exiting file or create file if it does not exist
open_read(path STRING
-- open file for reading
open_read_writg(path STRING
-- Open file for reading and writing.
feature(s) from STDC_FILE
-- Work with existing streams
attach_to_strean{a_stream POINTER a_mode STRING
-- Attach to a_stream Does not become owner of stream so
-- it will not close onclose or when garbage collected.
feature(s) from STDC_FILE
-- Reopen
reopen(path, a_mode STRING
-- Closes and then opens a stream.
feature(s) from STDC_FILE
-- Control over buffering
flush
-- Updates this stream
setbuf (buffer. POINTER
-- Determines how the stream will be buffered
-- gives you a fully buffered input and output.
-- Not sure: buffer should have at least BUFSIZ bytes?
-- No operation should yet been performed on this file
-- buffer = default_pointer: default buffer will be allocated
-- buffer /= default_pointer implies buffer size = BUFSIZ
set_buffer(buffer. POINTER
-- Determines how the stream will be buffered
-- gives you a fully buffered input and output.
-- Not sure: buffer should have at least BUFSIZ bytes?

Short (flat) listing of Standard C classes

86

-- No operation should yet been performed on this file
-- buffer = default_pointer: default buffer will be allocated
-- buffer /= default_pointer implies buffer size = BUFSIZ
set_full_buffering(buffer. POINTER size INTEGER
-- Determines buffering for a stream.
-- If buffer is default_pointer, a buffer o$ize bytes
-- will be allocated by this routine.
set_line_bufferingbuffer. POINTER size INTEGER
-- Determines buffering for a stream.
-- Give NULL buffer so setvbufwill allocate a buffer.
set_no_buffering
-- Turn buffering off.
feature(s) from STDC_FILE
-- read, C like
last_byte INTEGER
-- last read character gjet _character
- can be negative, so is more a last_shortint or so!
getc
-- Reads a C unsigned char and converts it to an integer,
- the result is left inlast_byte
- This function probably can be used to read a single
-- byte
get_character
-- Reads a C unsigned char and converts it to an integer,
-- the result is left inlast_byte
-- This function probably can be used to read a single
-- byte
gets (bytes INTEGER
-- Reads at most one less thagtescharacters.
- No additional characters are read after a newline character
or after end-of-file. If a newline character is read, it
is returned too.
Result is placed irlast_string
get_string(bytes INTEGER
-- Reads at most one less thagtescharacters.
- No additional characters are read after a newline character
- or after end-of-file. If a newline character is read, it
is returned too.
Result is placed ifast_string
read (buf: POINTER offset, bytesINTEGER
-- Read chunk, selast read offset determines how far
-- in buf you want to start writing.
feature(s) from STDC_FILE
-- write, C like
putc (c: INTEGER
-- write a single character
put_character(c: INTEGER

87

STDC_FILE

-- write a single character
ungetc(c: INTEGER
-- pushesc back to the stream
-- note that file positioning functions discard any
-- pushed-back characters
write (buf: POINTER offset, bytesINTEGER
-- write bytesbytes frombuf at offset offset
-- we do not really care if offset is positive or negative...
feature(s) from STDC_FILE
-- read, Eiffel like
last_read INTEGER
-- last read bytes by some read XXXX or get_string call
last_boolean BOOLEAN
-- last boolean read byead_boolean
last_character CHARACTER
-- last character read bgead_character
last_double DOUBLE
-- last double Iread byead_double
last_integer INTEGER
last_real REAL
-- last real read byead_real
last_string STRING
-- Last string read byread_stringor
-- get_string Includes the end-of-line character, if any.
read_boolean
-- attempt to read back a boolean written by write_boolean
read_buffer(buf: STDC_BUFFER offset, bytesINTEGER
-- More safe version ofead in case you have a
-- STDC_BUFFER object. Read starts @ffset bytes in buf.
-- Checklast_readfor number of bytes actually read.
read_double
read_character
-- read a single character and dast_character
-- if end-of-file encounteredeof is True
read_integer
read_real
read_string (bytes INTEGER
-- Read at mosh characters, a value more expected by
-- programmers not used to strings with a trailing byte.
result is placed inast_string
last_stringincludes the newline character lifytes
-- are longer then the length of the actual line!
feature(s) from STDC_FILE
-- write, Eiffel like
last_written INTEGER
-- last written bytes by some write XXXX call
put (any. ANY)

Short (flat) listing of Standard C classes

-- write class as string
write_buffer (buf: STDC_BUFFER offset, bytesINTEGER
-- more safe version ofvrite in case you have a
-- STDC_BUFFER object
-- Checklast_written for number of bytes actually written,
-- if you use asynchronous writing.
write_boolean(b: BOOLEAN
-- write a boolean in Standard C %f format
write_character(c: CHARACTER
-- write a single character
write_double(d: DOUBLE)
-- write a double in Standard C %f format
write_integer (i: INTEGER
-- write an integer in Standard C %d format
write_real (r: REAL
-- write a real in Standard C %f format
write_string (s: STRING
-- write a string
puts (s: STRING
-- write a string
put_string (s. STRING
-- write a string
feature(s) from STDC_FILE
-- file position
getpos STDC_FILE_POSITION
-- get the current position, usset_positionto return to
-- this saved position
get_position STDC_FILE_POSITION
-- get the current position, useet _positionto return to
-- this saved position
rewind
-- Sets the file position to the beginning of the file
seek(offset INTEGER
-- set file position to given absoluteffset
seek_from_currenfoffset INTEGER
-- set file position relative to current position
seek_from_endoffset INTEGER
-- set file position relative to end of file
setpos(a_position STDC_FILE_POSITION
-- set the current position
set_position(a_position STDC_FILE_POSITION
-- set the current position
tell: INTEGER
-- The current position
feature(s) from STDC_FILE
-- other
clearerr

89 STDC_FILE

-- Clears end-of-file and error indicators for a stream.
clear_error
-- Clears end-of-file and error indicators for a stream.
feature(s) from STDC_FILE
-- Access
eof: BOOLEAN
-- True if eof encountered by getc or,
-- if the end-of-file indicator is set.
error: BOOLEAN
-- True if and only if the error indicator is set
filename STRING
--The filename of this file.
mode STRING
-- mode in which the file is opened/created
resource_usage_can_be_increas8DOLEAN
-- Is it allowed to open another file?
feature(s) from STDC_FILE
-- is mode binary or text
is_binary_mode_specificatiofa _mode STRING: BOOLEAN
-- True if last character of a_mode = b
is_text_mode_specificatidf@_mode STRING: BOOLEAN
-- True if last character of a_mode =t
feature(s) from STDC_FILE
-- Low level handle functions
do_close BOOLEAN
-- Close resource. Return False if an error occurred. Error
-- value should be irerrno. This routine may never call
-- another object, else it cannot be used safely in
-- dispose
-- This routine is usely redefined to actually close or
-- deallocate the resource in addition of resettirandle
unassigned_valuePOINTER
-- The value that indicates thdtandleis unassigned.
invariant
accessing_real_singletorsecurity_is_real_singleton
capacity _not_negativecapacity >= 0;
valid_capacity is_open= capacity > 0;
open_implies_handle_assigneid_open= stream/= unassigned_valye
owned_implies_opens_ownerimplies is_open
owned_implies_handle_assigndd _ownerimplies stream/= unassigned_valye
last_string_valid last_string /= Void;
gets_buf valid gets_buf/= Void,
end of deferred STDC_FILE

Short (flat) listing of Standard C classes

90

B.7 STDC_FILE_SYSTEM

classinterface STDC_FILE_SYSTEM
feature(s) from STDC_FILE_SYSTEM
-- path names
expand_path(a_path STRING: STDC_PATH
-- returns a new path
feature(s) from STDC_FILE_SYSTEM
-- rename files/directories, remove files/directories
remove_file(a_path STRING
-- Removes a file from a directory.
-- For Standard C, its implementation defined what
-- remove_file does if file is opened by some process
-- (remove_filefails on Windows for example).
-- doesnt remove a directory.
rename_to(current_path, new_pathSTRING
-- Rename a file or a directory.
-- new_pathshould not be an existing path.
feature(s) from STDC_FILE_SYSTEM
-- accessibility of files
is_modifiable(a_path STRING: BOOLEAN
-- Is a_pathreadable and writable by this program?

-- Does this by attemting to opea_pathfile read/write.
is_readable(a_path STRING: BOOLEAN

-- tests if file is readable by this program

-- does this by attemting to opea path file read-only
invariant

accessing_real_singletorsecurity_is_real_singleton
end of STDC_FILE_SYSTEM

91

STDC_SECURITY

B.8 STDC_SECURITY

classinterface STDC_SECURITY
feature(s) from STDC_SECURITY
-- modes
make_allow_all
-- just allow everything
make_allow_sandbox
-- allow very little, use for setuid root programs
feature(s) from STDC_SECURITY
-- the security aspects
cpu STDC_SECURITY_CPU
error_handling STDC_SECURITY_ERROR_HANDLING
files STDC_SECURITY_FILES
memory STDC_SECURITY_MEMORY
feature(s) from STDC_SECURITY
-- various
assert_once_memory_allocated
-- make sure that certain once functions in STDC_BASE are
-- called. These once functions are called when an error
-- occurs, at that time there might not be memory left to
-- create them
invariant
accessing_real_singletorsecurity_is_real_singleton
remain_single Current = the_singleton
end of STDC_SECURITY

Short (flat) listing of Standard C classes 92

B.9 STDC_SIGNAL

classinterface STDC_SIGNAL
creation
make (a_value INTEGER
feature(s) from STDC_SIGNAL
-- creation
make (a_value INTEGER
feature(s) from STDC_SIGNAL
-- set signal properties, make effective wigipply
apply
-- Make changes effective.
set_default_action
-- install signal-specific default action
set_ignore_action
-- ignore signal
set_handler(a_handler STDC_SIGNAL_HANDLER
-- Install ones own signal handler.
feature(s) from STDC_SIGNAL
-- signal functions
raise
-- raise the signal
feature(s) from STDC_SIGNAL
-- signal state
is_ignorable BOOLEAN
-- All signals Standard C knows about are ignorable...
value INTEGER
-- the signal
invariant
accessing_real_singletorsignal_switch_is_real_singletpn
accessing_real_singletorsecurity_is_real_singleton
valid_signal_value value >= 1;
end of STDC_SIGNAL

93

STDC_SIGNAL_HANDLER

B.10 STDC_SIGNAL_HANDLER

deferred classinterface STDC_SIGNAL_HANDLER
invariant

accessing_real_singletorsignal_switch_is_real_singleton
end of deferred STDC_SIGNAL_HANDLER

Short (flat) listing of Standard C classes

94

B.11 STDC_SYSTEM

classinterface STDC_SYSTEM

feature(s) from STDC_SYSTEM
-- run-time determined queries
is_shell_available BOOLEAN

-- Return True if command interpreter is available
feature(s) from STDC_SYSTEM

-- compile time determined queries
clocks_per_secondNTEGER

-- number per second of the value returned by ¢heck function
feature(s) from STDC_SYSTEM
-- endianess

is_big_endian BOOLEAN

-- True if this is a big endian architecture
is_little_endian BOOLEAN

-- True if this is a little endian architecture
invariant

accessing_real_singletorsecurity_is_real_singleton
end of STDC_SYSTEM

95 STDC_TIME

B.12 STDC_TIME

classinterface STDC_TIME
creation
make_datgla_year, a_month, a_dayNTEGER
-- create a time according to this day, time 00:00:00
-- date is assumed to be local date
make_date_timéa_year, a_month, a_day, a_hour, a_minute, a_secdNTEGER
-- date is assumed to be local date
-- we assume daylight saving time setting in effect is
-- available from system
make_from_now
-- Make value equal to current unix time.
-- Afterwards callto_local or to_utc to turn individual
-- fields in local time or in utc time.
make_time(a_hour, a_minute, a_secontNTEGER
-- We assume daylight saving time setting in effect is
-- available from system.
-- Day will be January 1, 1970
make_from_unix_timé¢a_value INTEGER
-- a_valueis a time_t value.
-- Afterwards callto_local or to_utc to turn individual
-- fields in local time or in utc time.
feature(s) from STDC_TIME
-- Initialization
make_datga_year, a_month, a_dayNTEGER
-- create a time according to this day, time 00:00:00
-- date is assumed to be local date
make_date_timé€a_year, a_month, a_day, a_hour, a_minute, a_secéNGEGER
-- date is assumed to be local date
-- we assume daylight saving time setting in effect is
-- available from system
make_from_now
-- Make value equal to current unix time.
-- Afterwards callto_local or to_utc to turn individual
-- fields in local time or in utc time.
make_time(a_hour, a_minute, a_secontNTEGER
-- We assume daylight saving time setting in effect is
-- available from system.
-- Day will be January 1, 1970
make_from_unix_timéa_value INTEGER
-- a_valueis a time_t value.
-- Afterwards callto_local or to_utc to turn individual
-- fields in local time or in utc time.
feature(s) from STDC_TIME
-- make individual time fields valid
to_local

Short (flat) listing of Standard C classes 96

-- switch time fields to local time
to_utc
-- switch time fields to utc time
feature(s) from STDC_TIME
-- manually set individual time fields
set_date(a_year, a_month, a_dayNTEGER
-- set date part, time remains unchanged
set_date timga_year, a_month, a_day, a_hour, a_minute, a_secdNTEGER
-- we assume daylight saving time setting in effect (or not)
-- has been set
set_dst_to_current
-- Let system figure out if daylight saving time is in effect.
set_dst_to_none
-- Daylight saving time is not in effect.
set_dst_in_effect
-- Daylight saving time is in effect.
set_time(a_hour, a_minute, a_secontNTEGER
-- set time part, date remains unchanged
feature(s) from STDC_TIME
-- individual time fields, need call téo_local or to_utc
year. INTEGER
month INTEGER
day. INTEGER
-- Day of the month
weekday INTEGER
-- Days since Sunday
day_of year INTEGER
-- Days since January 1st
hour. INTEGER
minute INTEGER
second INTEGER
is_daylight_savings_in_effecBOOLEAN
-- Return True if we know for sure daylight savings is effective
is_daylight_savings_unknowBOOLEAN
-- Return True if we do not know if daylight savings is effective
feature(s) from STDC_TIME
-- time as string
short_weekday nam&TRING
-- Abbreviated weekday name
weekday nameSTRING
-- Full weekday name
short_month_nameSTRING
-- Abbreviated month name
month_nameSTRING
-- Full month name
format (format_str STRING: STRING
-- Return formatted date time according farmat_str See

97

STDC_TIME

-- man strftime for details.
default_format STRING
-- Returns a string of the form "Mon Apr 17 21:49:20 2000"
local_date_string STRING
-- Return date part in format local to current country
local_time_string STRING
-- Return time part in format local to current country
feature(s) from STDC_TIME
-- date calculations
is_equal(other. like Currenf): BOOLEAN
-- Is other attached to an object considered equal to
-- current object ?
infix "-" (other. like Currenf: like Current
-- Creates a new time which is the difference between
-- Current and Other
infix "<" (other. like Curren): BOOLEAN
-- Is current object less thaather?
feature(s) from STDC_TIME
-- state
hash_code INTEGER
-- The hash-code value d@urrent
value INTEGER
-- time in seconds from January 1, 1970
-- perhaps since 1980 for Windows systems
feature(s) from STDC_TIME
-- non POSIX, but Gates specific stuff
minimum_year INTEGER
-- returns the minimum year for the current platform
-- for POSIX is 1970, for Windows is 1980
invariant
accessing_real_singletorsecurity_is_real_singletgn
valid_tm_struct tm /= Void,
end of STDC_TIME

C
Short listing of
abstract classes

An abstract class is somewhat above the Standard C classes, and between the features you get when
you use eosix or Windows class. It is mainly aimed at users who want to write software usable
on Unix and Windows, and who do not want to useasix emulator.

You never use an abstract class directly, always use the corresponding effective EPX_XXXX, for
which there is a variant in therc/posix or src/windows directory.

C.1 ABSTRACT_CURRENT_PROCESS

deferred classinterface ABSTRACT_CURRENT_PROCESS
feature(s) from STDC_SECURITY_ACCESSOR
-- The singleton, available to any because its used in preconditions
security STDC_SECURITY
-- Singleton entry point for security.
feature(s) from STDC_BASE
-- errno
errno. STDC_ERRNO
feature(s) from STDC_CURRENT_PROCESS
-- my stdandard input/output/error
stdin STDC_TEXT_FILE
stdout STDC_TEXT_FILE
stderr. STDC_TEXT_FILE
feature(s) from ABSTRACT_PROCESS
-- Process properties
pid: INTEGER
-- The process identifier.
is_pid_valid BOOLEAN
-- current process id is always valid
feature(s) from ABSTRACT_PROCESS
-- Signal this process
terminate
-- Attempt to gracefully terminate this process.
require
valid_pid is_pid_valid
feature(s) from ABSTRACT_CURRENT_PROCESS
-- every process also has standard file descriptors which might not be compatible with stdin/stdout/stde
fd_stdin ABSTRACT_FILE_DESCRIPTOR
fd_stdout ABSTRACT_FILE_DESCRIPTOR

99

ABSTRACT_CURRENT_PROCESS

fd_stderr ABSTRACT_FILE_DESCRIPTOR
invariant

accessing_real_singletorsecurity_is_real_singleton
end of deferred ABSTRACT_CURRENT_PROCESS

Short listing of abstract classes 100

C.2 ABSTRACT EXEC_PROCESS

deferred classinterface ABSTRACT_EXEC_PROCESS
feature(s) from ABSTRACT_EXEC_PROCESS
-- Initialization
make (a_program STRING a_arguments ARRAYSTRING)
make_capture_inpufa_program STRING a_arguments ARRAYSTRING)
make_capture_outpua_program STRING a_arguments ARRAYSTRING)
make_capture_iqa_program STRING a_arguments ARRAYSTRING)
-- Why not use threedirectional i/o, because youre getting
-- yourself in great, great trouble anyway.
-- A bit of advice: call stdin.close before starting to call
-- stdout.read_string and such...
make_capture_alla_program STRING a_arguments ARRAYSTRING)
-- Threedirectional i/o is a great way to get yourself in trouble.
feature(s) from ABSTRACT_EXEC PROCESS
-- (re)set arguments
set_argumentga_arguments ARRAYSTRING)
feature(s) from ABSTRACT_EXEC_ PROCESS
-- ilo capturing
capture_input BOOLEAN
-- is input captured on execute?
capture_output BOOLEAN
-- is output captured on execute?
capture_error BOOLEAN
-- is error captured on execute?
set_capture_inpufon: BOOLEAN
set_capture_outpufon. BOOLEAN
set_capture_erroon. BOOLEAN
fd_stdin ABSTRACT_FILE_DESCRIPTOR
fd_stdout ABSTRACT_FILE_DESCRIPTOR
fd_stderr ABSTRACT_FILE_DESCRIPTOR
feature(s) from ABSTRACT_EXEC_PROCESS
-- Execute
execute
-- Executesprogram_name After execution, at some point in
-- time, you have towait or wait_for for this process to
-- terminate.
require
not_already_startedis_terminated
feature(s) from ABSTRACT_EXEC PROCESS
-- Actions that parent may execute
wait_for (suspend BOOLEAN
-- Wait for child process to terminate guspend
require
pid_refers_to_child is_pid_valid
not_terminated not is_terminated

101 ABSTRACT_EXEC_PROCESS

ensure
stdin_closed is_terminatedimplies fd_stdin = Void or else fd_stdin.is_closed
stdout_closedis_terminatedimplies fd_stdout= Void or else fd_stdout.is_closed
stderr_closed is_terminatedimplies fd_stderr= Void or else fd_stderr.is_closed
terminated suspendimplies is_terminated
feature(s) from ABSTRACT_EXEC_PROCESS
-- Accessible state
program_name STDC_PATH
-- program to execute
arguments ARRAYSTRING
-- arguments to pass to program
invariant
accessing_real_singletorsecurity_is_real_singleton
program_name_not_emptprogram_name= Void and then not program_name.is_empty
arguments_not_voidarguments/= Void,
end of deferred ABSTRACT_EXEC_PROCESS

Short listing of abstract classes 102

C.3 ABSTRACT_FILE_DESCRIPTOR

deferred classinterface ABSTRACT_FILE_DESCRIPTOR
feature(s) from STDC_SECURITY_ACCESSOR
-- The singleton, available to any because its used in preconditions
security STDC_SECURITY
-- Singleton entry point for security.
feature(s) from STDC_BASE
-- errno
errno. STDC_ERRNO
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Creation
open (a_path STRING a_flags INTEGER
-- open given file with access given Wiags
open_read(a_path STRING
-- open given file with read-only access
open_write(a_path STRING
open_read_write(a_path STRING
open_truncatgla_path STRING
create_read_write(a_path STRING
-- Always create a file, existing or not.
-- Give read/write permissions to user only.
create_write(a_path STRING
-- Always create a file, existing or not.
-- Give read/write permissions to user only.
create_with_modda_path STRING flags, mode INTEGER
-- create a file according télags and with mode access
-- permissions. Make sure you have th O_CREAT flag in flags
-- if you really want to create something!
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Special creation
attach_to_fd(a_fd INTEGER
-- Create file descriptor with value_fd File descriptor
-- does not become owner, so it will not clogefd
make_as_duplicatéanother ABSTRACT_FILE_DESCRIPTQR
-- On creation, create a duplicate from another file descriptor
-- As normal call, closes its own descriptor first (if open) and
-- duplicates next.
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Close
close
-- We always describe an existing object, however user
-- probably wants to have control about closing a file.
detach
-- Forget the current file descriptor.
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Change ownership of the descriptor. Can help to influence subtile garbage collector problems

103 ABSTRACT_FILE_DESCRIPTOR

make_owner
-- this file descriptor will (start to) own its descriptor
unown
-- When a stream is opened on a file descriptor the file
-- descriptor itself should not close itself, the stream
-- will close it.
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Stream or file behaviour
is_streaming BOOLEAN
-- Is data from this file descriptor coming through a network
-- stream?
set_streamingenable BOOLEAN
-- Influence behaviour of certain functions if they should be
optimized for data coming from disk or data coming from
the network. In particulais_streamingimplies that a
client application is prepared to handieads that
- return less than the requested number of bytes, but dont
- assume that means end-of-file.
feature(s) from ABSTRACT_FILE _DESCRIPTOR
-- Raw read and write
last_blocked BOOLEAN
-- True if last read or write call would be blocked
last_read INTEGER
-- How many bytes were read by last call tead
-- -1 implies last_blocked
last_written INTEGER
-- How many bytes were written by last call to write
-- -1 implies last_blocked
read_loop_disabledBOOLEAN
-- For data coming from the network, a read does not always
- return the requested number of bytes. In such a case,
- reading again probably will return more bytes as they have
- arrived in the network buffers, or perhaps by reading you
- have freed the network buffers for more data.
- However, certain file descriptors block when reading
- again, because they dont return EOF when there is no more
- data. A typical example is a character special file.
- And sometimes the application can handle streaming reads
-- just fine and doesnt care if not all requested bytes are
-- returned.
-- This variable influences ifead will attempt to read
-- more bytes in its loop, or not.
read (buf: POINTER offset, nbytesINTEGER
-- Read data intdouf at offset for nbytesbytes.
-- Number of bytes actually read are available in last_read.
-- Dont mix this routine with read_string or read_character!
write (buf: POINTER offset, nbytesINTEGER

Short listing of abstract classes 104

-- write given data frombuf at offset for nbytesbytes.
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Safer read/write
read_buffer(buf: STDC_BUFFER offset, nbytesINTEGER
-- more safe version ofead in case you have a
-- STDC_BUFFER object
write_buffer (buf: STDC_BUFFER offset, bytesINTEGER
-- more safe version ofvrite in case you have a
-- STDC_BUFFER object
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Read routines that can be mixed witbad calls
last_line STRING
-- last line read byread_line (includes %N), see STRING_HELPER.chop
read_line (max_length INTEGER
-- Raw, and slow, read of characters up to end of line. Can
-- be safely mixed withread, unlike read_string Only
-- max_lengthcharacters are returned.
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Eiffel like output
put (a: ANY)
-- write any Eiffel object as string
write_character(c:. CHARACTER
write_string (s: STRING
puts (s STRING
put_string (s STRING
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Buffered input, line reading instead of block reading, dont mix with raad calls!
last_character CHARACTER
last_string STRING
-- last read string (includes %N), see STRING_HELPER.chop
read_character
-- Setslast_character
read_string(a_size INTEGER
-- Implements line reading on top eéad Sets
-- last_string which includes the new line character if
-- any. Reads until eof or new line encountered, returns max
-- a_sizecharacters.
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- file position
seek(offset INTEGER
-- set file position to given absoluteffset
seek_from_currenfoffset INTEGER
-- set file position relative to current position
seek_from_endoffset INTEGER
-- set file position relative to end of file
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- queries

105 ABSTRACT_FILE_DESCRIPTOR

eof: BOOLEAN
-- True if end-of-file reached.
-- Currently Im unsure if detection is reliable
isatty,. BOOLEAN
-- return true if handle associated with character device
is_attached_to_terminaBOOLEAN
-- return true if handle associated with character device
is_blocking_io BOOLEAN
-- True if blocking i/o enabled (default)
is_closed BOOLEAN
-- Is file descriptor is closed?
is_open BOOLEAN
-- Doesvalue describes a valid file descriptor?
is_owner BOOLEAN
-- Does this file descriptor own its descriptor? Only when
-- it owns the descriptor it will close it whenlose or
-- disposeis called
status ABSTRACT_STATUS
-- The status for this file descriptor. Cached value,
-- refreshed only when file reopened.
value INTEGER
-- return the value of the file descriptor
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Access
fd: INTEGER
-- The actual file descriptor.
invariant
accessing_real_singletorsecurity_is_real_singletgn
valid_internal_file_descriptorfd >= -1,
valid_open is_openimplies fd >= 0;
valid_close not is_openimplies fd = -1;
valid_status is_closedimplies my_status= Void;
open_and_close_in_balancies_open= not is_closed
owner_implies_openis_ownerimplies is_open
end of deferred ABSTRACT_FILE_DESCRIPTOR

Short listing of abstract classes 106

C.4 ABSTRACT_FILE_SYSTEM

deferred classinterface ABSTRACT_FILE_SYSTEM
feature(s) from STDC_SECURITY_ACCESSOR
-- The singleton, available to any because its used in preconditions
security STDC_SECURITY
-- Singleton entry point for security.
feature(s) from STDC_BASE
-- errno
errno. STDC_ERRNO
feature(s) from STDC_FILE_SYSTEM
-- path names
expand_path(a_path STRING: STDC_PATH
-- returns a new path
feature(s) from STDC_FILE_SYSTEM
-- rename files/directories, remove files/directories
remove_file(a_path STRING
-- Removes a file from a directory.
-- For Standard C, its implementation defined what
-- remove_file does if file is opened by some process
-- (remove_filefails on Windows for example).
-- doesnt remove a directory.
rename_to(current_path, new_pathSTRING
-- Rename a file or a directory.
-- new_pathshould not be an existing path.
feature(s) from STDC_FILE_SYSTEM
-- accessibility of files
is_modifiable(a_path STRING: BOOLEAN
-- tests if file is readable and writable by this program
-- uses real user ID and real group ID instead of effective ones
is_readable(a_path STRING: BOOLEAN
-- tests if file is readable by this program
-- uses real user ID and real group ID instead of effective ones
feature(s) from ABSTRACT_FILE_SYSTEM
-- directory access
change_directory(a_directory STRING
-- Changes the current working directory
chdir (a_directory STRING
-- Changes the current working directory
current_directory STRING
-- The current directory
getcwd STRING
-- The current directory
pwd STRING
-- The current directory
make_directory(a_directory STRING
-- Makes a directory, only accessible by owner

107 ABSTRACT_FILE_SYSTEM

mkdir (a_directory STRING
-- Makes a directory, only accessible by owner
remove_directory(a_directory STRING
-- Removes an empty directory, see afsoce_remove_directory
rmdir (a_directory STRING
-- Removes an empty directory, see afsoce_remove_directory
force_remove_directorya_directory STRING
-- Removes a directory, even when not empty.
-- | suggest you do not have hard or symbolic linksandirectory..
feature(s) from ABSTRACT_FILE_SYSTEM
-- file statistics
status(a_path STRING: ABSTRACT_STATUS_PATH
-- Gets information about a file
require
valid_path a_path/= Void and then not a_path.is_empty
existing_file is_existinga_path
ensure
status_returned Result/= Void
feature(s) from ABSTRACT_FILE_SYSTEM
-- directory browsing
browse_directory(a_path STRING: ABSTRACT_DIRECTORY
-- Gets information about a directory
require
valid_path a_path/= Void and then not a_path.is_empty
path_is_directory security.error_handling.exceptions_enabladd then statuga path.is_directory
ensure
directory_returned Result/= Void
feature(s) from ABSTRACT_FILE_SYSTEM
-- accessibility of files
last_access_resuliNTEGER
-- value of last access test
is_accessiblga_path STRING a_mode INTEGER: BOOLEAN
-- Tests for file accessibility
access(a_path STRING a_mode INTEGER: BOOLEAN
-- Tests for file accessibility
is_directory (a_path STRING: BOOLEAN
-- return True ifa_pathexists and if it is a directory
is_existing(a_path STRING: BOOLEAN
-- tests if file does exist, not if it is readable or writable by
-- this program!
-- uses real user ID and real group ID instead of effective ones
is_empty(a_path STRING: BOOLEAN
-- True if file exists and has a size equal to zero.
is_executablda_path STRING: BOOLEAN
-- tests if file is executable by this program
is_writable (a_path STRING: BOOLEAN
-- tests if file is writable by this program

Short listing of abstract classes 108

-- uses real user ID and real group ID instead of effective ones
feature(s) from ABSTRACT_FILE_SYSTEM
-- various
is_case_sensitiveBOOLEAN
-- is file system case sensitive or not?
-- This query is dedicated to jwz
path_separatar CHARACTER
-- What is the path separator?
feature(s) from ABSTRACT_FILE_SYSTEM
-- file system properties
temporary_directory STRING
-- returns temporary directory.
ensure
directory_returned Result/= Void,
directory_existsis_directoryResulj;
directory_is_writable is_modifiabléResul);
last_char_not_separatorResult.iterfResult.count /= path_separator
invariant
accessing_real_singletorsecurity is_real_singleton
end of deferred ABSTRACT_FILE_SYSTEM

109

ABSTRACT_PIPE

C.5 ABSTRACT_PIPE

deferred classinterface ABSTRACT_PIPE
feature(s) from ABSTRACT_PIPE
-- creation
make
feature(s) from ABSTRACT_PIPE
-- pipe operations
close
feature(s) from ABSTRACT_PIPE
-- the pipe
fdout ABSTRACT_FILE_DESCRIPTOR
fdin:. ABSTRACT_FILE_DESCRIPTOR
invariant
accessing_real_singletorsecurity_is_real_singleton
valid_pipe fdin /= Void and fdout /= Void;
end of deferred ABSTRACT_PIPE

Short listing of abstract classes 110

C.6 ABSTRACT_STATUS

deferred classinterface ABSTRACT_STATUS
feature(s) from ABSTRACT_STATUS
refresh
-- refresh the cached information
feature(s) from ABSTRACT_STATUS
-- stat members
atime INTEGER
-- Unix time of last access.
access_timeINTEGER
-- Unix time of last access.
device_numberINTEGER
-- ID of device containing the file.
-- Windows: Drive number of the disk containing the file.
is_character_specialBOOLEAN
-- Is this file a character-special file?
is_directory BOOLEAN
is_fifa BOOLEAN
is_regular_file BOOLEAN
mtime INTEGER
-- Unix time of last data modification.
modification_time INTEGER
-- Unix time of last data modification.
nlink: INTEGER
number_of_hard_linksINTEGER
size INTEGER
-- Size of file in bytes.
status_change_timdNTEGER
-- Unix time of last status change.
-- For example changing the permission bits will set this time.
feature(s) from ABSTRACT_STATUS
-- Direct access to the individual stat fields, not recommended
unix_mode INTEGER
invariant
accessing_real_singletorsecurity_is_real_singletgn
valid_stat stat /= Void and then stat.capacity>= abstract_stat_size
end of deferred ABSTRACT_STATUS

D

Short (flat) list-
Ing of POSIX
classes

D.1 POSIX_ASYNC_IO_REQUEST

classinterface POSIX_ASYNC_IO_REQUEST
creation
make (a_fd POSIX_FILE_DESCRIPTOR
feature(s) from POSIX_ASYNC IO _REQUEST
-- creation
make (a_fd POSIX_FILE_DESCRIPTOR
feature(s) from POSIX_ASYNC_IO_REQUEST
-- request properties
raw_pointer POINTER
-- Location for read or written data, usualbufferis a
-- better idea.
count INTEGER
-- number of bytes to read/write
offset INTEGER
-- file offset
feature(s) from POSIX_ASYNC_IO_REQUEST
-- set request properties
set_buffer(a_buffer STDC_BUFFER
-- set memory location to read/write from.
set_count(a_count INTEGER
-- set number of bytes to read/write
set_offsef(a_offset INTEGER
set_raw_pointer(a_pointer POINTER
-- set memory location to read/write from. Make sure you have
-- called set_counffirst!
feature(s) from POSIX_ASYNC_ 10 _REQUEST
-- basic read/write requests
read
-- execute async read request
write
-- execute async write request
feature(s) from POSIX_ASYNC_IO_REQUEST
-- Eiffel friendly reads and writes

Short (flat) listing of POSIX classes 112

last_string STRING
-- attempt to return buffer as an Eiffel string
-- buffer should have a terminating byte!
read_string
write_string (text STRING
feature(s) from POSIX_ASYNC IO _REQUEST
-- other operations
cancel_failed BOOLEAN
-- set by cancel, True if cancel request failed, probably
-- because operation was already performed
cancel
-- cancel request
synchronize
-- force all i/o operations queued for the file descriptor
associated with this request to the synchronous state.
- Function returns when the request has been initiated or
-- queued to the file or device (even when the data cannot be
-- synchronized immediately)
synchronize_data
-- force all i/o operations queued for the file descriptor
- associated with this request to the synchronous state.
- Function returns when the request has been initiated or
-- queued to the file or device (even when the data cannot be
- synchronized immediately)
wait_for
-- suspend process, until request completed
feature(s) from POSIX_ASYNC_ 10 _REQUEST
-- state
buffer. STDC_BUFFER
-- buffer where data that is being read/write comes from,
-- unless set_pointer has been called
fd: POSIX_FILE_DESCRIPTOR
is_pending BOOLEAN
-- True if io request is still pending
return_status INTEGER
-- return status of asynchronous i/o operation, equal to what
-- the synchronous read, write of fsync would have returned
invariant
accessing_real_singletorsecurity_is_real_singleton
valid_aioch aiocb /= Void,
synced_buffer_and_raw_pointebuffer /= Void implies buffer.ptr = raw_pointer
end of POSIX_ASYNC_IO_REQUEST

113 POSIX_BASE

D.2 POSIX_BASE

classinterface POSIX_BASE

invariant
accessing_real_singletorsecurity_is_real_singleton

end of POSIX_BASE

Short (flat) listing of POSIX classes

114

D.3 POSIX_CHILD_PROCESS

deferred classinterface POSIX_CHILD_PROCESS
feature(s) from POSIX_CHILD_PROCESS
-- Childs pid
pid: INTEGER
-- The process identifier.
is_pid_valid BOOLEAN
-- return True if this object refers to a child process, so
-- it has an id
feature(s) from POSIX_CHILD_PROCESS
-- Actions that parent may execute
wait_for (suspend BOOLEAN
-- wait for this process to terminate. Huspendthen we
wait until the information about this process is available,
else we return immediately.
If suspend is False, check the running property to see
if this child is really terminated.

invariant
accessing_real_singletorsecurity_is_real_singletgn
end of deferred POSIX_CHILD_PROCESS

115 POSIX_CONSTANTS

D.4 POSIX_CONSTANTS

classinterface POSIX_CONSTANTS
feature(s) from STDC_CONSTANTS
-- error codes
edom INTEGER
-- Math argument out of domain of function
erange INTEGER
-- Math result not representable
feature(s) from STDC_CONSTANTS
-- standard streams
stream_stdin POINTER
stream_stdoutPOINTER
stream_stderr POINTER
feature(s) from STDC_CONSTANTS
-- characters
const_eof INTEGER
-- signals EOF
feature(s) from STDC_CONSTANTS
-- buffering
iofbf: INTEGER
-- full buffering
iolbf: INTEGER
-- line buffering
ionbf: INTEGER
-- no buffering
feature(s) from STDC_CONSTANTS
-- file positioning
seek setINTEGER
seek cur INTEGER
seek_endINTEGER
feature(s) from STDC_CONSTANTS
-- Signal related constants
sig_dft POINTER
sig_err. POINTER
sig_ign POINTER
feature(s) from STDC_CONSTANTS
-- Signals
sigabrt INTEGER
sigfpe INTEGER
-- erroneous arithmetic operation, such as zero divide or an
-- operation resulting in overflow
sigill: INTEGER
-- illegal instruction
sigint INTEGER
-- receipt of an interactive attention signal
sigsegv INTEGER

Short (flat) listing of POSIX classes 116

-- invalid access to storage
sigterm INTEGER
feature(s) from STDC_CONSTANTS
-- random numbers
rand_max INTEGER
-- maximum value returned by thendom function
feature(s) from STDC_CONSTANTS
-- category constants
Ic_ctype INTEGER
Ic_numeric INTEGER
Ic_time INTEGER
Ic_collate INTEGER
Ic_monetary INTEGER
Ic_all: INTEGER
feature(s) from STDC_CONSTANTS
-- various
clocks_per_secINTEGER
feature(s) from STDC_CONSTANTS
-- exit codes
exit_failure INTEGER
-- exit status when something has gone wrong
exit_successINTEGER
-- exit status upon success
feature(s) from POSIX_CONSTANTS
-- error codes
eagain INTEGER
ebadf INTEGER
eexist INTEGER
einprogress INTEGER
eintr: INTEGER
enoent INTEGER
-- A file or directory does not exist
enospc INTEGER
-- There is no free space remaining on the device
enosys INTEGER
feature(s) from POSIX_CONSTANTS
-- standard file numbers
stderr_fileno INTEGER
stdin_fileno INTEGER
stdout_fileno INTEGER
feature(s) from POSIX_CONSTANTS
-- posix open symbolic constants
o_append INTEGER
-- Set the file offset to the end-of-file prior to each write
0_creat INTEGER
-- If the file does not exist, allow it to be created. This
-- flag indicates that the mode argument is present in the

117

POSIX_CONSTANTS

-- call to open.
0_dsync INTEGER
-- Write according to synchronized i/o data integrity completion
o_excl INTEGER
-- Open fails if the file already exists
0_exclusive INTEGER
-- Open fails if the file already exists
o_noctty INTEGER
-- prevents terminal from becoming the controlling terminal
-- for this process
0_nonblock INTEGER
-- Do not wait for device or file to be ready or available
o_rdonly INTEGER
-- Open for reading only
o_rdwr. INTEGER
-- Open fo reading and writing
o_rsync INTEGER
-- Synchronized read i/o operations
o0_sync INTEGER
-- Write according to synchronized i/o file integrity completion
o_trunc INTEGER
-- Use only on ordinary files opened for writing. It causes
-- the file to be truncated to zero length.
o_wronly. INTEGER
-- Open for writing only

feature(s) from POSIX_CONSTANTS

-- posix permission symbolic constants
s_irusr. INTEGER
s _iread INTEGER
s_iwust INTEGER
s_iwrite INTEGER
s_ixust INTEGER
s_iexec INTEGER
s_irgrp: INTEGER
s_iwgrp INTEGER
s_ixgrp INTEGER
s_irotht INTEGER
s_iwoth INTEGER
s_ixoth INTEGER
s_isuid INTEGER
s_isgid INTEGER

feature(s) from POSIX_CONSTANTS

-- Posix accessibility constants
f ok INTEGER
r_ ok INTEGER
w_ok INTEGER
x_ok INTEGER

Short (flat) listing of POSIX classes 118

feature(s) from POSIX_CONSTANTS
-- Posix signal constants
sa_nocldstop INTEGER
sighup INTEGER
-- hangup detected on controlling terminal or death of
-- controlling process
signal_hangup INTEGER
-- hangup detected on controlling terminal or death of
-- controlling process
sigalrmt INTEGER
-- Timeout signal, such as initiated by the alarm() function
-- or see POSIX_TIMED_COMMAND
signal_alarm INTEGER
-- Timeout signal, such as initiated by the alarm() function
-- or see POSIX_TIMED_COMMAND
sigchld INTEGER
-- Child process terminated or stopped
signal_child INTEGER
-- Child process terminated or stopped
sigkill: INTEGER
-- Termination signal (cannot be caught or ignored)
signal_kill: INTEGER
-- Termination signal (cannot be caught or ignored)
sigpipe INTEGER
-- Write on a pipe with no readers
signal_pipe INTEGER
-- Write on a pipe with no readers
sigquit INTEGER
-- Interactive termination signal
signal_quit INTEGER
-- Interactive termination signal
sigcont INTEGER
-- Continue if stopped
signal_continue INTEGER
-- Continue if stopped
sigstop INTEGER
-- Stop signal, cannot be caught or ignored
signal_stop INTEGER
-- Stop signal, cannot be caught or ignored
sigtstp INTEGER
-- Interactive stop signal
signal_interactive_stapINTEGER
-- Interactive stop signal
sigttin: INTEGER
-- Read from control terminal attempted by a member of a
-- background process group
signal_terminal_in INTEGER

119 POSIX_CONSTANTS

-- Read from control terminal attempted by a member of a
-- background process group
sigttou INTEGER
-- Write to control terminal attempted by a member of a
-- background process group
signal_terminal_out INTEGER
-- Write to control terminal attempted by a member of a
-- background process group
feature(s) from POSIX_CONSTANTS
-- sigprocmask how values
sig_block INTEGER
sig_unblock INTEGER
sig_setmaskINTEGER
feature(s) from POSIX_CONSTANTS
-- Posix pathconf constants
pc_name_maxINTEGER
-- The maximum length of a filename for this directory
feature(s) from POSIX_CONSTANTS
-- terminal i/o local mode flags
isig: INTEGER
icanon INTEGER
echo INTEGER
-- If set, input characters are echoed back to the terminal
echoe INTEGER
echok INTEGER
echon! INTEGER
noflsh INTEGER
tostop INTEGER
iexten INTEGER
feature(s) from POSIX_CONSTANTS
-- set terminal settings options
tcsanow INTEGER
tcsadrain INTEGER
tcsaflush INTEGER
feature(s) from POSIX_CONSTANTS
-- Semaphore constants
sem_value_ maXNTEGER
-- Valid maximum initial value for a semaphore.
feature(s) from POSIX_CONSTANTS
-- terminal baud rates
b0: INTEGER
b50 INTEGER
b75 INTEGER
b11Q0 INTEGER
b134 INTEGER
b150 INTEGER
b20Q INTEGER

Short (flat) listing of POSIX classes

120

b30Q INTEGER
b60Q INTEGER
b1200 INTEGER
b1800 INTEGER
b2400 INTEGER
b4800 INTEGER
b9600 INTEGER
b19200 INTEGER
b38400 INTEGER
b57600 INTEGER
b115200 INTEGER
b230400 INTEGER
feature(s) from POSIX_CONSTANTS

-- terminal i/o control mode constants

csize INTEGER
cs5 INTEGER
cs6 INTEGER
cs7. INTEGER
cs8 INTEGER
cstopb INTEGER
cread INTEGER
parenb INTEGER
parodd INTEGER
hupct INTEGER
clocal: INTEGER
feature(s) from POSIX_CONSTANTS
-- terminal i/o input control flags
ignbrk: INTEGER
brkint: INTEGER
ignpar. INTEGER
parmrk INTEGER
inpck INTEGER
istrip: INTEGER
inlcr: INTEGER
igncr: INTEGER
icrnl: INTEGER
ixon: INTEGER
ixoff: INTEGER
feature(s) from POSIX_CONSTANTS
-- category constants
Ic_messagesINTEGER
feature(s) from POSIX_CONSTANTS
-- pathname variable values
max_input INTEGER

-- Minimum number of bytes for which space will be available
-- in a terminal input queue; therefore, the maximum number
-- of bytes a portable application may required to be typed

121 POSIX_CONSTANTS

-- as input before eading them
name_maxINTEGER
-- Maximum number of bytes in a file name
path_max INTEGER
-- Maximum number of bytes in a pathname
pipe_buf INTEGER
-- Maximum number of bytes that can be written atomically
-- when writing to a pipe.
feature(s) from POSIX_CONSTANTS
-- invariant values
ssize_maxINTEGER
-- The maximum value that can be stored in an object of type ssize_t
end of POSIX_CONSTANTS

Short (flat) listing of POSIX classes 122

D.5 POSIX_CURRENT_PROCESS

classinterface POSIX_CURRENT_PROCESS
feature(s) from STDC_CURRENT_PROCESS
-- my stdandard input/output/error
stdin POSIX_TEXT_FILE
stdout POSIX_TEXT_FILE
stderr. POSIX_TEXT_FILE
feature(s) from ABSTRACT_CURRENT_PROCESS
-- process properties
pid: INTEGER
-- The process identifier.
is_pid_valid BOOLEAN
-- current process id is always valid
feature(s) from ABSTRACT_CURRENT_PROCESS
-- every process also has standard file descriptors which might not be compatible with stdin/stdout/stde
fd_stdin POSIX_FILE_DESCRIPTOR
fd_stdout POSIX_FILE_DESCRIPTOR
fd_stderr POSIX_FILE_DESCRIPTOR
feature(s) from STDC_SECURITY_ACCESSOR
-- The singleton, available to any because its used in preconditions
security STDC_SECURITY
-- Singleton entry point for security.
feature(s) from STDC_BASE
-- errno
errno. STDC_ERRNO
feature(s) from ABSTRACT_PROCESS
-- Signal this process
terminate
-- attempt to gracefully terminate this process
feature(s) from POSIX _PROCESS
-- signal this process
kill (a_signal_codeINTEGER
-- Send signalsignal_codeto the process
feature(s) from POSIX_CURRENT_PROCESS
-- POSIX locale specifics
set_native_messages
-- Select native language as the language in which messages
-- are displayed
invariant
accessing_real_singletorsecurity_is_real_singleton
end of POSIX_CURRENT_PROCESS

123 POSIX_DAEMON

D.6 POSIX_DAEMON

deferred classinterface POSIX_DAEMON
feature(s) from POSIX_DAEMON
-- Daemon specific actions
detach
-- detach from command-line, not very useful if you want to
-- spawn multiple daemons, but you can always pass daemons to
-- the fork routine yourself.
after_fork
-- Code thanks to W. Richard Stevens.
-- If you are started from inetd, youre in big trouble
-- already and getting deeper in the mud. For inetd there will
-- be another method to call, perhajst_inetd or so.
invariant
accessing_real_singletorsecurity _is_real_singleton
end of deferred POSIX_DAEMON

Short (flat) listing of POSIX classes 124

D.7 POSIX_DIRECTORY

classinterface POSIX_DIRECTORY
creation
make (a_directory_nameSTRING
feature(s) from POSIX_DIRECTORY
max_filename_lengtHNTEGER
-- maximum length of a file in this directory
invariant
accessing_real_singletorsecurity_is_real_singletgn
dirp_remains_valid is_openimplies dirp /= default_pointey
directory_name_not_emptgirectory_name/= Void and then not directory _name.is_empty
my_item_not_voidmy_item/= Void;
valid_is_dot my_is_dot= my_item.is_equél.");
valid_is_dotdot my is_dotdot= my_item.is_equél..");
my_status_tracks_itermy_status/= Void implies my_status.path.is_equaill_name;
end of POSIX_DIRECTORY

125 POSIX_EXEC_PROCESS

D.8 POSIX_EXEC_PROCESS

classinterface POSIX_EXEC_PROCESS
creation
make (a_program STRING a_arguments ARRAYSTRING)
make_capture_inpufa_program STRING a_arguments ARRAYSTRING)
make_capture_outpufa_program STRING a_arguments ARRAYSTRING)
make_capture_ida_program STRING a_arguments ARRAYSTRING)
-- Why not use threedirectional i/o, because youre getting
-- yourself in great, great trouble anyway.
-- A bit of advice: call stdin.close before starting to call
-- stdout.read_string and such...
make_capture_alla_program STRING a_arguments ARRAYSTRING)
-- Threedirectional i/o is a great way to get yourself in trouble.
feature(s) from STDC_CHILD PROCESS
-- termination info
is_terminated BOOLEAN
-- Is process not running any more?
exit_code INTEGER
-- Low-order 8 bits of call to _exit or exit for this process.
feature(s) from ABSTRACT_CHILD_PROCESS
-- Actions that parent may execute
wait_for (suspend BOOLEAN
-- wait for this process to terminate. Huspendthen we
wait until the information about this process is available,
else we return immediately.
If suspend is False, check the running property to see
if this child is really terminated.
feature(s) from STDC_CURRENT_PROCESS
-- my stdandard input/output/error
child_stdin POSIX_TEXT_FILE
child_stdout POSIX_TEXT_FILE
child_stdert POSIX_TEXT_FILE
feature(s) from ABSTRACT_CURRENT_PROCESS
-- process properties
pid: INTEGER
-- either the current process identifier or the childs
is_pid_valid BOOLEAN
-- current process id is always valid
feature(s) from ABSTRACT_CURRENT_PROCESS
-- every process also has standard file descriptors which might not be compatible with stdin/stdout/stde
child_fd_stin POSIX_FILE_DESCRIPTOR
child_fd_stdout POSIX_FILE_DESCRIPTOR
child_fd_sterr POSIX_FILE_DESCRIPTOR
feature(s) from STDC_SECURITY_ACCESSOR
-- The singleton, available to any because its used in preconditions
security STDC_SECURITY

Short (flat) listing of POSIX classes 126

-- Singleton entry point for security.
feature(s) from STDC_BASE
-- errno
errno. STDC_ERRNO
feature(s) from ABSTRACT_PROCESS
-- Signal this process
terminate
-- attempt to gracefully terminate this process
feature(s) from POSIX _PROCESS
-- signal this process
kill (a_signal_codeINTEGER
-- Send signalsignal_codeto the process
feature(s) from POSIX_CURRENT_PROCESS
-- POSIX locale specifics
set_native_messages
-- Select native language as the language in which messages
-- are displayed
feature(s) from ABSTRACT_EXEC_PROCESS
-- Initialization
make (a_program STRING a_arguments ARRAYSTRING)
make_capture_inpufa_program STRING a_argumentsARRAYSTRING)
make_capture_outpuia_program STRING a_arguments ARRAYSTRING)
make_capture_iqa_program STRING a_arguments ARRAYSTRING)
-- Why not use threedirectional i/o, because youre getting
-- yourself in great, great trouble anyway.
-- A bit of advice: call stdin.close before starting to call
-- stdout.read_string and such...
make_capture_alla_program STRING a_arguments ARRAYSTRING)
-- Threedirectional i/o is a great way to get yourself in trouble.
feature(s) from ABSTRACT_EXEC PROCESS
-- (re)set arguments
set_argumentga_arguments ARRAYSTRING)
feature(s) from ABSTRACT_EXEC_ PROCESS
-- ilo capturing
capture_input BOOLEAN
-- is input captured on execute?
capture_output BOOLEAN
-- is output captured on execute?
capture_error BOOLEAN
-- is error captured on execute?
set_capture_inpufon. BOOLEAN
set_capture_outpufon. BOOLEAN
set_capture_erroon: BOOLEAN
fd_stdin POSIX_FILE_DESCRIPTOR
fd_stdout POSIX_FILE_DESCRIPTOR
fd_stderr POSIX_FILE_DESCRIPTOR
feature(s) from ABSTRACT_EXEC_PROCESS

127 POSIX_EXEC_PROCESS

-- Execute
execute
-- Executesprogram_name
-- dont forget towait for this process to terminate
feature(s) from ABSTRACT_EXEC_PROCESS
-- Accessible state
program_nameSTDC_PATH
-- program to execute
arguments ARRAYSTRING
-- arguments to pass to program
feature(s) from POSIX_FORK_ROOT
-- process properties
is_valid_child_processBOOLEAN
-- returns True if this object seems to refer to a valid child process
-- the real child process might have stopped though
feature(s) from POSIX_FORK_ROOT
-- deferred routines
after_fork
-- chance for code to do something before the main execute
-- mainly here for POSIX_DAEMON.
feature(s) from POSIX_FORK_ROOT
-- termination info
is_terminated_normallyBOOLEAN
-- Has this process been terminated normally?
is_exited BOOLEAN
-- Has this process been terminated normally?
is_signalled BOOLEAN
-- Child process was terminated due to receipt of a signal
-- that was not caught.
signal_code INTEGER
-- Signal of process terminated abnormally or was stopped.
invariant
accessing_real_singletorsecurity_is_real_singleton
program_name_not_emptprogram_name= Void and then not program_name.is_empty
arguments_not_voidarguments/= Void,
end of POSIX_EXEC_PROCESS

Short (flat) listing of POSIX classes 128

D.9 POSIX_FILE

deferred classinterface POSIX_FILE
feature(s) from POSIX_FILE
-- special makes
make_from_file_descriptofa_file_descriptor ABSTRACT_FILE_DESCRIPTOR_mode STRING
-- Open a stream from a given file descriptor.
-- The stream will become remains leading so when the file
-- descriptor is closed, it will not close, you have to close
-- the strema to close the file descriptor.
invariant
accessing_real_singletorsecurity_is_real_singleton
capacity_not_negativecapacity >= 0;
valid_capacity is_open= capacity > 0;
open_implies_handle_assigneid_open= stream/= unassigned_valye
owned_implies_operis_ownerimplies is_open
owned_implies_handle_assigndd_ownerimplies stream/= unassigned_valye
last_string_valid last_string /= Void;
gets_buf_valid gets_buf/= Void;
end of deferred POSIX_FILE

129 POSIX_FILE_DESCRIPTOR

D.10 POSIX_FILE_DESCRIPTOR

classinterface POSIX_FILE_DESCRIPTOR
creation
open (a_path STRING a_flags INTEGER
-- open given file with access given Wiags
open_read(a_path STRING
-- open given file with read-only access
open_write(a_path STRING
open_read_writg(a_path STRING
open_truncate(a_path STRING
create_read_writela_path STRING
-- Always create a file, existing or not.
-- Give read/write permissions to user only.
create_write(a_path STRING
-- Always create a file, existing or not.
-- Give read/write permissions to user only.
create_with_modda path STRING flags, mode INTEGER
-- create a file according télags and with mode access
-- permissions. Make sure you have th O_CREAT flag in flags
-- if you really want to create something!
make_as_duplicatéanother ABSTRACT_FILE_DESCRIPTQR
-- On creation, create a duplicate from another file descriptor
-- As normal call, closes its own descriptor first (if open) and
-- duplicates next.
make_from_filgfile: STDC_FILB
-- Create file descriptor from given stream
-- The stream is leading, so this file descriptor will
-- never close itself, unless it is made an owner.
attach_to_fd(a_fd INTEGER
-- Create file descriptor with value_fd File descriptor
-- does not become owner, so it will not closefd
feature(s) from STDC_SECURITY_ACCESSOR
-- The singleton, available to any because its used in preconditions
security STDC_SECURITY
-- Singleton entry point for security.
feature(s) from STDC_BASE
-- errno
errno. STDC_ERRNO
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Creation
open (a_path STRING a_flags INTEGER
-- open given file with access given Wlags
open_read(a_path STRING
-- open given file with read-only access
open_write(a_path STRING
open_read_write(a_path STRING

Short (flat) listing of POSIX classes 130

open_truncate(a_path STRING
create_read_writg(a_path STRING
-- Always create a file, existing or not.
-- Give read/write permissions to user only.
create_write(a_path STRING
-- Always create a file, existing or not.
-- Give read/write permissions to user only.
create_with_modda_path STRING flags, mode INTEGER
-- create a file according télags and with mode access
-- permissions. Make sure you have th O_CREAT flag in flags
-- if you really want to create something!
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Special creation
attach_to_fd(a_fd INTEGER
-- Create file descriptor with value_fd File descriptor
-- does not become owner, so it will not closefd
make_as_duplicatéanother ABSTRACT_FILE_DESCRIPTPR
-- On creation, create a duplicate from another file descriptor
-- As normal call, closes its own descriptor first (if open) and
-- duplicates next.
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Close
close
-- We always describe an existing object, however user
-- probably wants to have control about closing a file.
detach
-- Forget the current file descriptor.
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Change ownership of the descriptor. Can help to influence subtile garbage collector problems
make_owner
-- this file descriptor will (start to) own its descriptor
unown
-- When a stream is opened on a file descriptor the file
-- descriptor itself should not close itself, the stream
-- will close it.
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Stream or file behaviour
is_streaming BOOLEAN
-- Is data from this file descriptor coming through a network
-- stream?
set_streamingenable BOOLEAN
-- Influence behaviour of certain functions if they should be
optimized for data coming from disk or data coming from
the network. In particulais_streamingimplies that a
client application is prepared to handieads that
return less than the requested number of bytes, but dont
assume that means end-of-file.

131 POSIX_FILE_DESCRIPTOR

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Raw read and write
last_blocked BOOLEAN
-- True if last read or write call would be blocked
last_read INTEGER
-- How many bytes were read by last call tead
-- -1 implies last_blocked
last_written INTEGER
-- How many bytes were written by last call to write
-- -1 implies last_blocked
read_loop_disabledBOOLEAN
-- For data coming from the network, a read does not always
- return the requested number of bytes. In such a case,
- reading again probably will return more bytes as they have
- arrived in the network buffers, or perhaps by reading you
- have freed the network buffers for more data.
- However, certain file descriptors block when reading
- again, because they dont return EOF when there is no more
-- data. A typical example is a character special file.
-- And sometimes the application can handle streaming reads
-- just fine and doesnt care if not all requested bytes are
-- returned.
-- This variable influences ifead will attempt to read
-- more bytes in its loop, or not.
read (buf: POINTER offset, nbytesINTEGER
-- Read data intdouf at offsetfor nbytesbytes.
-- Number of bytes actually read are available in last_read.
-- Dont mix this routine with read_string or read_character!
write (buf: POINTER offset, nbytesINTEGER
-- write given data frombuf at offset for nbyteshytes.
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Safer read/write
read_buffer(buf: STDC_BUFFER offset, nbytesINTEGER
-- more safe version ofead in case you have a
-- STDC_BUFFER object
write_buffer (buf: STDC_BUFFER offset, bytesINTEGER
-- more safe version ofvrite in case you have a
-- STDC_BUFFER object
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Read routines that can be mixed withad calls
last_line STRING
-- last line read byread_line (includes %N), see STRING_HELPER.chop
read_line (max_length INTEGER
-- Raw, and slow, read of characters up to end of line. Can
-- be safely mixed withread, unlike read_string Only
-- max_lengthcharacters are returned.
feature(s) from ABSTRACT_FILE_DESCRIPTOR

Short (flat) listing of POSIX classes 132

-- Eiffel like output
put (a: ANY)
-- write any Eiffel object as string
write_character(c: CHARACTER
write_string (s: STRING
puts (s. STRING
put_string (s: STRING
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Buffered input, line reading instead of block reading, dont mix with raad calls!
last_character CHARACTER
last_string STRING
-- last read string (includes %N), see STRING_HELPER.chop
read_character
-- Setslast_character
read_string(a_size INTEGER
-- Implements line reading on top @éad Sets
-- last_stringwhich includes the new line character if
-- any. Reads until eof or new line encountered, returns max
-- a_sizecharacters.
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- file position
seek(offset INTEGER
-- set file position to given absoluteffset
seek_from_currenfoffset INTEGER
-- set file position relative to current position
seek_from_endoffset INTEGER
-- set file position relative to end of file
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- queries
eof: BOOLEAN
-- True if end-of-file reached.
-- Currently Im unsure if detection is reliable
isatty. BOOLEAN
-- return true if handle associated with character device
is_attached_to_terminaBOOLEAN
-- return true if handle associated with character device
is_blocking_io BOOLEAN
-- True if blocking i/o enabled (default)
is_closed BOOLEAN
-- Is file descriptor is closed?
is_open BOOLEAN
-- Doesvalue describes a valid file descriptor?
is_owner BOOLEAN
-- Does this file descriptor own its descriptor? Only when
-- it owns the descriptor it will close it whenlose or
-- disposeis called
status POSIX_STATUS

133 POSIX_FILE_DESCRIPTOR

-- The status for this file descriptor. Cached value,
-- refreshed only when file reopened.
value INTEGER
-- return the value of the file descriptor
feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Access
fd: INTEGER
-- The actual file descriptor.
feature(s) from POSIX_FILE_DESCRIPTOR
-- Initialization
make_from_file(file: STDC_FILB
-- Create file descriptor from given stream
-- The stream is leading, so this file descriptor will
-- never close itself, unless it is made an owner.
feature(s) from POSIX_FILE_DESCRIPTOR
-- Close
close_on_execute
-- close this descriptor when forking
feature(s) from POSIX_FILE_DESCRIPTOR
-- Synchronisation
supports_file_synchronizatioOOLEAN
-- Do we support synchronization?
supports_data_synchronizatioBOOLEAN
-- Do we support synchronization of data without metadata?
synchronize
-- Synchronize the state of a file (includes synchronize data).
synchronize_data
-- Synchronize the data of a file. Cheaper than
-- synchronize but not always supported.
feature(s) from POSIX_FILE_DESCRIPTOR
-- Locking
get_lock(lock to test POSIX LOCK: POSIX LOCK
-- Gets lock information, returns True if a lock is set on
-- the region in a_lock. a_lock is overwritten with that lock.
set_lock failed BOOLEAN
-- Did set_lock obtain a lock?
attempt_lock(a_lock POSIX_LOCK
-- Attempt to set lock, if not possible, set
-- set_lock_failed
set_lock(a_lock POSIX_LOCK
-- Attempt to set lock, wait if necessary.
feature(s) from POSIX_FILE_DESCRIPTOR
-- non-blocking i/o
set_blocking_io(enable BOOLEAN
feature(s) from POSIX_FILE_DESCRIPTOR
-- Queries
terminat POSIX_TERMIOS

Short (flat) listing of POSIX classes 134

-- terminal settings
ttyname STRING
-- Terminal path name, or empty if this file descriptor does
-- not refer to a terminal
invariant
accessing_real_singletorsecurity_is_real_singleton
valid_internal_file_descriptorfd >= -1,
valid_open is_openimplies fd >= 0;
valid_close not is_openimplies fd = -1,
valid_status is_closedimplies my_status= Void;
open_and_close_in_balance_open= not is_closed
owner_implies_openis_ownerimplies is_open
end of POSIX_FILE_DESCRIPTOR

135 POSIX_FILE_SYSTEM

D.11 POSIX_FILE_SYSTEM

classinterface POSIX_FILE_SYSTEM
feature(s) from STDC_SECURITY_ACCESSOR
-- The singleton, available to any because its used in preconditions
security STDC_SECURITY
-- Singleton entry point for security.
feature(s) from STDC_BASE
-- errno
errno. STDC_ERRNO
feature(s) from STDC_FILE_SYSTEM
-- path names
expand_path(a_path STRING: STDC_PATH
-- returns a new path
feature(s) from STDC_FILE_SYSTEM
-- rename files/directories, remove files/directories
remove_file(a_path STRING
-- calls unlink when a_pathis a file, orrmdir when
-- a_pathis a directory.
-- error when file could not be removed (and it exists)
rename_to(current_path, new_pathSTRING
-- Rename a file or a directory.
-- new_pathshould not be an existing path.
feature(s) from STDC_FILE_SYSTEM
-- accessibility of files
is_modifiable(a_path STRING: BOOLEAN
-- tests if file is readable and writable by this program
-- uses real user ID and real group ID instead of effective ones
is_readable(a_path STRING: BOOLEAN
-- tests if file is readable by this program
-- uses real user ID and real group ID instead of effective ones
feature(s) from ABSTRACT_FILE_SYSTEM
-- directory access
change_directory(a_directory STRING
-- Changes the current working directory
chdir (a_directory STRING
-- Changes the current working directory
current_directory STRING
-- The current directory
getcwd STRING
-- The current directory
pwd STRING
-- The current directory
make_directory(a_directory STRING
-- Makes a directory, only accessible by owner
mkdir (a_directory STRING
-- Makes a directory, only accessible by owner

Short (flat) listing of POSIX classes 136

remove_directory(a_directory STRING
-- Removes an empty directory, does not fail if directory
-- does not exist
rmdir (a_directory STRING
-- Removes an empty directory, does not fail if directory
-- does not exist
force_remove_directorya_directory STRING
-- Removes a directory, even when not empty.
-- | suggest you do not have hard or symbolic linksandirectory..
feature(s) from ABSTRACT_FILE_SYSTEM
-- file statistics
status(a_path STRING: POSIX_STATUS_PATH
-- Gets information about a file
feature(s) from ABSTRACT_FILE_SYSTEM
-- directory browsing
browse_directory(a_path STRING: POSIX_DIRECTORY
-- Gets information about a directory
feature(s) from ABSTRACT_FILE_SYSTEM
-- accessibility of files
last_access_resuliNTEGER
-- value of last access test
is_accessiblga_path STRING a_mode INTEGER: BOOLEAN
-- Tests for file accessibility
access(a_path STRING a_mode INTEGER: BOOLEAN
-- Tests for file accessibility
is_directory (a_path STRING: BOOLEAN
-- return True ifa_pathexists and if it is a directory
is_existing(a_path STRING: BOOLEAN
-- tests if file does exist, not if it is readable or writable by
-- this program!
-- uses real user ID and real group ID instead of effective ones
is_empty(a_path STRING: BOOLEAN
-- True if file exists and has a size equal to zero.
is_executablga_path STRING: BOOLEAN
-- tests if file is executable by this program
is_writable (a_path STRING: BOOLEAN
-- tests if file is writable by this program
-- uses real user ID and real group ID instead of effective ones
feature(s) from ABSTRACT_FILE_SYSTEM
-- various
is_case_sensitiveBOOLEAN
-- is file system case sensitive or not?
path_separatar CHARACTER
-- What is the path separator?
feature(s) from ABSTRACT_FILE_SYSTEM
-- file system properties
temporary_directory STRING

137 POSIX_FILE_SYSTEM

-- the temporary directory
feature(s) from POSIX_FILE_SYSTEM
-- read/write permissions
chmod (a_path STRING a_mode INTEGER
-- Changes file mode
change_modda_path STRING a_mode INTEGER
-- Changes file mode
permissions(a_path STRING: POSIX_PERMISSIONS
-- return the permissions object (a new one every time!) for
-- the given file
set_read_onlya_path STRING
-- Make given file read_only
set_writable(a_path STRING
-- Make given file read_only
feature(s) from POSIX_FILE_SYSTEM
-- file times
touch (a_path STRING
-- Sets the modification and access timesaopathto the
-- current time of day.
-- File is created if it does not exist.
utime (a_path STRING access_time, modification_timBOSIX_TIMB
-- Sets file access and modification times
feature(s) from POSIX_FILE_SYSTEM
-- further directory access
link (existing, new STRING
-- Creates a hard link to a file
unlink (a_path STRING
-- Removes a directory entry, should be a file, not a directory.
-- its not an error if path does not exist, but all other
-- errors are reported
feature(s) from POSIX_FILE_SYSTEM
-- mkfifo
create_fifo(a_path STRING a_mode INTEGER
-- Creates a FIFO special file.
mkfifo (a_path STRING a_mode INTEGER
-- Creates a FIFO special file.
feature(s) from POSIX_FILE_SYSTEM
-- Shared memory
unlink_shared_memory_objefmhame STRING
-- Remove a shared memory object.
invariant
accessing_real_singletorsecurity_is_real_singleton
end of POSIX_FILE_SYSTEM

Short (flat) listing of POSIX classes 138

D.12 POSIX_FORK_ROOT

deferred classinterface POSIX_FORK_ROOT
feature(s) from STDC_CHILD_PROCESS
-- termination info
is_terminated BOOLEAN
-- Is process not running any more?
exit_code INTEGER
-- Low-order 8 bits of call to _exit or exit for this process.
feature(s) from ABSTRACT_CHILD_PROCESS
-- Actions that parent may execute
wait_for (suspend BOOLEAN
-- wait for this process to terminate. fuspendthen we
wait until the information about this process is available,
else we return immediately.
If suspend is False, check the running property to see
if this child is really terminated.
feature(s) from STDC_CURRENT_PROCESS
-- my stdandard input/output/error
stdin POSIX_TEXT_FILE
stdout POSIX_TEXT_FILE
stderr. POSIX_TEXT_FILE
feature(s) from ABSTRACT_CURRENT_PROCESS
-- process properties
pid: INTEGER
-- either the current process identifier or the childs
is_pid_valid BOOLEAN
-- current process id is always valid
feature(s) from ABSTRACT_CURRENT_PROCESS
-- every process also has standard file descriptors which might not be compatible with stdin/stdout/stde
fd_stdin POSIX_FILE_DESCRIPTOR
fd_stdout POSIX_FILE_DESCRIPTOR
fd_stderr POSIX_FILE_DESCRIPTOR
feature(s) from STDC_SECURITY_ACCESSOR
-- The singleton, available to any because its used in preconditions
security STDC_SECURITY
-- Singleton entry point for security.
feature(s) from STDC_BASE
-- errno
errno. STDC_ERRNO
feature(s) from ABSTRACT_PROCESS
-- Signal this process
terminate
-- attempt to gracefully terminate this process
feature(s) from POSIX_PROCESS
-- signal this process
kill (a_signal_codeINTEGER

139 POSIX_FORK_ROOT

-- Send signalsignal_codeto the process
feature(s) from POSIX_CURRENT_PROCESS
-- POSIX locale specifics
set_native_messages
-- Select native language as the language in which messages
-- are displayed
feature(s) from POSIX_FORK_ROOT
-- process properties
is_valid_child_processBOOLEAN
-- returns True if this object seems to refer to a valid child process
-- the real child process might have stopped though
feature(s) from POSIX_FORK_ROOT
-- deferred routines
after_fork
-- chance for code to do something before the main execute
-- mainly here for POSIX_DAEMON.
execute
-- Start if child process.
feature(s) from POSIX_FORK_ROOT
-- termination info
is_terminated_normallyBOOLEAN
-- Has this process been terminated normally?
is_exited BOOLEAN
-- Has this process been terminated normally?
is_signalled BOOLEAN
-- Child process was terminated due to receipt of a signal
-- that was not caught.
signal_code INTEGER
-- Signal of process terminated abnormally or was stopped.
invariant
accessing_real_singletorsecurity_is_real_singletgn
end of deferred POSIX_FORK_ROOT

Short (flat) listing of POSIX classes 140

D.13 POSIX_GROUP

classinterface POSIX_GROUP
creation
make_from_naméa_name STRING
make_from_gida_gid INTEGER
feature(s) from POSIX_GROUP
-- creation
make_from_naméa_name STRING
make_from_gida_gid INTEGER
feature(s) from POSIX_GROUP
-- refresh cache
refresh
-- refresh cache with latest info from user database
feature(s) from POSIX_GROUP
-- queries
name STRING
-- group name
gid: INTEGER
-- ID number
invariant
accessing_real_singletorsecurity_is_real_singleton
valid_group group /= default_pointer
end of POSIX_GROUP

141 POSIX_LOCK

D.14 POSIX_LOCK

classinterface POSIX_LOCK
creation
make
feature(s) from POSIX_LOCK
-- creation
make
feature(s) from POSIX_LOCK
-- members
allow_read BOOLEAN
-- This is a read lock
allow_all: BOOLEAN
-- No lock or used to remove a lock
allow_none BOOLEAN
-- This is a write lock
start INTEGER
length INTEGER
pid: INTEGER
feature(s) from POSIX_LOCK
-- settable members
set_allow_read
-- this is a read or shared lock
set_allow_all
-- to remove a lock
set_allow_none
-- this is a write or exclusive lock
set_seek_start
-- start is measured from the beginning of the file
set_seek_current
-- start is measured from the current position
set_seek_end
-- start is measured from the end of the file
set_start(a_start INTEGER
-- set relative offset in bytes
set_length(a_length INTEGER
-- number of bytes to lock
invariant
accessing_real_singletorsecurity _is_real_singleton
valid_buf. buf /= Void;
lock_type_knownallow_all or else allow_noneor else allow_read
end of POSIX_LOCK

Short (flat) listing of POSIX classes 142

D.15 POSIX_MEMORY_MAP

classinterface POSIX_MEMORY_MAP
creation
make (a_fd POSIX_FILE_DESCRIPTQRa_offset, a_sizeINTEGER a_base POINTER a_prot, a_flags INTE
-- Raw interface to mmap.
-- This function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE.
make_private(a_fd POSIX_FILE_DESCRIPTQRa_offset, a_sizeNTEGER
-- A mapping where changes are private.
-- a_offsetdenotes the offset frona_fd
-- This function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE.
make_shareda_fd POSIX_FILE_DESCRIPTQRa_offset, a_sizeINTEGER
-- Make a mapping where changes are shared, i.e. the
-- a_offsetdenotes the offset frona_fd
underlying object is also changed.
- This function can fail on certain system (Linux for
- example) if a_offset is not a multiple of PAGE_SIZE.
feature(s) from POSIX_MEMORY_MAP
-- Initialization
make (a_fd POSIX_FILE_DESCRIPTQRa_offset, a_sizeINTEGER a_base POINTER a_prot, a_flags INTE
-- Raw interface to mmap.
-- This function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE.
make_private(a_fd POSIX_FILE_DESCRIPTQRa_offset, a_sizeNTEGER
-- A mapping where changes are private.
-- a_offsetdenotes the offset frona_fd
-- This function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE.
make_shareda fd POSIX_FILE_DESCRIPTQRa_offset, a_sizeINTEGER
-- Make a mapping where changes are shared, i.e. the
a_offsetdenotes the offset frona_fd
underlying object is also changed.
- This function can fail on certain system (Linux for
- example) if a_offset is not a multiple of PAGE_SIZE.
feature(s) from POSIX_MEMORY_MAP
-- Cleanup
dispose
-- Close handle if owner.
feature(s) from POSIX_MEMORY_MAP
-- Unmap
close
-- Remove the mapping.
feature(s) from POSIX_MEMORY_MAP
-- State
offset INTEGER

143 POSIX_MEMORY_MAP

-- Offset from file.
fd: POSIX_FILE_DESCRIPTOR
-- The file that is mapped.
invariant
accessing_real_singletorsecurity_is_real_singletgn
capacity_not_negativecapacity >= 0;
valid_capacity is_allocated= capacity > 0;
open_implies_handle_assigned_allocated= ptr /= unassigned_valye
owned_implies_operis_ownerimplies is_allocated
owned_implies_handle_assignad _ownerimplies ptr /= unassigned_valye
size_positiveis_openimplies capacity > 0;
ptr_valid: is_openimplies ptr /= default_pointerand not is_openimplies ptr = default_pointey
offset_not_negativeoffset>= 0;
end of POSIX_MEMORY_MAP

Short (flat) listing of POSIX classes 144

D.16 POSIX_PERMISSIONS

deferred classinterface POSIX_PERMISSIONS
feature(s) from POSIX_PERMISSIONS
apply
-- make permissions changes (if any) permanent
refresh
-- synchronize with permission changes possibly made on disk
feature(s) from POSIX_PERMISSIONS
-- query mode
allow_anyone_execut8OOLEAN
-- anyone allowed to execute the file?
allow_anyone_readBOOLEAN
-- anyone allowed to read the file?
allow_anyone_read writeBOOLEAN
-- anyone allowed to read and write the file?
allow_anyone_write BOOLEAN
-- anyone allowed to write the file?
allow_group_executeBOOLEAN
-- process with a group ID that matches the files group
-- allowed to execute the file?
allow_group_read BOOLEAN
-- process with a group ID that matches the files group
-- allowed to read the file?
allow_group_read write BOOLEAN
-- process with a group ID that matches the files group
-- allowed to read the file?
allow_group_write BOOLEAN
-- process with a group ID that matches the files group
-- allowed to write the file?
allow_owner_executeBOOLEAN
-- owner allowed to execute the file
allow_read BOOLEAN
allow_owner_read BOOLEAN
allow_read_write BOOLEAN
allow_owner_read_writeBOOLEAN
allow_write BOOLEAN
allow_owner_write BOOLEAN
is_set_group_id BOOLEAN
-- group ID set on execution?
is_set_gid BOOLEAN
-- group ID set on execution?
is_set user idBOOLEAN
-- user ID set on execution?
is_set_uid BOOLEAN
-- user ID set on execution?
feature(s) from POSIX_PERMISSIONS

145

POSIX_PERMISSIONS

-- set permissions
set_allow_anyone_execufellow: BOOLEAN

-- give anyone execute permission
set_allow_anyone_rea¢allow: BOOLEAN

-- give anyone read permission
set_allow_anyone_read_writ@llow: BOOLEAN

-- give anyone read and write permissions
set_allow_anyone_writéallow: BOOLEAN

-- give anyone write permission
set_allow_group_execut@llow. BOOLEAN

-- give group execute permission
set_allow_group_readallow: BOOLEAN

-- give group read permission
set_allow_group_read_writéallow: BOOLEAN

-- give group read and write permission
set_allow_group_writgallow: BOOLEAN

-- give group write permission
set_allow_owner_execuf@llow: BOOLEAN

-- give owner execute permission
set_allow_read(allow: BOOLEAN

-- give read permission
set_allow_owner_readallow: BOOLEAN

-- give read permission
set_allow_read_writgallow: BOOLEAN

-- give read/write permission
set_allow_write(allow: BOOLEAN

-- give write permission
set_allow_owner_writallow: BOOLEAN

-- give write permission

feature(s) from POSIX_PERMISSIONS

-- direct access to Unix fields
uid: INTEGER

-- id of object owner, always 0 on NT
owner_id INTEGER

-- id of object owner, always 0 on NT
gid: INTEGER

-- id of group, always 0 on NT
group_id INTEGER

-- id of group, always 0 on NT
mode INTEGER

-- the bit coded Unix mode field

feature(s) from POSIX_PERMISSIONS

-- set owner and group
set_owner_id(a_owner_id INTEGER

-- change the owner
set_group_id(a_group_id INTEGER

-- change the group

Short (flat) listing of POSIX classes 146

invariant
accessing_real_singletorsecurity_is_real_singleton
end of deferred POSIX_PERMISSIONS

147

POSIX_PIPE

D.17 POSIX_PIPE

classinterface POSIX_PIPE
creation
make
-- Create pipe
feature(s) from POSIX_PIPE
-- the pipe
fdin: POSIX_FILE_DESCRIPTOR
fdout POSIX_FILE_DESCRIPTOR
invariant
accessing_real_singletorsecurity_is_real_singleton
valid_pipe fdin /= Void and fdout /= Void,
end of POSIX_PIPE

Short (flat) listing of POSIX classes 148

D.18 POSIX_SEMAPHORE

classinterface POSIX_SEMAPHORE
feature(s) from POSIX_SEMAPHORE
-- commands
attempt_acquire
-- Lock the semaphore only if it is not locked. If it is locked
-- by some process, this command returns immediately and the
-- semaphore is not locked
acquire
-- lock the semaphore
release
-- unlock the semaphore
feature(s) from POSIX_SEMAPHORE
-- queries
is_initialized BOOLEAN
-- True if semaphore is initialized/opened/created
is_locked BOOLEAN
-- True if this process has locked the semaphore
supports_semaphore8OOLEAN
-- True if semaphores are supported
-- most systems support unnamed semaphores, but still return False here
value INTEGER
-- value of semaphore if not locked.
-- Value is <= 0 if this semaphore is locked.
invariant
accessing_real_singletorsecurity_is_real_singletgn
sem_value_validsem_value/= Void;
end of POSIX_SEMAPHORE

149

POSIX_SIGNAL

D.19 POSIX_SIGNAL

classinterface POSIX_SIGNAL
creation
make (a_value INTEGER
feature(s) from POSIX_SIGNAL
-- Initialization
make (a_value INTEGER
feature(s) from POSIX_SIGNAL
-- Set signal properties, make effective wigipply
apply
-- Make changes effective.
set_child_stop(stop BOOLEAN
-- Generate SIGCHLD when children stop.
set_default_action
-- Install signal-specific default action whepply is called.
set_ignore_action
-- Ignore signal wherapply is called..
set_handler(a_handler STDC_SIGNAL_HANDLBER
-- Install ones own signal handler whempply is called.
set_maska_mask POSIX_SIGNAL_SBT
feature(s) from POSIX_SIGNAL
-- signal functions
raise_in (a_pid INTEGER
-- Raise the signal in the given process.
feature(s) from POSIX_SIGNAL
-- Signal state
child_stop BOOLEAN
-- generate SIGCHLD when children stop
handler POINTER
-- pointer to function which catches this signal
is_defaulted BOOLEAN
-- signal is handled by its specific default action
is_ignored BOOLEAN
-- signal is ignored
is_ignorable BOOLEAN
-- True if this signal is ignorable, either it is so by
-- default or it may be set so.
mask POSIX_SIGNAL_SET
refresh
-- get latest state for this signal
invariant
accessing_real_singletorsecurity_is_real_singleton
accessing_real_singletorsignal_switch_is_real_singleton
valid_signal_value value >= 1;
has_memorysigaction /= Void;
end of POSIX_SIGNAL

Short (flat) listing of POSIX classes 150

D.20 POSIX_SIGNAL_SET

classinterface POSIX_SIGNAL_SET
creation
make_empty
-- make an initially empty signal set
make_full
-- make a set where all signals are enabled
make_pending
-- this signal set will be the set of signals that are blocked
-- and pending
feature(s) from POSIX_SIGNAL_SET
-- creation, make a set
make_empty
-- make an initially empty signal set
make_full
-- make a set where all signals are enabled
make_pending
-- this signal set will be the set of signals that are blocked
-- and pending
feature(s) from POSIX_SIGNAL_SET
-- change a set
extend(signa INTEGER
-- add signal to set
put (signa INTEGER
-- add signal to set
prune (signa INTEGER
-- remove the signal from the set
wipe_out
-- remove all items
feature(s) from POSIX_SIGNAL_SET
-- commands to do something with set
add_to_blocked_signals
-- Add the signals to the set of blocked signals
remove_from_blocked_signals
-- Remove the signals from the set of blocked signals
set_blocked_signals
-- Set the set of blocked signals to this set
suspend
-- Suspend process, until delivery of a signal whose action
-- is either to execute a signal-catching function or to
-- terminate the process
feature(s) from POSIX_SIGNAL_SET
-- queries
has (signa INTEGER: BOOLEAN
-- is signalsignoin the set
invariant

151 POSIX_SIGNAL_SET

accessing_real_singletorsecurity_is_real_singletgn
have_setset/= Void,
end of POSIX_SIGNAL_SET

Short (flat) listing of POSIX classes 152

D.21 POSIX_STATUS

deferred classinterface POSIX_STATUS
feature(s) from POSIX_STATUS
-- stat members
is_block_specialBOOLEAN
-- True if block-special file
ino: INTEGER
inode INTEGER
permissions POSIX_PERMISSIONS
-- file permissions
ensure
valid_result Result/= Void
feature(s) from POSIX_STATUS
-- direct access to the unix fields, not recommended
unix_gid INTEGER
unix_uid INTEGER
invariant
accessing_real_singletorsecurity_is_real_singleton
valid_stat stat /= Void and then stat.capacity>= abstract_stat_size
end of deferred POSIX_STATUS

153 POSIX_SYSTEM

D.22 POSIX_SYSTEM

classinterface POSIX_SYSTEM
feature(s) from POSIX_SYSTEM
-- Sysconf queries, run-time determined
child_max INTEGER
-- The number of simultaneous processes per real user ID.
clock _ticks INTEGER
-- The number of clock ticks per second.
has_job_contral BOOLEAN
-- Job control functions are supported.
has_saved_idsBOOLEAN
-- Each process has a saved set-user-ID and a saved set-group-ID.
ngroups_maxINTEGER
-- The number of simultaneous supplementary group IDs.
page_sizeINTEGER
-- granularity in bytes of memory mapping and process memory locking.
posix_version INTEGER
-- Indicates the 4-digit year and 2-digit month that the
-- standard was approved.
feature(s) from POSIX_SYSTEM
-- Compile-time determined queries
supports_asynchronous : i@OOLEAN
-- True if the message passing API is supported.
supports_file_synchronizatioBOOLEAN
-- True if file synchronization is supported.
supports_memory_mapped_fil&OOLEAN
-- True if memory mapped files are supported.
supports_memory_lockin3OOLEAN
-- True if memory locking is supported.
supports_memlock rang8OOLEAN
-- True if memory range locking is supported.
supports_memory_protectipBOOLEAN
-- True if memory protection is supported.
supports_message_passirBOOLEAN
-- True if the message passing API is supported.
supports_priority _schedulingBOOLEAN
-- True if priority scheduling is supported.
supports_semaphoreBOOLEAN
-- True if semaphores are supported.
supports_shared_memory_objecBOOLEAN
-- True if shared memory objects are supported.
supports_synchronized :i@OOLEAN
-- True if synchronized io is supported.
supports_timersBOOLEAN
-- True if timers are supported.
supports_threadsBOOLEAN

Short (flat) listing of POSIX classes 154

-- True if thread are supported.
invariant
accessing_real_singletorsecurity_is_real_singleton
end of POSIX_SYSTEM

155

POSIX_TERMIOS

D.23 POSIX_TERMIOS

classinterface POSIX_TERMIOS
creation
make (a_fd POSIX_FILE_DESCRIPTOR
feature(s) from POSIX_TERMIOS
-- creation
make (a_fd POSIX_FILE_DESCRIPTOR
feature(s) from POSIX_TERMIOS
-- raw individual fields
iflag: INTEGER
-- input mode flags
oflag INTEGER
-- output mode flags
cflag INTEGER
-- control mode flags
Iflag: INTEGER
-- local mode flags
feature(s) from POSIX_TERMIOS
-- more friendly settings
is_input_echoedBOOLEAN
-- are input characters echoed back to the terminal?
is_receiving BOOLEAN
-- If false, no characters are received
set_echo_inpufenable BOOLEAN
set_echo_new_linéenable BOOLEAN
set_input_controllenable BOOLEAN
-- enable start/stop input control
set_receivelenable BOOLEAN
feature(s) from POSIX_TERMIOS
-- line control functions

flush_input

-- discards all data that has been received but not read
drain

-- wait for all output to be transmitted to the terminal
send_break

-- sends a break to the terminal
feature(s) from POSIX_TERMIOS
-- get/set baudrates as symbols
input_speed INTEGER
-- returns terminal input baud rate as symbolic value
output_speedINTEGER
-- returns terminal output baud rate as symbolic value
set_input_speednew_rate INTEGER
-- sets terminal input baud rategw_rateis one of the
-- BXXXX constants
set_output_speethew_rate INTEGER

Short (flat) listing of POSIX classes 156

-- sets terminal output baud rategw_rateis one of the
-- BXXXX constants
feature(s) from POSIX_TERMIOS
-- symbol to baud rate conversions
speed_to_baud_ratésymbol INTEGER: INTEGER
-- given a baud rate symbol, the real baud rate is returned.
feature(s) from POSIX_TERMIOS
-- apply/refresh state
apply_now
-- change occurs immediately
apply_drain
-- change occurs after all output written fd has been
-- transmitted. This function should be used when changing
-- parameters that affect output.
apply_flush
-- change occurs after all output written fd has been
-- transmitted. All input that has been received but not
-- read, is discarded before the change is made.
refresh
-- get terminal settings currently in effect
feature(s) from POSIX_TERMIOS
-- state
fd: POSIX_FILE_DESCRIPTOR
-- the file descriptor for these terminal settings
invariant
accessing_real_singletorsecurity_is_real_singleton
valid_attr. attr /= Void and then attr.capacity = posix_termios_size
valid_fd fd /= Void,
end of POSIX_TERMIOS

157 POSIX_TIMED_COMMAND

D.24 POSIX_TIMED_COMMAND

deferred classinterface POSIX_TIMED COMMAND
feature(s) from POSIX_TIMED_COMMAND
-- Initialization
make (a_secondsINTEGER
feature(s) from POSIX_TIMED_COMMAND
-- Execution
execute BOOLEAN
-- Did do_executecomplete its task withirsecondsseconds?
feature(s) from POSIX_TIMED_COMMAND
-- Access
is_signal_alarm_handledBOOLEAN
-- Does the signal SIGNAL_ALARM cause an Eiffel exception?
feature(s) from POSIX_TIMED COMMAND
-- State
remaining_seconddNTEGER
-- number of seconds left in previous request
seconds INTEGER
-- the number of seconds available to execute the command
set_secondga_secondsINTEGER
invariant
accessing_real_singletorsecurity_is_real_singletgn
valid_secondsseconds>= 1;
end of deferred POSIX_TIMED_ COMMAND

Short (flat) listing of POSIX classes 158

D.25 POSIX_USER

classinterface POSIX_USER
creation
make_from_naméa_name STRING
make_from_uida_uid INTEGER
feature(s) from POSIX_USER
-- creation
make_from_naméa_name STRING
make_from_uida_uid INTEGER
feature(s) from POSIX_USER
-- refresh cache
refresh
-- refresh cache with latest info from user database
feature(s) from POSIX_USER
-- queries
name STRING
-- login name
uid: INTEGER
-- ID number
gid: INTEGER
-- group ID number
home_directory STRING
-- initial working directory
shelt STRING
-- initial user program
invariant
accessing_real_singletorsecurity_is_real_singleton
valid_passwd passwd/= default_pointer
end of POSIX_USER

159 POSIX_USER_DATABASE

D.26 POSIX_USER_DATABASE

classinterface POSIX_USER_DATABASE
feature(s) from POSIX_USER_DATABASE
-- queries
is_existing_uid(uid: INTEGER: BOOLEAN
-- Returns True if this uid exists in /etc/passwd
-- (or through NIS or whatever mechanisms that might be in use)
is_existing_login(login: STRING: BOOLEAN
-- Returns True if this login exists in /etc/passwd
-- (or through NIS or whatever mechanisms that might be in use)
invariant
accessing_real_singletorsecurity_is_real_singletgn
end of POSIX_USER_DATABASE

E

Short (flat) list-
ing of Single
Unix Specifi-
cation classes

Classes in this appendix are based on the Single Unix Specification. They inherit fremsiie
classes. Inherited features are not shown.

E.1 SUS_CONSTANTS

classinterface SUS_CONSTANTS
feature(s) from SUS_CONSTANTS

-- syslog facility codes
log_kern INTEGER

-- kernel messages
log_user INTEGER

-- random user-level messages
log_mait INTEGER

-- mail system
log_daemon INTEGER

-- system daemons
log_auth INTEGER

-- security/authorization messages
log_lpr: INTEGER

-- line printer subsystem
log_news INTEGER

-- network news subsystem
log_uucp INTEGER

-- UUCP subsystem
log_cron INTEGER

-- clock daemon
log_locald INTEGER

-- Reserved for local use
log_locall INTEGER

-- Reserved for local use
log_local2 INTEGER

-- Reserved for local use
log_local3 INTEGER

161 SUS_CONSTANTS

-- Reserved for local use
log_local4 INTEGER
-- Reserved for local use
log_local5 INTEGER
-- Reserved for local use
log_localé INTEGER
-- Reserved for local use
log_local7. INTEGER
-- Reserved for local use
feature(s) from SUS_CONSTANTS
-- syslog open options
log_pid INTEGER
-- log the pid with each message
log_cons INTEGER
-- log on the console if errors in sending
log_odelay INTEGER
-- delay open until first syslog() (default)
log_ndelay INTEGER
-- dont delay open
end of SUS_CONSTANTS

Short (flat) listing of Single Unix Specification classes 162

E.2 SUS_ENV_VAR

classinterface SUS_ENV_VAR
creation
make (a_name STRING
feature(s) from SUS_ENV_VAR
-- commands
set_value(new_value STRING
invariant
accessing_real_singletorsecurity_is_real_singletgn
end of SUS_ENV_VAR

163 SUS_FILE_SYSTEM

E.3 SUS FILE_SYSTEM

classinterface SUS_FILE_SYSTEM
feature(s) from SUS_FILE_SYSTEM
-- file statistics
status(a_path STRING: SUS_STATUS_PATH
-- Return information about path.
symbolic_link_statuga_path STRING: SUS_STATUS
-- Return information about path, but if it is a symbolic
-- link, about the symbolic link instead of the referenced path
feature(s) from SUS FILE_SYSTEM
-- symbolic links
create_symbolic_linKold_path, new_pathSTRING
-- Creates a symbolic link
symlink (old_path, new_pathSTRING
-- Creates a symbolic link
feature(s) from SUS_FILE_SYSTEM
-- path names
resolved_path_namé_path STRING: STRING
-- derives froma_pathan absolute pathname that names the
-- same file, whose resolution does not involve ".", "..", or
-- symbolic links.
realpath (a_path STRING: STRING
-- derives froma_pathan absolute pathname that names the
-- same file, whose resolution does not involve ".", "..", or
-- symbolic links.
invariant
accessing_real_singletorsecurity_is_real_singleton
end of SUS_FILE_SYSTEM

Short (flat) listing of Single Unix Specification classes 164

E.4 SUS HOST

classinterface SUS_HOST
creation
make_from_naméa_name STRING
make_from_addresé@_address SUS_IP_ADDRESS
feature(s) from SUS HOST
-- creation
make_from_namé¢a_name STRING
make_from_addresé@_address SUS_IP_ADDRESS
feature(s) from SUS HOST
-- Command
find_by_name
-- Attempt to lookup up the host given iname Sets
-- found if host could be found.
-- If found, setscanonical_namgaliases
-- address_typeaddress_lengtland addresses
feature(s) from SUS HOST
-- Queries
found BOOLEAN
-- True if namewas found.
name STRING
-- Name as given tanake_from_namer else equal to
-- canonical_name
canonical_nameSTRING
-- Official (canonical) name of host.
aliases ARRAYSTRING
-- Alias names.
address_typeINTEGER
-- Host address type: AF_INET or AF_INET6
address_lengthINTEGER
-- Length of address: 4 or 16.
addressesARRAYSUS _IP_ADDRESS
-- Array with IPv4 or IPv6 addresses.
invariant
accessing_real_singletorsecurity_is_real_singletgn
name_not_emptyname/= Void and then not name.is_empty
has_canonical_namé&ound = canonical_name= \oid,
has_at least_one_ip_addredsund = addressed= Void and then addresses.cour# 0;
has_aliasesfound = aliases/= Void;
valid_length found implies address_length» O;
consistent addresses= Void and then addresses.cour# 0 implies found
end of SUS_HOST

165 SUS_SERVICE

E.5 SUS_SERVICE

classinterface SUS_SERVICE
creation
make_from_naméa_name, a_protocolSTRING
-- Find service witha_nameand optionala_protocol or raise
-- exception.
make_from_por{a_port INTEGER a_protocol STRING
-- Initialize service from given a_port
feature(s) from SUS_SERVICE
-- creation
make_from_naméa_name, a_protocolSTRING
-- Find service witha_nameand optionala_protocol or raise
-- exception.
make_from_por{a_port INTEGER a_protocol STRING
-- Initialize service from given a_port
feature(s) from SUS_SERVICE
-- public state, all data in host byte order
port: INTEGER
-- port number
name STRING
-- official service name
aliases ARRAYSTRING
-- alias list
protocot STRING
-- protocol to use (udp/tcp)
protocol_type INTEGER
-- SOCK_STREAM or SOCK_DGRAM
invariant
accessing_real_singletorsecurity_is_real_singletgn
name_void_or_not_emptyame= Void or else not name.is_empty
valid_port port >= 0 and port <= 65535
valid_protocol protocol = Void or else protocol.is_emptyor else protocol.is_equdbnce_tcp or protocol.is_eqt
valid_protocol_type protocol_type= sock_streanor else protocol_type= sock dgram
valid_aliases aliases/= \Void,
end of SUS_SERVICE

Short (flat) listing of Single Unix Specification classes 166

E.6 SUS_SOCKET_ADDRESS

classinterface SUS_SOCKET_ADDRESS
creation
make (a_host SUS HOST a_service SUS_SERVICE
-- Initialize socket for known host.
feature(s) from SUS_SOCKET_ADDRESS
-- Creation
make (a_host SUS_HOSTa_service SUS_SERVICE
-- Initialize socket for known host.
feature(s) from SUS_SOCKET_ADDRESS
-- Public state
host SUS_HOST
-- Resolved host name.
service SUS_SERVICE
-- Port and protocol (udp/tcp) type.
feature(s) from SUS_SOCKET_ADDRESS
-- Fill socket structure, s@tr returns something valid
set_addresgitemt INTEGER
-- Use one of the ip addresses lofst as the socket address.
feature(s) from SUS _SOCKET_ADDRESS
-- Features the C API calls like
length INTEGER
-- Size of my struct sockaddr_in.
ptr: POINTER
-- Points to struct sockaddr_in or sockaddr_in6.
invariant
accessing_real_singletorsecurity_is_real_singleton
host_found host /= Void and then host.found
has_service service/= Void,
valid_buf. buf /= Void and then buf.capacity>= length
end of SUS_SOCKET_ADDRESS

167 SUS_SYSLOG

E.7 SUS_SYSLOG

classinterface SUS_SYSLOG
feature(s) from SUS_SYSLOG
-- open and close
open (a_identification STRING a_format, a_facility INTEGER
-- start logging with the given identification
close
-- stop logging
feature(s) from SUS_SYSLOG
-- Write log messages, will auto-open if not is_open
emergency(msg STRING
-- the system is unusable
alert (msg STRING
-- action must be taken immediately
critical (msg STRING
-- critical conditions
error (msg STRING
-- error conditions
warning (msg STRING
-- warning conditions
notice (msg STRING
-- normal but significant condition
info (msg STRING
-- informational
debug_dumpgmsg STRING
-- Debug-level messages.
feature(s) from SUS SYSLOG
-- state
identification STRING
format INTEGER
facility: INTEGER
is_open BOOLEAN
invariant
accessing_real_singletorsecurity_is_real_singleton
remain_single Current = the_singleton
have_identificationis_openimplies identification/= Void and then not identification.is_empty
end of SUS_SYSLOG

Short (flat) listing of Single Unix Specification classes 168

E.8 SUS_TCP_SOCKET

classinterface SUS_TCP_SOCKET
creation
listen_by addresgsa SUS SOCKET_ADDRESS
-- Listen on socket for address specifiedsa
open_by addresésa SUS_SOCKET_ADDREESS
-- Open socket to server specified sa.
invariant
accessing_real_singletorsecurity_is_real_singletgn
valid_internal_file_descriptorfd >= -1,
valid_open is_openimplies fd >= 0;
valid_close not is_openimplies fd = -1,
valid_status is_closedimplies my_status= Void;
open_and_close_in_balance_open= not is_closed
owner_implies_openis_ownerimplies is_open
end of SUS_TCP_SOCKET

F

Short (flat) list-
Ing of Stan-
dard C bonus
classes

Classes in this appendix are based on Standard C only.

F1 EPX_CGlI

deferred classinterface EPX_CGI
feature(s) from EPX_CGI
-- the output routine
execute
-- to be implemented by child
feature(s) from EPX_CGI
-- debug support
dump_input
-- Write cgi input to /tmp/cgi_input.
-- First line contains the content header, is not actually in input!
feature(s) from EPX_CGI
-- Standard variables
auth_type STRING
-- type of authentication used
content_type STRING
-- MIME type of data when invoked with POST method
content_lengthINTEGER
-- length, in bytes, of data when invoked with POST method
gateway_interfaceSTRING
-- name and version of the gateway, for example CGI/1.1
http_accept STRING
-- contents of the Accept header line sent by the client
http_referer STRING
-- contents of the Referer header line
http_user_agentSTRING
-- name of the client program that is making the request
path_info STRING
-- extra path information as it was passed to the server in
-- the query URL

Short (flat) listing of Standard C bonus classes

170

path_translated STRING
-- extra path information translated to a final, usable
-- form. The Web document root is prepended to the query
-- path, and any other path translations are executed.
query_string STRING
-- the input when invoked with the GET method
remote_addr STRING
-- IP address of the client that made the request
remote_addressSTRING
-- IP address of the client that made the request
remote_hostSTRING
-- name of the remote computer that made the request
remote_ident STRING
-- user name as given by the ident protocol
remote_user STRING
-- name of the remote user that made the request
request_methadSTRING
-- name of the method used to invoke the CGI
-- application. Valid values are GET and POST
script_name STRING
-- name of script that was invoked
server_nameSTRING
-- domain name of the computer that is running the server software
server_port INTEGER
-- TCP port number on which the server that invoked the CGI
-- application is operating
server_protocal STRING
-- name of the protocol that the server is using and the
-- version of that protocol. The protocol name and version
-- are separated by a forward slash with no spaces, for
-- instance HTTP/1.0
server_softwareSTRING
-- name of the server that is handling the request
feature(s) from EPX_CGI
-- Standard cgi header
content_text_html
content_text_plain
feature(s) from EPX_CGI
-- Server push, multipart header
content_multipart_x_mixed_replagboundary STRING
content_next_part
-- write boundary so next part of multipart msg can be written
content_multipart_end
-- write boundary of multipart
is_multipart_messageBOOLEAN
feature(s) from EPX_CGI
-- Form input

171

EPX_CGI

has_input BOOLEAN

-- True if input passed to cgi program.
has_key(key STRING: BOOLEAN

-- Returns True if key defined in input.
is_meta_charc: CHARACTER BOOLEAN

-- Return True if ¢ is a commonly used meta characters.
meta_chars STRING
raw_value (key STRING: STRING

-- Returns value for key.

-- if key does not exist, the empty string is returned.
remove_meta_charg: STRING

-- If s contains meta characters, theyre removed.
value (key STRING: STRING

-- Returns safe value for key, meta characters are removed.

invariant

-- lower_a_code_definition: lower_a_code = (a).code

-- Same thing for all other codes.

-- (see "note" in indexing clause.)
accessing_real_singletorsecurity is_real_singleton
my_xml_not_voidmy_xml/= Void,
same_sizeattributes.count= values.count
has_tag_stacktags /= Void,
fragment_has_no_headeis_fragmentimplies is_header_written
values_not_voidvalues/= Void,

attributes_not_void attributes /= Void,

every_ attribute_has_a_valuattributes.count= values.count

end of deferred EPX_CGI

Short (flat) listing of Standard C bonus classes 172

F2 EPX_SOAP_WRITER

classinterface EPX_SOAP_WRITER
creation
make
-- Create an XML document with initial capacity of 1024 characters.
make_with_capacitya capacity INTEGER
-- Create an XML document with initial capacity of
-- a_capacitycharacters.
feature(s) from EPX_SOAP_WRITER
-- SOAP specific calls
start_envelope
stop_envelope
start_header
stop_header
start_body
stop_body
feature(s) from EPX_SOAP_WRITER
-- SOAP header attributes
set_must_understanffalue BOOLEAN
-- Set the SOAP-Env:mustUnderstand attributevédue
feature(s) from EPX_SOAP_WRITER
-- Queries if tags started
is_envelope_startedBOOLEAN
is_header_startedBOOLEAN
is_body_startedBOOLEAN
feature(s) from EPX_SOAP_WRITER
-- SOAP tags
soap_env_bodySTRING
soap_env_envelop&STRING
soap_env_headelSTRING
feature(s) from EPX_SOAP_WRITER
-- SOAP name space
soap_env STRING
soap_name_spac&STRING
invariant
-- lower_a_code_definition: lower_a_code = (a).code
-- Same thing for all other codes.
-- (see "note" in indexing clause.)
accessing_real_singletorsecurity _is_real_singletgn
my_xml_not_voidmy_xml/= Void;
same_sizeattributes.count= values.count
has_tag_stacktags /= Void,
fragment_has_no_headeis_fragmentimplies is_header_written
values_not_voidvalues/= Void;
attributes_not_void attributes /= Void;

173 EPX_SOAP_WRITER

every attribute_has_a_valuattributes.count= values.count
end of EPX_SOAP_WRITER

Short (flat) listing of Standard C bonus classes

174

F.3 EPX_URI

classinterface EPX_URI
creation
make (a_reference STRING
-- Create an absolute or relative URI.
make_resolvgbase EPX_UR!} a_reference STRING
-- If a_referenceis a partial URI, it is resolved usinbase
feature(s) from EPX_URI
-- Initialization.
make (a_reference STRING
-- Create an absolute or relative URI.
make_resolvdbase EPX_UR!} a_reference STRING
-- If a_referenceis a partial URI, it is resolved usinbase
feature(s) from EPX_URI
-- Queries
is_absolute BOOLEAN
-- True if this is an absolute URI.
is_relative BOOLEAN
-- True if this is a relative URI.
has_absolute_patrBOOLEAN
-- True if this URI has an absolute path.
feature(s) from EPX_URI
-- Most generic URI components
full_reference STRING
-- The entire thing.
scheme STRING
-- Scheme used, like "http" or "ftp", anything before the :.
scheme_specific_parBTRING
-- Interpretation depends on scheme, everything after the :
-- and before the ?
feature(s) from EPX_URI
-- If URI has a hierarchical relationships within the namespace
authority. STRING
-- Authority part of scheme_specific_partisually a host name.

-- Use parse_authorityto split authority in these
- components if that is applicable for the protocol.
path STRING
- Path inscheme_specific_partonsisting of names
separated by slashes.
query STRING
-- Anything after the ? if present, else Void
fragment STRING
-- The part after the # if present, else Void
feature(s) from EPX_URI
-- If authority is <userinfo>@<host>:<port>

- It can be more complex however like: <userinfo>@<host>:<port>.

175 EPX_URI

user_info STRING
-- Usually a user name.
host STRING
-- hostname or IP4 address. IP6 addresses are explicitly not
-- supported by RFC 2396
port: INTEGER
-- TCP port, 0 if no port present.
is_server_authority BOOLEAN
-- True if authority can be parsed as:
-- [userinfo @] host [: port]
-- and port, if present, is an integer.
parse_authority(default_port INTEGER
-- Assume authority can be parsed as:
-- [userinfo @] host [: port].
-- If assumption is untrue, you get a nice exception...
-- default_portis 0 means no default.
invariant
either_absolute_or_relativas_absolutexor is_relative
reference_not_emptyull_reference/= Void and then not full_reference.is_empty- Im really unsure if these
-- Constraints on elements of a parsed URI.
valid_authority authority = Void or else not authority.is_empty
valid_path path = Void or else not path.is_empty
valid_query query = Void or else not query.is_empty
valid_fragment fragment= Void or else not fragment.is_empty-- Contraints on parseduthority
user_info_occurs_in_authorityuser_info/= Void implies authority.substring_inddgxser_info,} /= 0;
host_occurs_in_authorityhost /= Void implies authority.substring_indd€kost,) /= 0;
valid_port port >= 0 and port <= 65535
end of EPX_URI

Short (flat) listing of Standard C bonus classes

176

F4 EPX_XML_WRITER

classinterface EPX_XML_WRITER
creation
make

-- Create an XML document with initial capacity of 1024 characters.

make_with_capacitya capacity INTEGER
-- Create an XML document with initial capacity of
-- a_capacitycharacters.
make_fragment
-- Create an XML fragment (document without header) with
-- initial capacity of 1024 characters.
make_fragment_with_capaci(p_capacity INTEGER
-- Create an XML fragment (document without header) with
-- initial capacity ofa_capacitycharacters.
feature(s) from EPX_XML_WRITER
-- Constants from the XML specification, should be Unicode...
validfirstchars STRING
-- Which characters are valid as the first character.
validotherchars STRING
-- Which characters are valid as second etc characters.
feature(s) from EPX_XML_WRITER
-- Queries
has_invalid_control_characterés: STRING: BOOLEAN
-- Containss characters in the range 0x00-Ox1F other then
-- TAB (0x09), CR (0x0A) and LF (0x0D)? is
is_a_parent(tag: STRING: BOOLEAN
-- True if tag is a container (parent) at the current level.
-- That can be a just started tag, or a tag higher up.
is_fragment BOOLEAN
-- True if the XML document being created is a fragment.
is_header_writtenBOOLEAN
-- True if the XML header is written, or if this is a fragment.
is_started(tag: STRING: BOOLEAN
-- True if this tag has just been started.
is_tag_started BOOLEAN
-- True if one or more tags have been opened.
is_valid_attribute_namdattribute STRING: BOOLEAN
-- Return True if this is a valid attribute name.
unfinished_xmISTRING
-- The xml in progress.
as_string STRING
-- The result as plain STRING.
as_uc_string UC_STRING
-- The result as Unicode string, i.e. UC_STRING.
feature(s) from EPX_XML_WRITER
-- Influence state

177

EPX_XML_WRITER

clear
-- Start fresh.
feature(s) from EPX_XML_WRITER
-- Commands that expandnl
add_headern(encoding STRING
-- Add the XML header, document is encoded in
-- encoding Making sure this encoding is followed, is the
-- responsibility of the client.
add_header_iso_8859 1 encoding
-- Document is is0-8859-1 encoded.
add_header_utf 8 encoding
-- Document is utf8 encoded.
add_data(data STRING
-- Write data in the current tag.
-- Invalid characters like < or > are quoted.
-- Use add_rawif you dont want quoting.
add_entity(name STRING
-- Write entity name
add_raw (raw_data STRING
-- Write data straight in the current tag, meta characters
-- are not quoted, control characters are not checked, etc.
add_system_doctypgoot_tag, system_ idSTRING
-- Add a <!DOCTYPE element.
-- Only allowed when no tags have been written.
add_tag(tag, data STRING
-- Shortcut foradd_tag add_dataand stop_tag
get_attribute (attribute STRING: STRING
-- Get contents of attributattribute for
-- current tag.attribute may include a name space.
-- Returns Void if attribute doesnt exist
put (a: ANY)
-- Write data within the current tag.
put_new_line
-- Add a new line in the current tag.
puts (stuff: STRING
-- Write data within the current tag.
set_attribute(attribute, value STRING
-- Set an attribute of the current tag.
- attribute must be name-space less, else sst ns_attribute
- value may not contain an entity reference.
- As the attribute is not immediately written, make sure
attribute and value do not change (ie are cloned or
-- immutable).
set_a name_spad@_prefix, a_uri STRING
-- Define a name space.
-- As the attribute is not immediately written, make sure
-- a_prefixand a_uri do not change (ie are cloned or

Short (flat) listing of Standard C bonus classes 178

-- immutable).
set_default_name_spadari: STRING
-- Set the default name space.
set_ns_attributegname_space, attribute, valuSTRING
-- Set an attribute of the current tagvalue may not
-- contain an entity referenceame_spaceés the optional
-- prefix to be used, not the actual URI.
-- As the attribute is not immediately written, make sure
-- name_spagceattribute and value do not change (ie
-- are cloned or immutable).
start_ns_tag(name_space, tagSTRING
-- Start a new tag in the givename_spacename_spaceés
a prefix only, not the actual URI. Ihame_spaceas Void
- or empty, the tag will not get a prefix.
-- As the tag is not immediately written, be sure thag
- does not change (ie is cloned or immutable) if
- name_spacés Void or empty.
start_tag (tag: STRING
-- Start a new tag.
-- As the tag is not immediately written, make sueg
-- does not change (ie is cloned or immutable).
stop_tag
-- Stop last started tag.
feature(s) from EPX_XML_WRITER
-- Quote unsafe characters
replace_content_meta_charactgls STRING
- Replace all characters i that have a special meaning in
-- XML. These characters are < and &.
-- For compatibility with SGML a "[]>" should be written as
-- "l>", but | see no reason to be compatible with SGML
- these days, so we dont check for that.
feature(s) from EPX_XML_WRITER
-- Comments
start_comment
stop_comment
invariant
-- lower_a_code_definition: lower_a_code = (a).code
-- Same thing for all other codes.
-- (see "note" in indexing clause.)
accessing_real_singletorsecurity is_real_singleton
my_xml_not_voidmy_xml/= Void,
same_sizeattributes.count= values.count
has_tag_stacktags /= Void,
fragment_has_no_headeis_fragmentimplies is_header_written
values_not_voidvalues/= Void;
attributes_not_void attributes /= Void,

179 EPX_XML_WRITER

every attribute_has_a_valuattributes.count= values.count
end of EPX_XML_WRITER

Short (flat) listing of Standard C bonus classes

180

FS EPX_XHTML_WRITER

classinterface EPX_XHTML_WRITER
creation
make

-- Create an XML document with initial capacity of 1024 characters.

make_with_capacitya capacity INTEGER
-- Create an XML document with initial capacity of
-- a_capacitycharacters.
make_fragment
-- Create an XML fragment (document without header) with
-- initial capacity of 1024 characters.
make_fragment_with_capaci(p_capacity INTEGER
-- Create an XML fragment (document without header) with
-- initial capacity ofa_capacitycharacters.
feature(s) from EPX_XHTML_WRITER
-- overrule some xml stuff
new_line_after_closing tap tag STRING
-- Outputs a new line, called whea tagis closed
-- can be overridden to start a new line only occasionally
-- For XHTML documents a new line is treated as a single
-- space, so it can influence layout.
new_line_before_starting_ta(a tag STRING
-- Outputs a new line, called whea tagis about to begin.
feature(s) from EPX_XHTML WRITER
-- doctype
doctype
doctype_frameset
-- Output will be frame-based
doctype_strict
-- Output will be strict XHTML
doctype_transitional
-- Output will be transitional XHTML
feature(s) from EPX_XHTML WRITER
-- page
b_html
-- start html page
e_html
feature(s) from EPX_XHTML_WRITER
-- header
meta_refresh_otheftime INTEGER url: STRING
b_head
e _head
title (a_text STRING
feature(s) from EPX_XHTML _WRITER
-- body
b_body

181 EPX_XHTML_WRITER

e_body
feature(s) from EPX_XHTML WRITER
--section headers
hl (header_text STRING
feature(s) from EPX_XHTML_WRITER
-- paragraph
br
-- break, the Appendix C.3 way
b_p
ep
p (par: STRING
feature(s) from EPX_XHTML WRITER
-- layout
b_tt
-- teletype writer font
e tt
feature(s) from EPX_XHTML_WRITER
-- link
b_a (href: STRING
e a
a (href, s STRING
feature(s) from EPX_XHTML WRITER
-- rules
hr
-- horizontal rule
feature(s) from EPX_XHTML _WRITER
-- white space
nbsp
-- non breaking white space
feature(s) from EPX_XHTML_WRITER
-- verbatim
b _pre
e_pre
feature(s) from EPX_XHTML _WRITER
-- tables
b_table
e _table
b tr
e_tr
td
-- an empty cell
b_td
e td
th
-- an empty cell
b_th
e _th

Short (flat) listing of Standard C bonus classes 182

feature(s) from EPX_XHTML_WRITER
-- forms
standard_encodingSTRING
plaintext_encodingSTRING
multipart_encoding STRING
b_form (method, actionSTRING
b_form_get(action STRING
b_form_post(action STRING
e _form
b_input (type, name STRING
e_input
button_hidden(name, value STRING
b_button_submi{name, value STRING
e_button_submit
b_button_reset
e_button_reset
button_reset
b_checkboxname, value STRING
e_checkbox
b_radio (name, value STRING
e_radio
b_select(hame STRING
e_select
option (text STRING
selected_optior{choice STRING
b_textarea(name STRING
-- multiline input
e_textarea
input_text(name STRING size INTEGER value STRING
-- singleline input
feature(s) from EPX_XHTML_WRITER
-- CSS style sheet support
b_style
e_style
set_class(name STRING
-- set attribute class
invariant
-- lower_a_code_definition: lower_a_code = (a).code
-- Same thing for all other codes.
-- (see "note" in indexing clause.)
accessing_real_singletorsecurity _is_real_singletgn
my_xml_not_voidmy_xml/= Void;
same_sizeattributes.count= values.count
has_tag_stacktags /= Void,
fragment_has_no_headeis_fragmentimplies is_header_written
values_not_voidvalues/= Void;
attributes_not_void attributes /= Void;

183 EPX_XHTML_WRITER

every attribute_has_a_valuattributes.count= values.count
end of EPX_XHTML_WRITER

G

Short (flat) list-
ing of Single
Unix Specifi-
cation bonus
classes

Classes in this appendix are based on the Single Unix Specification. Some of them might also be
available under Windows.

G.1 EPX_HTTP_10_CLIENT

classinterface EPX_HTTP_10 CLIENT
creation
make (host_name STRING
-- Prepare for request tbhost_name
make_from_pori{host_name STRING port: INTEGER
-- Prepare for request.
-- Use port is 0 to use the default port (80).
make_from_hosta_host SUS_HOSY
-- Prepare for request to resolved host If port is O,
-- the default port is taken, else the port can be overruled.
make_from_host_and_po¢a_host SUS _HOST port: INTEGER
-- Prepare for request ta_host If port is 0, the
-- default port is taken, else the port can be overruled.
feature(s) from EPX_HTTP_10 CLIENT
-- Client http version
client_version STRING
-- Clients version of the http protocol
feature(s) from EPX_HTTP_10_ CLIENT
-- Requests
get (path STRING
-- Send GET request to server.
head (path STRING
-- Send HEAD request to server.
-- path should not include http: and the host name, only
-- the page that is requested. Any query and fragment parts are ok.
options (path STRING

185 EPX_HTTP_10 CLIENT

-- Get server options. Path is required when the request is
-- being made to a proxy.
feature(s) from EPX_HTTP_10 CLIENT
-- Fields that are send with a request if set
user_agent STRING
-- ldentification of client program.
-- Common examples are:
-- Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
-~ Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.0.0) Gecko/20020529
-- Microsoft Internet Explorer
set_user_agenfvalue STRING
-- Set the client identification.
feature(s) from EPX_HTTP_10 CLIENT
-- Response
body EPX_MIME_BODY_TEXT
-- Return body as text, if applicable, else Void.
fields DS_HASH_TABLEPX_MIME_FIELD,STRIN{G
-- Header fields of response.
is_response_okBOOLEAN
-- Does the returnedesponse_cod@dicate success?
part: EPX_MIME_PART
-- The entire parsed MIME message
¢. CHARACTER
read_response
-- Read entire resonse, parse while reading.
response_codeNTEGER
response_phraseSTRING
server_versionSTRING
-- Set byread_response
feature(s) from EPX_HTTP_10_ CLIENT
-- Individual response fields, Void if not available
location STRING
invariant
accessing_real_singletorsecurity_is_real_singletgn
host_found host /= Void and then host.foung
have_addresssa /= Void;
end of EPX_HTTP_10_ CLIENT

Short (flat) listing of Single Unix Specification bonus classes 186

G.2 ULM_LOGGING

This class depends on Standard C only. It isERX_LOG_HANDLERhat is platform specific.
e-PosIx provides implementations of this class for Unix through syslog and for Windows through
the NT event log.

classinterface ULM_LOGGING
creation
make (a_handler ULM_LOG_HANDLER a_program_nameSTRING
-- Start logging forprogram The host name is derived from
-- an OS specific call through_handler
feature(s) from ULM_LOGGING
-- Log methods
log_error (levet INTEGER subsystemSTRING error_number INTEGER error_messageSTRING
-- Useful for logging errors.
log_event(levet INTEGER subsystemSTRING fields ARRAYULM_FIELD])
-- Log event, consisting of one or more fields. It is the
-- responsibility of the client to make sure the values are
-- proper for each field.
-- This function adds any ULM required field if not present.
-- subsystemif present is appended with a dot to
-- program and written in the "PROG" field.
-- DATE is logged in GMT.
log_single_field(levet INTEGER subsystem, field_name, vall&TRING
-- Log value for field_name value will be properly
-- quoted if necessaryalue should be in the proper
-- format for field_name
-- This function adds any ULM required field.
- subsystemif present is appended with a dot to
program and written in the "PROG" field.
- in the "PROG" field.
- DATE is logged in GMT.
log_messagdlevel INTEGER subsystem, valueSTRING
-- Log a simple message with the MSG field.
- This function adds any ULM required field.
- subsystemif present is appended with a dot to
program and written in the "PROG" field.
- DATE is logged in GMT.
feature(s) from ULM_LOGGING
-- Queries
is_valid_field_namdfield_name STRING: BOOLEAN
-- Returns True iffield_nameis valid according to ULM spec.
-- Basically it should consist of one or more letters and have
-- NO spaces.
is_valid_partial_field_list(fields ARRAYULM_FIELD]): BOOLEAN
-- Contains True iffields contains at least one item, and
-- if every item infieldsis not Void and iffield=does
-- not contain a duplicate field and ffelds does not

187

ULM_LOGGING

-- contain the LVL field.

feature(s) from ULM_LOGGING

-- Standard field names
Ivl: STRING
- Importance and category of the ULM.
host STRING
- Name of software component which issues the ULM.
prog. STRING
- Name of the software component which issued the ULM.
date STRING
- Instantaneous date of the event.
lang: STRING
-- Language used for text fields. Default is english (EN).
dur: STRING
-- Indicates duration (in seconds) of the event.
ps STRING
-- Process id which issued the ULM.
id: STRING
-- System reference to the concerned document.
src_ip STRING
-- The IP number of the source host.
src_fqdn STRING
-- Fully qualified Domain Name for the source host.
src_name STRING
-- Generic name qualifying the source.
src_port STRING
-- Port number for TCP, UDP or other protocol.
src_ust STRING
-- User name or user id.
src_mail STRING
-- Email address.
dst_ip STRING
-- The IP number of the destination host.
dst_fgdn STRING
-- Fully qualified Domain Name for the destination host.
dst_name STRING
-- Generic name qualifying the destination.
dst_port STRING
-- Port number for TCP, UDP or other protocol.
dst_usr STRING
-- User name or user id.
dst_mail STRING
-- Email address.
rel_ip: STRING
-- The IP number of the proxy/relayer host.
rel_fgdn STRING
-- Fully qualified Domain Name for the proxy/relayer host.

Short (flat) listing of Single Unix Specification bonus classes 188

rel_name STRING
-- Generic name qualifying the proxy/relayer.
rel_port STRING
-- Port number for TCP, UDP or other protocol.
rel_usr STRING
-- User name or user id.
rel_mail: STRING
-- Email address.
vol: STRING
-- Volume (number of bytes) sent and received from the source
-- point of view.
vol_sent STRING
-- Volume (number of bytes) sent from the source point of view.
vol_rcvd STRING
-- Volume (number of bytes) received from the source point of view.
cnt STRING
-- Count (of articles, files, events) sent and received from
-- the source point of view.
cnt_sent STRING
-- Count (of articles, files, events) sent from the source
-- point of view.
cnt_rcvd STRING
-- Count (of articles, files, events) received from the
-- source point of view.
prog_file STRING
-- Name of the program source file from which the ULM was generated.
stat STRING
-- State or status of the designed process. Possible values
-- for this field may include "Failure", "Success", "Start",
-- "End".
tty: STRING
-- Users physical connection to the host.
doc STRING
-- Name of accessed document like the path of an ftp file,
-- the name of a newsgroup, or the non-host part of an URL.
prot: STRING
-- Protocol used.
cmd STRING
-- Issued command.
msg STRING
-- The only field which should contain arbitrary data.
feature(s) from ULM_LOGGING
-- Public state
host name STRING
-- Name of the host which issues the ULM.
program_name STRING
-- Name of the software component which issues the ULM.

189 ULM_LOGGING

invariant
log_level_text_lower_index_pkog_level_text.lower emergency
log_level text upper_index :olog level text.upper debugging
accessing_real_singletorsecurity_is_real_singletgn
handler_not_void handler /= Void,
host_name_not_empthost /= Void and then not host.is_empty
program_name_not_emptprogram_name= Void and then not program_name.is_empty
have_my_ datemy_date/= \Void,
have_my_hostmy host/= Void,;
have_my_progmy_prog/= Void,
have_my_ Il my_Ivl /= Void,

end of ULM_LOGGING

To do

EPX_FILE_SYSTEM

1. MakeEPX_DIRECTORY

STDC_FILE

1. read_integer, read_double, read_boolean should perhaps be different for the binary or text files.
Now they’re satisfy the mico/e definition, so useful for text files only.

STDC_LOCALE_NUMERIC

1. Complete the list of properties

STDC_PATH

1. make some escape char functionality with ‘%’ or so.

POSIX_STATUS

1. return STDC_TIME instead of unix time

2. Not all stat member fields are currently available.

STDC_TIME

1. Add elapsed seconds

POSIX_EXEC_PROCESS

1. turn off Eiffel exception handling after the final execvp, else you get back signals not captured
by child process as your signals, or so it seems (or perhaps you're killing the Eiffel process, but
not the subprocess it generated??)

Killing subprocesses works sometimes, but not always.

Remove exception handling just before execvp?

2. how about capture to /dev/null?

191 POSIX_FILE_DESCRIPTOR

3. can we capture i/o for every forked process? If so, move this code to POSIX_FORK_ROOT.

4. Perhaps option to influence environment variables to pass to subprocess?

POSIX_FILE_DESCRIPTOR

1. possible to open exclusively and so?

2. complete support for nonblocking i/o.

POSIX_MEMORY_MAP

1. Cannot change protection.

2. No locking.

POSIX_SEMAPHORE

1. not valid for named semaphore | think.

2. have to add various close/unlink functions.

POSIX_SIGNAL

1. Add synchronous waiting for signals likegwait.
2. (Re)enable sending Eiffel exception on signal? i.e. set_exception_handler or so.

3. Resend signal as Eiffel exception in signal handler.

MQUEUE

1. Notin the free unices at this moment. Maybe have to get a copy of Solaris x86?7?

Security

Add base security class that specifies programs intent. Default is to allow anything, but security
can be tightened:

1. Calltoopenor creat(used?), use real user id, not effective user id.
2. Assume we're free from buffer attacks if preconditions are enabled.

3. exec/system call only allowed when effective user is not root, unless otherwise specified. Or
exec only allowed for specific files.

To do 192

4. Protect against writing specific files/directories. Perhaps substitute vulnerable filenames for
other ones.

5. Emulate atomic calls. Or add atormziccessandopencall. Shouldn’t be done by setting su??
6. When appending/writing to files, check if symbolic link.

7. ABSTRACT_FILE_SYSTEM.force_remove_direci®nyotentially unsafe because it follows
links so it can be used to destroy things not under that directory.

8. remove tmpnam function.

9. Make sure the once functions in STDC_BASE are called from within the security initialization,
so they're allocated and do not generate an out-of-memory exception themselves.

Idea from ‘Remediation of Application Specific Security Vulnerabilities at Runtime’ article in IEEE
Computer sep/oct 2000.

Windows code

1. chmod also available on Windows.
2. Add permissions to status: read/write.

3. set_binary_mode should do something for the posix factory, i.e., when compiling with cygwin.
Perhaps separa@YGWIN_APIor so inposix dir with the window specific stuff.

Currently cygwin uses text mode for file descriptors, the windows variant uses binary.

4. utime can be supported by using SetFileTime.

Other

1. remove ugly const_ prefix from constants. Uppercase should be good enough.
Almost done, only const_EOF remains, not easy to replace perhaps.

2. Compare POSIX_SIGNAL with ISE UNIX_SIGNAL: They have anis_caught function, useful?
Means this signal generates an exception.

Known bugs

e not for everySTDC_BASE.raise_posix_errre error code is set probably.

e does STRING_HELPER leak memory in to_external? How is memory used for these conver-
sions being freed? Is memory used there?

e Ifachild processis signalled (terminated), the funcB@SIX_FORK_ROOT.is_terminated_normally
sometimes returns True.

~NOoO o WN

Bibliography

(1996). System Application Program Interface (API) [C Languag&}lume Part | ofin-
formation technology — Portable Operating System Interface (POSNBI/IEEE, 1996

edition. . _
(1991). The Standard C libraryPrentice Hall.

(1994). POSIX programmer’s guideD’Reilly & Associates.

Stevens, W. R. (1998)nix network programmingPrentice Hall.

Meyer, B. (1997).0bject-Oriented Software ConstructioAddison Wesley, 2nd edition.
Hatton, L. (2001). Exploring the role of diagnosis in software faillEEE Software
Whittaker, J. A. (2001). Software’s invisible usetBEEE Software

/src/library.xace 5
_exit 72

a
abort 71
abort
STDC_CURRENT_PROCESS71
ABSTRACT_FILE_DESCRIPTOR 58
ABSTRACT_CURRENT_PROCESSIii,
98, 99
ABSTRACT_EXEC_ PROCESS:Iii, 100,
101
ABSTRACT_FILE_DESCRIPTOR iii,
102, 103 105
ABSTRACT_FILE_SYSTEM iii, 106, 107
ABSTRACT_PIPE iii, 109
ABSTRACT_STATUS ii, 110
access 71,192
acquire
POSIX_SEMAPHORE 74
add
POSIX_SIGNAL_SET 74
add_data
EPX_CGI 51
add_to_blocked_signals
POSIX_SIGNAL_SET 74
aio.h 71,73
aio_cancel 71
aio_error 71
aio_fsync 71
aio_read 71
aio_return 71
aio_suspend 71
aio_write 71
alarm 71
allocate
STDC_BUFFER 73
allocate_and_clear
STDC_BUFFER 44, 71
ANY 4
apply
POSIX_SIGNAL 30

apply_drain
POSIX_TERMIOS 74
apply_flush
POSIX_TERMIOS 74
apply_now
POSIX_TERMIOS 74
apply_owner_and_group

Index

POSIX_PERMISSIONS_PATH 71

asctime 71

assert_key value pairs_created

EPX_CGI 54
atexit 71
attempt_acquire

POSIX_SEMAPHORE 74

attempt_lock

POSIX_FILE_DESCRIPTOR 72

attempt_open_read
POSIX_TEXT_FILE 61

b
b a
EPX_CGI 51
b_form_get
EPX_CGI 52
b_form_post
EPX_CGI 52
b_input
EPX_CGI 52
b_p
EPX_CGI 51
backslash 17
BeOS 6
big endian 44
binary file 16
binary mode 59
binary stdin 60
binary stdout 60
browse_directory

POSIX_FILE_SYSTEM 23, 62

C
c_stdio.c 69

195

c_stdio.h 69 configure 1,5

calloc 71 content_text

cancel EPX _CGI 54
POSIX_ASYNC_IO_REQUEST 71 copy_from

CAPI_STDIO 8, 69 STDC_BUFFER 73

C compiler creat 71,191
Borland 2, 4 create_fifo
lcc 2 POSIX_FILE_SYSTEM 57, 73
Microsoft 2 create_read_write
Microsoft Visual C POSIX_FILE_DESCRIPTOR 71

+ 4 create_shared

cfgetispeed 71 POSIX_UNNAMED_SEMAPHORE 73

cfgetospeed 71 create_unshared

cfsetispeed 71 POSIX_UNNAMED_SEMAPHORE 73

cfsetospeed 71 create_write

cgi 49 POSIX_SHARED_MEMORY 74
enumerating all values55 ctermid 71
file upload 51 ctime 71
redirect 55 Citrl

change_directory C 30,47
POSIX_FILE_SYSTEM 71 ctype.h 75

change_mode current_directory
POSIX_FILE_SYSTEM 71 POSIX_FILE_SYSTEM 72

chdir 71 cuserid 71

chmod 71 Cygwin 6

chop cygwin 9
POSIX_TEXT_FILE 14 CYGWIN 60

chop_last_string CYGWIN_API 192
ABSTRACT_FILE_DESCRIPTOR 60

chown 71 d

clear_error deallocate
STDC_FILE 71 STDC_BUFFER 72

clear_first default_format
STDC_ERRNO 64 POSIX_TIME 27

clearerr 71 STDC_TIME 71

clock 71 detach

clock POSIX_DAEMON 34
STDC_CURRENT_PROCESS71 difftime 71

clock_getres 71 directory

clock_gettime 71 browse 23

clock_settime 71 change 21

close 71 create 21

close remove 21
POSIX_FILE_DESCRIPTOR 71 test_suite 39
STDC_FILE 67,72 dirent.h 71,73

closedir 71 dispose

compiler.se 57 MEMORY 67

Index

196

doctype
EPX_CGI 50
doctype_transitional
EPX_CGI 50
dup 71
dup2 71

e
EEXIST 62
effective_group_id

POSIX CURRENT_PROCESS72
effective_user_id

POSIX CURRENT_PROCESS72
eiffel.h 68
elj-win32 2
end-of-line character 14
ENOSYS 57
environment variable 17

CYGWIN 60

EPOSIX 1
Environment variable

expansion 17
environment variable

GOBO CC 1

GOBO_EIFFEL 2

set 40
eof

POSIX_TEXT_FILE 16

STDC _FILE 72
EPX_CGI v, vi, 49, 50, 169, 171
EPX_CURRENT_PROCESS47, 58, 60
EPX_DIRECTORY 190
EPX_EXEC_PROCESS58
EPX_FILE_DESCRIPTOR 58
EPX_FILE_SYSTEM v, 58, 190
EPX_HTTP_10 CLIENT v, 42, 184, 185
EPX_LOG_HANDLER 186
EPX_PIPE 58
EPX_SOAP_WRITER v, 172, 173
EPX_URI v, 42, 174, 175
EPX_XHTML_WRITER v, 180, 181, 183
EPX_XML_WRITER v, 176 177, 179
epxc 9
epxs 9
errno 8
errno

POSIX_FILE_DESCRIPTOR 64

errno.first_value
POSIX_FILE_DESCRIPTOR 64

errno.value
POSIX_FILE_DESCRIPTOR 64

error
STDC _FILE 72

error handling 61

EX_ERROR1 64

execl 71

execle 71

execlp 71

execute
POSIX_DAEMON 34
POSIX_EXEC_PROCESS72
POSIX_FORK_ROOT 32
POSIX_SHELL_COMMAND 25

execv 71

execve 71

execvp 71,72

exit 72

exit
STDC_CURRENT_PROCESS72

expand_path
POSIX_FILE_SYSTEM 17

extend
EPX _CGI 51

f

fclose 72

fcntl 72

fentl.h 71, 73

fd_stdin
EPX_CURRENT_PROCESS60

fd_stdout
EPX_CURRENT_PROCESS60

fdatasync 5,5, 6, 72

fdopen 72

feof 72

ferror 72

fflush 72

fgetc 72

fgetpos 72

fgets 72

file
EPX_KEYVALUE 54

file
read entire 14

197

fileno 72

file pointer 17

fill_with
STDC_BUFFER 73

first_value
POSIX_FILE_DESCRIPTOR 64
STDC_ERRNO 64

flush 29

flush
STDC_FILE 72

flush_input
POSIX_TERMIOS 74

fopen 68,72

force_remove_directory
ABSTRACT_FILE_SYSTEM 192

fork 72

fork
POSIX_CURRENT_PROCESS32, 72

format
POSIX_TIME 27
STDC_TIME 74

forum.txt Vv

fpathconf 72

fprintf 72

fputc 72 73

fputs 72,73

fread 72

free 72

freopen 72

fseek 72

fsetpos 72

fstat 72

fsync 5,56, 72

ftell 72

furite 72

g
geant 1

get_character
STDC_FILE 72
get_lock
POSIX_FILE_DESCRIPTOR 20, 57, 72
get_position
POSIX_FILE 17
STDC_FILE 72
get_string
STDC_FILE 72

getc 72
getchar 72
getcwd 72
getegid 72
getenv 72
geteuid 72
getgid 72
getgrgid 72
getgrnam 72
getgroups 72
getlogin 71,72
getpgrp 72
getpid 12,72
getppid 72
getpwnam 72
getpwuid 72
gets 72
gettimeofday 72
getuid 72
gexace 3
gmtime 72
grp.h 72

h
Halstenbach 5
has
POSIX_SIGNAL_SET 74
HTTP 9

i
input_speed
POSIX_TERMIOS 71
input_text
EPX_CGI 52
is_modifiable
POSIX_FILE_SYSTEM 21
is_accessible
ABSTRACT_FILE_SYSTEM 71
is_attached_to_terminal
POSIX_FILE_DESCRIPTOR 72
is_in_group
POSIX_CURRENT_PROCESS72
is_pending
POSIX_ASYNC_IO0_REQUEST 71
is_readable
POSIX_FILE_SYSTEM 23

Index

198

is_terminated_normally
POSIX _FORK_ROOT 192

isatty 72

ISE Eiffel 2

k
kill 72
kill
POSIX_PROCESS 72

I

last_string
POSIX_TEXT_FILE 14

libeposix ise msc.lib 2

libeposix se.a 2,57

libeposix ve msc.lib 5

library.xace 3

license v
link 72
link

POSIX FILE_SYSTEM 72
lio_listio 73
little endian 44
local_date_string

POSIX_TIME 27
local_time_string

POSIX TIME 27
locale.h 73,74
localeconv 73
localtime 73
lock 19
login_name

POSIX CURRENT_PROCESS72
lseek 73

m

make
POSIX_PIPE 73
POSIX_TERMIOS 74
STDC_TEMPORARY_FILE 74

make.exe 2

make_as_duplicate
POSIX_FILE_DESCRIPTOR 29, 71

make_directory
POSIX_FILE_SYSTEM 73

make_empty
POSIX_SIGNAL_SET 74

make_from_file
POSIX_FILE_DESCRIPTOR 72

make_from_file_descriptor
POSIX_FILE 72

make_from_gid
POSIX_GROUP 72

make_from_name
POSIX_GROUP 72
POSIX_USER 72

make_from_now
POSIX_TIME 26

make_from_uid
POSIX_USER 72

make_from_unix_time
STDC_TIME 74

make_full
POSIX_SIGNAL_SET 74

make_pending
POSIX_SIGNAL_SET 74

malloc 73

max_filename_length
POSIX_DIRECTORY 73

memchr 73

memcmp /3

memcpy /3

memmove /3

memory_copy
STDC_BUFFER 73

memory_move
STDC_BUFFER 73

memset 73

MIME 9

minicom 36

mkdir 73

mkfifo 5, 6,57, 73

mktime 73

mlock 73

mlockall 73

mmap 73

modem 36

mprotect 73

mg-receive 73

mg_close 73

mg_getattr 73

mg_notify 73

mg_open 73

mq_send 73

199

mq_setattr 73
mg_unlink 73
MQUEUE v, 191
mqueue.h 73
msync 73
munlock 73
munlockall 73
munmap /3
my_xml

EPX_CGI 50

n
nanosleep 73

0
open 73,191 192
open
POSIX_FILE 8
POSIX_FILE_DESCRIPTOR 73
open_read
POSIX_TEXT_FILE 61
POSIX_FILE 8
POSIX_FILE_DESCRIPTOR 73
POSIX_SHARED_MEMORY 74
open_read_write
POSIX_FILE_DESCRIPTOR 73
POSIX_SHARED_MEMORY 74
open_write
POSIX_FILE_DESCRIPTOR 73
opendir 73
Open Source v
output_speed
POSIX_TERMIOS 71

p
p_stdio.c 69

p_stdio.h 69

PAPI_UNISTD 8

parent_pid
POSIX_CURRENT_PROCESS72

pathconf 73

path name 17

pause 73

pause
POSIX_CURRENT_PROCESS73

peek_intl6
STDC_BUFFER 44

peek_int16_big endian
STDC_BUFFER 44
peek_intl6_little_endian
STDC_BUFFER 44
peek_int32
STDC_BUFFER 44
peek_uintl6
STDC_BUFFER 44
permissions
POSIX_FILE_SYSTEM 23

perror 73

pid
POSIX_CURRENT_PROCESS12, 72
pipe 73

poke_int32_big_endian
STDC_BUFFER 44
POSIX_ASYNC_IO_REQUEST 36
POSIX_FILE_DESCRIPTOR 58, 67
POSIX_FILE_SYSTEM 21
POSIX_PERMISSIONS 23
POSIX_ASYNC_IO_REQUEST iii, 111
POSIX_ BASE iii, 8, 113
POSIX_BINARY_FILE 13
POSIX_BUFFER 28, 43
POSIX_CHILD_PROCESS iii, 114
POSIX_CONSTANTS iii, 9, 115 117,
119 121
POSIX_CURRENT_PROCESSIii, 32, 122
POSIX_DAEMON iii, 34, 123
POSIX_DIRECTORY ii, 23, 24, 71, 73,
124
POSIX_ENV_VAR 28
POSIX_EXEC_PROCESSiii, iv, vi, 25,
125 127, 190
POSIX_FILE iii, 13,128
POSIX_FILE_DESCRIPTOR iii, iv, 18,
72, 129 131, 133 191, 191
POSIX_FILE_SYSTEM iii, 21, 135 137
POSIX_FORK_ROOT iii, 12, 32, 138 139
POSIX_GROUP iii, 140
POSIX_LOCK iii, 141
POSIX_MEMORY_MAP iii, iv, 73, 142,
143 191
POSIX_PERMISSIONS iii, 23, 144, 145
POSIX_PIPE iii, 147
POSIX_SEMAPHORE iii, iv, 148 191

Index

200

posix_setsid

PAPI_UNISTD 74
POSIX_SHELL_COMMAND 25
POSIX_SIGNAL iii, iv, 74, 149, 191
POSIX_SIGNAL_HANDLER 30, 31
POSIX_SIGNAL_SET iii, 150, 151
POSIX_STAT 23

POSIX_STATUS iii, iv, 23, 72, 74, 152,

190
POSIX_SYSTEM iii, 74, 153
POSIX_TERMIOS iii, 155
POSIX_TEXT_FILE 13, 18

POSIX_TIMED_COMMAND iii, 71, 157

POSIX_USER iii, 158
POSIX_USER_DATABASE iii, 159
printf 73
process_group_id
POSIX_CURRENT_PROCESS72
prune
POSIX_SIGNAL_SET 74
put_string
STDC_FILE 72
putc 73
putc
STDC_FILE 72
putchar 73
puts 73
puts
EPX_CGI 51
pwd.h 72

q
QNX 6

r
raise 73
raise
STDC_SIGNAL 73, 74
raise_posix_error
STDC_BASE 192
rand 73
random
STDC_CURRENT_PROCESS73
raw_value
EPX_CGI 52
read 73

read
POSIX_ASYNC_IO_REQUEST 36
POSIX_ASYNC_IO_REQUEST 71
POSIX_FILE 15
POSIX_FILE_DESCRIPTOR 73
STDC _FILE 72
read_buffer
POSIX_FILE 15
read_character
STDC_FILE 72
read_string
POSIX_TEXT_FILE 16
STDC _FILE 72
readdir 73
real_group_id
POSIX_CURRENT_PROCESS72
real_user_id
POSIX_CURRENT_PROCESS72
realloc 73
recv 6
redirect standard error29
reestablish
STDC_SIGNAL_HANDLER 31
refresh
POSIX_PERMISSIONS 23
release
POSIX_SEMAPHORE 74
remove 73
remove_directory
POSIX_FILE_SYSTEM 73
remove_file
GENERAL 4
POSIX_FILE_SYSTEM 4, 63, 73
remove_from_blocked_signals
POSIX_SIGNAL_SET 74
rename /3
rename_to
POSIX_FILE_SYSTEM 73
reopen
STDC_FILE 72
resize
STDC_BUFFER 73
restore_group_id
POSIX_CURRENT_PROCESS74
restore_user_id
POSIX_CURRENT_PROCESS74

201

return_status
POSIX_ASYNC_IO0_REQUEST 71
rewind 73
rewind
STDC _FILE 73
rewinddir 73
rmdir 73

s

save_uploaded_files
EX_CGI3 54

scanf 73

security.cpu.check process_time
STDC_FILE 67

security.cpu.set_max_process_time
STDC_FILE 67

security.files.set_max_open_files
STRING 67

security.error_handling.disable_exceptions
STDC_SECURITY_ACCESSORG63

security.error_handling.enable_exceptions
STDC_SECURITY_ACCESSOR63

security.memory.set_max_allocation
STDC_SECURITY_ACCESSOR66

security.memory.set_max_single_allocation
STRING 67

seek 17

seek
POSIX_FILE 17
POSIX_FILE_DESCRIPTOR 73
STDC_FILE 72

seek_from_current
POSIX_FILE_DESCRIPTOR 73
STDC_FILE 72

seek_from_end
POSIX_FILE_DESCRIPTOR 73
STDC_FILE 72

sem_close 73

sem_destroy 73

sem_getvalue 73

sem_init 73

sem_open 73

sem_post 74

sem_trywait 74

sem_unlink 74

sem_wait 74

semaphore.h 73, 74

sendmsg 6
set_allow_anyone_read
POSIX_PERMISSIONS 23
set_allow_group_write
POSIX_PERMISSIONS 23
set_blocked_signals
POSIX_SIGNAL_SET 74
set_buffer
POSIX_ASYNC I0_REQUEST 36
STDC_FILE 74
set_count
POSIX_ASYNC I0_REQUEST 36
set_date
STDC_TIME 73
set_date_time
STDC_TIME 73
set_full_buffering
STDC _FILE 74
set_group_id
POSIX_CURRENT_PROCESS74
set_handler
POSIX_SIGNAL 30, 31
set_input_speed
POSIX_TERMIOS 71
set_line_buffering
STDC_FILE 74
set_locale
STDC_CURRENT_PROCESS74
set_lock
POSIX_FILE_DESCRIPTOR 72
set_native_locale
STDC_CURRENT_PROCESS74
set_native_time
STDC_CURRENT_PROCESS74
set_no_buffering
STDC_FILE 74
set_offset
POSIX_ASYNC_IO_REQUEST 36
set_output_speed
POSIX_TERMIOS 71
set_position
POSIX_FILE 17
STDC_FILE 72
set_random_seed
STDC_CURRENT_PROCESS74
set_time
STDC_TIME 73

Index

202

set_user_id
POSIX_CURRENT_PROCESS74
setbuf 74
setgid 74
setjmp.h 75
setlocale 74
setpgid 74
setsid 74
setuid 74
setvbuf 74
shm_open 74
shm_unlink 74
sigaction 74
sigaddset 74
SIGCHLD 31
sigdelset 74
sigemptyset 74
sigfillset 74
sigismember 74
signal 74
signal.h 72,73 74
signal handler 30
signalled

POSIX_SIGNAL_HANDLER 30, 31

sigpending 74

sigprocmask 74

sigqueue 74

sigsuspend 74

sigtimedwait 74

sigwait 74, 191

sigwaitinfo 74

slash 17

sleep 74

sleep
EPX_CURRENT_PROCESS47
POSIX_CURRENT_PROCESS74

SmallEiffel vi, 2

sprintf 74

srand 74

src/library.xace 1,5

sscanf 74,75

start_tag
EPX_CGI 50

stat 23,74

status
POSIX_FILE_DESCRIPTOR 23
POSIX_FILE_DESCRIPTOR 72

STC_TEMPORARY_FILE 43
stdarg.h 75
STDC_BASE i, 8, 76
STDC_BINARY_FILE 43, 60, 85
STDC _BUFFER i, 43, 43, 44, 67, 77, 79
STDC_CONSTANTS ii, 9, 43, 81
STDC_CURRENT_PROCESSIi, 43, 83
STDC _ENV_VAR i, 43, 44, 84
STDC_ERRNO

POSIX_FILE_DESCRIPTOR 64
STDC _FILE i, iv, 67, 72, 85, 87, 89, 190
STDC_FILE_SYSTEM i, 43, 90
STDC_LOCALE_NUMERIC v, 73, 190
STDC_PATH v, 190
STDC_SECURITY iii, 91
STDC_SECURITY_ACCESSORG66
STDC_SHELL _COMMAND 43, 74
STDC_SIGNAL iii, 92
STDC_SIGNAL_HANDLER iii, 93
STDC_SYSTEM iii, 43, 94
STDC _TEXT_FILE 43, 60, 85
STDC_TIME iii, iv, 43, 71, 95, 97, 190
stderr 29
stdin

binary 60
stdio.h 69, 69, 71, 72, 73, 74, 75
stdioh 72
stdlib.h 71, 72, 73, 74
stdout 29

binary 60
stream buffer 29
strftime 74
STRING 67
string.h 73
support

commercial v
SUS BASE 8
SUS CONSTANTS iii, 160, 161
SUS _ENV_VAR iii, 162
SUS _ENV_VAR

POSIX_ASYNC I0_REQUEST 40
SUS_FILE_SYSTEM iii, 163
SUS_HOST iii, 164
SUS_SERVICE iii, 165
SUS_SOCKET_ADDRESSIv, 166
SUS_SYSLOG v, 41, 167
SUS _SYSLOG_ACCESSOR41

203

SUS_TCP_SOCKET iv, 6, 168

SUS_TIME_VALUE 72

suspend
POSIX_SIGNAL_SET 74

synchronize
POSIX_ASYNC_IO_REQUEST 36
POSIX_ASYNC_IO_REQUEST 71
POSIX_FILE_DESCRIPTOR 72

synchronize_data
POSIX_FILE_DESCRIPTOR 72

sys/mman.h 73, 74

sys/stat.h 71, 72,73 74

sys/time.h 72

sys/utsname.h 74

sys/wait.h 75

sysconf 74

system 74

system.se 57

system.xace 3,5

t
tcdrain 74
tcflow 74
tcflush 74
tcgetattr 74
tcgetpgrp 74
tcsendbreak 74
tcsetattr 74
tcsetpgrp 74
tell
POSIX_FILE 17
STDC_FILE 72
temporary_file_name
STDC_FILE_SYSTEM 74
terminal 20
password 20
termios.h 71
text mode 59
time 74
time.h 71,72 73, 74
timer_create 74
times 74
times.h 74
tmpfile 74
tmpnam 74
to_local
POSIX_TIME 26

STDC _TIME 73
to_utc
POSIX_TIME 26
STDC_TIME 72
touch
POSIX_FILE_SYSTEM 75
ttyname 74
ttyname
POSIX_FILE_DESCRIPTOR 74
tzset 74

u
ULM_LOGGING v, 186 187, 189
umask 74
uname 74
ungetc 74
ungetc
STDC_FILE 74
unistd.h 71, 72 73, 74,75
unlink 8, 74
unlink
POSIX_FILE_SYSTEM 74
unlink_shared_memory_object
POSIX_FILE_SYSTEM 74

URI 9, 42
utime 75
utime

POSIX_FILE_SYSTEM 75
utime.h 75

\'
value
EPX_CGI 52, 54
STDC_ENV_VAR 72
VE_BIN 5
viprintf 75
Visual Eiffel vi
VisualEiffel 2, 4
vprintf 75
vsprint 75

w
wait 75
wait

POSIX_CURRENT_PROCESSI12, 75

wait_for
POSIX_ASYNC_IO_REQUEST 36

Index

POSIX_ASYNC_IO_REQUEST 71
POSIX_CHILD 12
POSIX_EXEC_PROCESS26
wait_pid
POSIX_FORK_ROOT 75
waited_child_pid
POSIX_CURRENT_PROCESS12
waitpid 75
Windows 2000 6

write 75

write
POSIX_ASYNC_IO_REQUEST 36
POSIX_ASYNC_IO_REQUEST 71
POSIX_FILE_DESCRIPTOR 75
STDC _FILE 72

write_string
POSIX_FILE_DESCRIPTOR 63, 64

205

