
e-POSIX
The definitive and complete

Eiffel to Standard C and
POSIX 1003.1 binding

written by Berend de Boer



Contents

1 Requirements and installation 1
1.1 Requirements 1
1.2 Compiling the C code 1
1.2.1 Compiling on Unix 1
1.2.2 Compiling on Windows 2
1.2.3 Library naming conventions 2

2 Using e-POSIX 3
2.1 Usinglibrary.xace 3
2.2 Vendor specific notes 4
2.2.1 ISE Eiffel 4
2.2.2 SmallEiffel 4
2.2.3 Visual Eiffel 4
2.2.4 Halstenbach Eiffel 5
2.3 Platform specific notes 5
2.3.1 Linux 5
2.3.2 FreeBSD 5
2.3.3 Cygwin 5
2.3.4 BeOS 6
2.3.5 QNX 6
2.3.6 Win32 6

3 Design notes 7
3.1 Why an entire reimplementation? 7
3.2 Goals and guidelines 7
3.3 Class structure 8
3.4 Clients of this library 9
3.5 Forking 11
3.6 Books 12

4 Basic Posix examples 13
4.1 Working with files 13
4.2 Working with file descriptors 18
4.3 Working with the file system 21
4.4 Executing a child command 25
4.5 Current time 26
4.6 Accessing environment variables 28
4.7 Allocating memory 28
4.8 Redirecting stderr to stdout 29

5 Advanced Posix examples 30
5.1 Catching a signal 30
5.2 General wait for child handler 31



ii

5.3 Forking a child process 32
5.4 Creating a daemon 34
5.5 Asynchronous I/O 35
5.6 Talking to your modem 36
5.7 Using shared memory 38
5.8 More examples 39

6 Single Unix Specification classes 40
6.1 Environment variables 40
6.2 Logging messages and errors 40
6.3 Sockets 41
6.4 HTTP client 42

7 Standard C examples 43
7.1 Allocating memory 43
7.2 Accessing environment variables 44
7.3 Working with streams 44
7.4 Working with the file system 45
7.5 Catching a signal 47

8 Writing CGI programs 49

9 e-POSIX in Windows 57
9.1 Compiling POSIX programs in Windows 57
9.2 Native Windows 58
9.3 Binary mode versus text mode 59

10 Error handling 61
10.1 Error handling with exceptions 61
10.2 Manual error handling 63

11 Security 66
11.1 Denial of service attacks 66
11.2 Authorization bypass attacks 67

12 Accessing C headers 68
12.1 Making C Headers available to Eiffel 68
12.2 Distinction between Standard C andPOSIXheaders 69
12.3 C translation details 69

A Posix function to Eiffel class mapping list 71

B Short (flat) listing of Standard C classes 76
B.1 STDC_BASE 76
B.2 STDC_BUFFER 77
B.3 STDC_CONSTANTS 81
B.4 STDC_CURRENT_PROCESS 83
B.5 STDC_ENV_VAR 84
B.6 STDC_FILE 85
B.7 STDC_FILE_SYSTEM 90



iii

B.8 STDC_SECURITY 91
B.9 STDC_SIGNAL 92
B.10 STDC_SIGNAL_HANDLER 93
B.11 STDC_SYSTEM 94
B.12 STDC_TIME 95

C Short listing of abstract classes 98
C.1 ABSTRACT_CURRENT_PROCESS 98
C.2 ABSTRACT_EXEC_PROCESS 100
C.3 ABSTRACT_FILE_DESCRIPTOR 102
C.4 ABSTRACT_FILE_SYSTEM 106
C.5 ABSTRACT_PIPE 109
C.6 ABSTRACT_STATUS 110

D Short (flat) listing ofPOSIXclasses 111
D.1 POSIX_ASYNC_IO_REQUEST 111
D.2 POSIX_BASE 113
D.3 POSIX_CHILD_PROCESS 114
D.4 POSIX_CONSTANTS 115
D.5 POSIX_CURRENT_PROCESS 122
D.6 POSIX_DAEMON 123
D.7 POSIX_DIRECTORY 124
D.8 POSIX_EXEC_PROCESS 125
D.9 POSIX_FILE 128
D.10 POSIX_FILE_DESCRIPTOR 129
D.11 POSIX_FILE_SYSTEM 135
D.12 POSIX_FORK_ROOT 138
D.13 POSIX_GROUP 140
D.14 POSIX_LOCK 141
D.15 POSIX_MEMORY_MAP 142
D.16 POSIX_PERMISSIONS 144
D.17 POSIX_PIPE 147
D.18 POSIX_SEMAPHORE 148
D.19 POSIX_SIGNAL 149
D.20 POSIX_SIGNAL_SET 150
D.21 POSIX_STATUS 152
D.22 POSIX_SYSTEM 153
D.23 POSIX_TERMIOS 155
D.24 POSIX_TIMED_COMMAND 157
D.25 POSIX_USER 158
D.26 POSIX_USER_DATABASE 159

E Short (flat) listing of Single Unix Specification classes 160
E.1 SUS_CONSTANTS 160
E.2 SUS_ENV_VAR 162
E.3 SUS_FILE_SYSTEM 163
E.4 SUS_HOST 164
E.5 SUS_SERVICE 165



iv

E.6 SUS_SOCKET_ADDRESS 166
E.7 SUS_SYSLOG 167
E.8 SUS_TCP_SOCKET 168

F Short (flat) listing of Standard C bonus classes 169
F.1 EPX_CGI 169
F.2 EPX_SOAP_WRITER 172
F.3 EPX_URI 174
F.4 EPX_XML_WRITER 176
F.5 EPX_XHTML_WRITER 180

G Short (flat) listing of Single Unix Specification bonus classes 184
G.1 EPX_HTTP_10_CLIENT 184
G.2 ULM_LOGGING 186

To do 190
EPX_FILE_SYSTEM 190
STDC_FILE 190
STDC_LOCALE_NUMERIC 190
STDC_PATH 190
POSIX_STATUS 190
STDC_TIME 190
POSIX_EXEC_PROCESS 190
POSIX_FILE_DESCRIPTOR 191
POSIX_MEMORY_MAP 191
POSIX_SEMAPHORE 191
POSIX_SIGNAL 191
MQUEUE 191
Security 191
Windows code 192
Other 192
Known bugs 192

Bibliography 193

Index 194



Introduction

It has been a great pleasure for me when I could announce the first public alpha release of this
manual. And then came the betas and the first release. Writing libraries like this is boring stuff.
Every Eiffel programmer should have had access to all those Standard C andPOSIX routines long
ago. Anyway, now you and me have. Whatever a C programmer can do, you can. And even
more safe as this library protects you of inadvertently calling routines that are not portable (because
they’re simply not there :-) ).

Writing libraries like this also seems to be a never ending story, as we now are at version 1.5. And
my to do list hasn’t shrinked, so stay tuned!

I will support this library, so bug reports and wishes are gladly accepted. In the future, I hope to be
able to expand this library to add more stuff from the Open Unix Specification, particularly sockets
and curses. Perhaps the authors of the existing Eiffel implementations for theseAPIs are willing to
create one single unified library.

Have fun using this library and I like to hear about applications!

Licensing

This software is licensed under the Eiffel Forum Freeware License, version 1. This license can be
found in theforum.txt file. Basically this license allows you to do anything with it, i.e. use it
for commercial or Open Source software without restrictions. But don’t sue me if something goes
wrong. And give me some credits.

Also explicitly allowed is copying parts of this library to your own, for example copying certain
Standard C or POSIX header wrappings. I prefer linking, but you don’t have to retype everything
if you don’t want to link.

Support

e-POSIX is a fully supported program. You can send requests for help directly to me. But to help
others profit from the discussion, and perhaps to get feedback when I’m short on time, it is suggested
that support messages are sent toeposix@yahoogroups.com.

Latest versions and announcements are available fromhttp://groups.yahoo.com/group/eposix/.

Commercial support

I’m available to give companies or organisations a one or two day course usingPOSIX and in
particularly this library. Prices are $1000 NZD a day, excluding VAT, travel and hotel expenses.
Contact me atberend@pobox.com.

mailto:eposix@yahoogroups.com
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
http://groups.yahoo.com/group/eposix/
mailto:berend@pobox.com


vi

Acknowledgements

I like to thank people who, one way or another, have helped me in creating this library. They’re
listed in order they have been involved with this library or manual:

• Eugene Melekhov<eugene_melekhov@object-tools.com>: compiled it with Visual Eiffel.
As Visual Eiffel is the most strict compiler, he found a great many oversights that SmallEiffel
didn’t catch.

• mico/E team: I got many ideas for my C interface from the mico/E project. Sometime ago
Andreas Schulzwrote me that the micoe team wanted to use e-POSIX in mico/E. Andreas also
reported problems and suggested improvements, especially in theEPX_CGIclass. And he
continues to send bug reports, thanks!

• Ida de Boer <ida@gameren.nl>: it was she who provided you with thePOSIX to Eiffel
mapping table inappendix A.

• Steve Harris <scharris@worldnet.att.net>: suggested improvements, found a CAT call
problem and we had an interesting discussion about forking.

• Jörgen Tegnér <teg@post.netlink.se>reported a problem with an example, and a bug in
POSIX_EXEC_PROCESS.

• Marcio Marchini <mqm@magma.ca> contributed a lot to e-POSIX. He gave very useful
advice, submitted code, and supplied patches to compile e-POSIXbetter on Windows. I think it
is fair to say that you thank the Windows support in e-POSIX to Marcio.

• Eric Bezault: I’ve had some insightful discussions with Eric regarding architecture of libraries
such as e-POSIX. I think we never agreed :-), but the alternative error handling is due to his
comments!

• Andreas Leitner: Discussions about using eposix which will lead to even closer integration
with Gobo in subsequent releases.

Colophon

The text of this manual was entered with GNU Emacs 20.7.1 on RedHat Linux 7.1. It was
typeset with pdfTEX using the ConTEXt macro package, seehttp://www.pragma-ade.com.
BON diagrams were created withMETAPOST.

mailto:eugene_melekhov@object-tools.com
mailto:eugene_melekhov@object-tools.com
mailto:eugene_melekhov@object-tools.com
http://www.math.uni-goettingen.de/micoe/
http://www.math.uni-goettingen.de/micoe/
mailto:ascholz@math.uni-goettingen.de
mailto:ascholz@math.uni-goettingen.de
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:scharris@worldnet.att.net
mailto:scharris@worldnet.att.net
mailto:scharris@worldnet.att.net
mailto:teg@post.netlink.se
mailto:teg@post.netlink.se
mailto:teg@post.netlink.se
mailto:mqm@magma.ca
mailto:mqm@magma.ca
mailto:mqm@magma.ca
mailto:ericb@gobosoft.com
mailto:ericb@gobosoft.com
mailto:nozone@sbox.tugraz.at
mailto:nozone@sbox.tugraz.at
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com


In this chapter:

• Requirements
• Compiling the C code

1
Requirements

and installation

1.1 Requirements

e-POSIXhas three requirements:

1. e-POSIX requires Gobo release 3.0 or higher. You can download Gobo athttp://www.
gobosoft.com/. Gobo must be installed.

2. e-POSIX requires that the environment variableEPOSIX is set to the root directory where the
e-POSIXare unpacked.

3. On Windows, e-POSIX requires that the environment variableGOBO_CC is set to the name of the
C compiler you are using. Failure to do so will result in link errors. Perhaps in a futuregeant
release this will be set automatically.

1.2 Compiling the C code

Before e-POSIXcan be used, a few C files need to be compiled into a library. The steps differ if you
are using a Unix derivative, or a Windows based system.

1.2.1 Compiling on Unix

Before the C files can be compiled, e-POSIXmust be configured. If you have just one Eiffel compiler
on your system, this should be sufficient:

./configure --prefix=$EPOSIX
make

If you have multiple Eiffel compilers, you can specify the compiler with:

./configure --with-compiler=ve --prefix=$EPOSIX

The--prefix switch is a trick to make sure that you can type:

make install

after the make was successful. With this step the library is installed into the\$EPOSIX/lib
directory. This is the location where e-POSIX’s src/library.xace expects it. Without the
--prefix switch the library will usually be installed in/usr/local/lib.

More information aboutconfigure options can be displayed with:

./configure --help

http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/
http://www.gobosoft.com/


Requirements and installation 2

1.2.2 Compiling on Windows

For Windows system, I’ve supplied a tool —build with e-POSIX— that can build the necessary
e-POSIX library for your Eiffel and C compiler.

Type:

makelib

to get help. Type:

makelib -ise -msc

to compile the C code with Microsoft’s Visual C compiler targeting the ISE Eiffel compiler.

Only the Microsoft supplied library did work, i.e. link, with VisualEiffel:

makelib -ve -msc

Type:

makelib -se -bcc

to compile the C code with Borland’s C compiler targeting SmallEiffel. It was tested with the free
Borland C version 5.5 compiler.

Type:

makelib -se -lcc

to compile the C code with elj-win32’s lcc C compiler.

If you have both the Borland C compiler and lcc installed, make sure themake.exe in your path is
the correct one!

1.2.3 Library naming conventions

The name of this library starts withlibeposix. On Unix the name of the Eiffel vendor is appended,
solibeposix se.a is the library for SmallEiffel. On Windows systems the name of the Eiffel
vendor and the C compiler are appended. On Windows different C compilers have incompatible
libraries, so they need to be distinguishes. On Windows the e-POSIX library for ISE Eiffel compiled
with the Microsoft Visual C compiler is calledlibeposix ise msc.lib.

The vendor names are derived from the names the Gobo Eiffel package uses, i.e. theGOBO_EIFFEL
environment variable.



In this chapter:

• Usinglibrary.xace
• Vendor specific notes
• Platform specific notes

2
Using e-POSIX

2.1 Usinglibrary.xace

Since Gobo 3.0 Eiffel library writes have a new great tool at their dispose:gexace. Eiffel library
writers have to write and maintain just a single file,library.xace. You can this file file in the
e-POSIXsrc subdirectory.

Typically, a library.xace is included in asystem.xace. A typical example, including all
required Gobo files, is:

<?xml version="1.0"?>

<system name="eposix_test">
<description>

system: "getest for eposix"
author: "Berend de Boer [berend@pobox.com]"
copyright: "Copyright (c) 2002, Berend de Boer"
license: "Eiffel Forum Freeware License v1 (see forum.txt)"
date: "$Date: $"
revision: "$Revision: $"

</description>

<root class="EPOSIX_TEST" creation="make"/>

<option unless="${DEBUG}">
<option name="assertion" value="all"/>
<option name="garbage_collector" value="none"/>
<option name="finalize" value="true" unless="${GOBO_EIFFEL}=ve"/>

</option>
<option if="${DEBUG}">

<option name="assertion" value="all"/>
<option name="garbage_collector" value="internal"/>
<option name="finalize" value="false"/>

</option>

<option name="linker" value="microsoft" if="${GOBO_EIFFEL}=ve"/>

<cluster name="testgen" location="TESTGEN"/>
<cluster name="test" location="${EPOSIX}/test_suite/abstract/system"/>

<mount location="${EPOSIX}/src/library.xace"/>
<mount location="${GOBO}/library/test/library.xace"/>



Using e-POSIX 4

<mount location="${GOBO}/library/lexical/library.xace"/>
<mount location="${GOBO}/library/kernel/library.xace"/>
<mount location="${GOBO}/library/structure/library.xace"/>
<mount location="${GOBO}/library/parse/library.xace"/>
<mount location="${GOBO}/library/utility/library.xace"/>
<mount location="${GOBO}/library/pattern/library.xace"/>
<mount location="${GOBO}/library/kernel.xace"/>

</system>

2.2 Vendor specific notes

2.2.1 ISE Eiffel

e-POSIXsupports ISE Eiffel 5.1. e-POSIXhas not yet been tested with version 5.2. e-POSIXhas been
tested under the following conditions:

1. I used Microsoft Windows 2000, Service Pack 2.

2. I used the Borland C 5.5 and Microsoft Visual C++ 6.0 compiler.

2.2.2 SmallEiffel

e-POSIXwas developed using SmallEiffel -0.75 on FreeBSD and Linux.

Because SmallEiffel has a tendency to provide lots of non-ELKS routines in its kernel classes, a
bad thing in my opinion, I had to write a newANY. My ANY renamesGENERAL.remove_file, so I
wouldn’t get a conflict withPOSIX_FILE_SYSTEM.remove_file.

There is no reason for the presence ofGENERAL.remove_file, I expect this to be removed soon1,
so myANYcan be deleted when this has happened.

2.2.3 Visual Eiffel

e-POSIXhas been tested with two of ObjectTool’s offerings:

1. Their free VisualEiffel 4 for Linux.

2. VisualEiffel Professional 4 for Windows.

3. If you use 4.0, VisualEiffel’s STRING class must be patched, seehttp://groups.yahoo.
com/group/visual-eiffel/message/673.

Follow these steps to compile with VisualEiffel 4 on Windows:

I wrote that two years ago. . .1

http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673
http://groups.yahoo.com/group/visual-eiffel/message/673


5 Platform specific notes

1. Make sure the VE_BIN environment variable is set to the Bin directory in the VisualEiffel
subdirectory. On my system it is set toM:/Program Files/ObjectTools/VisualEiffel
/Bin.

2. Create thelibeposix ve msc.lib library using the Microsoft Visual C compiler:

makelib -ve -msc

3. Usegexace to generate an.esd file.

4. Make sure to set the linker supplier option to Microsoft in yoursystem.xace file! So an option
like this should be present:

<option name="linker" value="microsoft" if="\${GOBO_EIFFEL}=ve"/>

2.2.4 Halstenbach Eiffel

e-POSIXhas not been tested with the Halstenbach Eiffel compiler.

2.3 Platform specific notes

Although e-POSIX should, in principle, run on every platform that supports Standard C orPOSIX,
it cannot be tested on every platform by me alone. This section gives details about the platforms
I’ve used. The main thing you need to do is to edit e-POSIX’s src/library.xace to the proper
libraries for your platform are linked. The defaultsrc/library.xace is suited for Linux only.

2.3.1 Linux

The latest version of e-POSIXwas tested with RedHat 7.1 with kernel 2.4.19.

2.3.2 FreeBSD

The latest version of e-POSIX was tested with FreeBSD 4.4-STABLE. FreeBSD doesn’t support
fdatasync, so we do afsyncthere. Cases like that are automatically detected by theconfigure
script.

You have to edit/src/library.xace to link the proper library for FreeBSD. Look at the com-
ments.

2.3.3 Cygwin

The latest version of e-POSIXwas tested with Cygwin 1.3.x. Some remarks:

1. Locking doesn’t seem to be supported.

2. fifo’s (mkfifo) are not supported.

3. No support forfdatasync, so we do afsyncthere.



Using e-POSIX 6

2.3.4 BeOS

The latest version of e-POSIX was tested with BeOS 5.03. BeOS has a nicePOSIX compatibility
layer. Some remarks:

1. Locking doesn’t seem to be supported.

2. fifo’s (mkfifo) are not supported.

3. Hard links are not supported, only symbolic links.

4. No support forfdatasync, so we do afsyncthere.

5. BeOS does not treat sockets as file descriptors, so e-POSIX’s SUS_TCP_SOCKETdoes not work.
Perhaps when I’ve addedrecvandsendmsgand such it will be usuable.

2.3.5 QNX

The latest version of e-POSIXwas tested with QNX ?.

2.3.6 Win32

The latest version of e-POSIXwas tested with Windows 2000, Service Pack 2. On Win32, Standard
C is fully supported. With e-POSIX’s abstract layer, parts ofPOSIXand the Single Unix Specification
are also supported. Support isn’t as extensive as using the Cygwin tools.



In this chapter:

• Why an entire reimplementation?
• Goals and guidelines
• Class structure
• Clients of this library
• Forking
• Books

3
Design notes

3.1 Why an entire reimplementation?

One might wonder why I reimplemented the entire Standard C andPOSIX library when most
vendors also have classes that deal with files, the file system, signals and such. Unfortunately,
these classes are nor complete nor very portable between vendors. For someone who wants to
compile against all the major vendors —and there are good reasons to do this— there is currently
no portable solution. That’s why many portable Eiffel programs more or less contain the same code
again and again. There are some attempts to write more portable libraries, for example theUnix
File/Directory Handling Cluster by Friedrich Dominicus, but they also are not complete nor is
the implementation satisfactory. For example they usually have much logic at the C level. I wanted
only C glue code: all intelligence should be in the Eiffel code.

Another attempt is done by the Gobo cluster: it attempts to provide users with a set of classes that
work accross all Eiffel vendors by using only the native facilities offered by each implementation.
This approach has the advantage that no C compilation is necessary. The disadvantages are:

1. The contract for these classes is probably not specifiable: for which platforms and which
assumptions are the contracts valid? Are these contracts the same in all implementations?

2. It is incomplete, i.e. it doesn’t cover most of thePOSIX routines.

That’s why I started to make the entire Standard C andPOSIX routines available to Eiffel pro-
grammers. All these routines are nicely wrapped in classes. I spend a lot of time designing and
refactoring these, comments and improvements about its structure are very appreciated.

The advantage of makingPOSIX available to Eiffel programmers is that someone doesn’t need to
think about creating a set of portable file and directory classes that work on every known operating
system.POSIX is available on many platforms and for other systems there either is an emulation or
a POSIX mapping available. It’s better to reuse that, instead of reinventing work that took years to
complete.

3.2 Goals and guidelines

The goals and guidelines for this library were:

1. A complete Standard C implementation for those who didn’t have access toPOSIX routines.

2. A completePOSIX implementation.

http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm


Design notes 8

3. Do the job in such a way that it will become the official EiffelPOSIXmapping.

4. All classes should satisfy the demands posed by the query--command separation principle.

5. The native Standard C andPOSIX routines should be available to those who don’t want to go
through a certain class layer.

6. The names in use in thePOSIXworld like file descriptor or memory map are used as class names.
This should make it easy to find a class if one knows thePOSIXname.

7. If a command fails, an exception code is raised. This differs from thePOSIXroutines where one
is expected to test for error and query theerrnovariable. The only exception isunlink: when
the file does not exist, no exception is raised.

8. POSIXassumptions should be made explicit. For Eiffel this means specifying explicit pre-- and
postconditions.

9. Use of constants to influence the way a method should be avoided by providing clearly named
methods. So instead of passing a constants to thePOSIX_FILE.openfunction to open a file
read--only, one can also callopen_read.

10. Attempt to create non-deferred class that refer to an entity that exists in thePOSIX world.
Creation of an object is binding to that entity, or creation of that entity.

11. Names should be clear, and Eiffel--like. They should not differ in just one character.POSIX

names are also made available to ease use of this library for programmers that knowPOSIXwell.

3.3 Class structure
e-POSIX makes available all the Standard C andPOSIX headers in classes likeCAPI_STDIOand
PAPI_UNISTD. More details about the header translation are inchapter 12.

However, making the plain C API available is not a very interesting addition to an Eiffel program-
mer’s toolkit. Therefore, this library’s second attempt was to make an effective OO--wrapper, while
making a careful distinction between what is available in the Standard C and what is available in
POSIX. This distinction is reflected in e-POSIX’s directory structure, seefigure 3.1.

The raw Standard C API is available insrc/capi, the OO--wrapper is available insrc/standardc.
The rawPOSIXAPI is available insrc/papi, the OO--wrapper is available insrc/posix.

Every Standard C andPOSIXwrapper is derived from a common root, see alsofigure 3.2:

1. If a class builds upon facilities available on Standard C, its name starts with the prefix STDC_
and it inherits fromSTDC_BASE.

2. If a class builds upon facilities available inPOSIX, its name starts with the prefix POSIX_ and it
inherits fromPOSIX_BASE.

3. If a class builds upon facilities available in the Single Unix Specification, its name starts with
the prefix SUS_ and it inherits fromSUS_BASE. The support for the Single Unix Specification
is not yet complete, but is continually enhanced.

4. Because we live in a world dominated by Microsoft Windows, and Microsoft Windows does
not doPOSIX, this would mean that many users only could use e-POSIX’s Standard C facilities.



9 Clients of this library

Figure 3.1 e-POSIX

directory structure

These facilities are extremely limiting, for example there is no change directory command in
Standard C. Therefore e-POSIX makes available an abstraction layer that covers routines that
have an equivalent inPOSIXand the Single Unix Specification. These classes start with the name
EPX_. They always inherit from classes starting with ABSTRACT_. These abstract classes
implement the common code. Seechapter 9.2for more details.

Note that by using Cygwin you have a fullPOSIXemulation layer on Windows. In that specific
environment you can use e-POSIX’s entirePOSIXand Single Unix Specification layer.

The wrapper classes should be fully command--query separated and use clear names. Often the
POSIXname, if applicable, is also made available as an alias. If this is a good thing, I’m not sure. I
hope it facilitates working with the wrapper classes if you already knowPOSIX.

Besides these directories, e-POSIXprovides a number of extensions to the pure Standard C orPOSIX

routines. These can be found in the subdirectories that start withsrc/epx. A single letter indicates
if the classes only built upon routines available in Standard C orPOSIX:

1. epxc: Standard C based extensions like URI resolving, a MIME parser andXML generation.

2. epxs: Single Unix Specification based extension like an HTTP client.

3.4 Clients of this library

For client classes, two important classes areSTDC_CONSTANTSandPOSIX_CONSTANTS, see
figure 3.3. The wrapper classes tend to avoid having routines whose behavior drastically depends



Design notes 10

POSIX BASE
*

STDC BASE
*

POSIX BASE
*

STDC BASE
*

ABSTRACT
*

POSIX BASE
*

ABSTRACT
*

POSIX BASE
*

Figure 3.2 Inheritance structure

STDC CONSTANTS
+

POSIX CONSTANTS
+

Figure 3.3 Standard
C andPOSIX constants

on passed constants. But if you need to use constants, your client class can just inherit from these
classes and every Standard C andPOSIXconstant is available.



11 Forking

3.5 Forking

Implementing forking posed some interesting challenges. I started with the basic idea that every
process has a pid:

class PROCESS

feature

pid: INTEGER

end

I wanted to be able to write two kinds of forking. The first one is forking a child as in:

class PARENT

inherit

POSIX_CURRENT_PROCESS

feature

make is
local

child: POSIX_CHILD_PROCESS
do

print ("My pid: ")
print (pid)
print ("%N")
fork (child)
print ("child’s pid: ")
print (child.pid)
print ("%N")
child.wait_for (True)

end

end

However, I also wanted to fork myself, because that basically is what forking is!

class PARENT

inherit

POSIX_CURRENT_PROCESS

POSIX_CHILD_PROCESS

feature



Design notes 12

make is
do

fork (Current)
wait

end

executeis
do

-- forked code
end

end

The above code gives a name clash, becausePOSIX_CURRENT_PROCESS.pidis a call to the
POSIX routinegetpid, while the child’s pid is a variable, which gets a variable after forking. You
can solve this name clash yourself, but it is most easy to inherit fromPOSIX_FORK_ROOT, a clash
which has solved this clash already.

If you fork a child, you must wait for it. For a child process, you can usePOSIX_CHILD.
wait_for, if you fork yourself, you must usePOSIX_CURRENT_PROCESS.wait. The variable
waited_child_pidwill be set with the pid of the child process thatwait waited for.

3.6 Books

Books that have been helpful during the development of e-POSIX where [43], see the biography
section atpage 193.



In this chapter:

• Working with files
• Working with file descriptors
• Working with the file system
• Executing a child command
• Current time
• Accessing environment variables
• Allocating memory
• Redirecting stderr to stdout

4
Basic Posix ex-

amples

Instead of describing every class and every feature, I decided to show short and simple examples
of common ways to use the Posix library features. If you don’t have Posix available, you can try to
replace the POSIX prefix by STDC. Most of the time the POSIX classes are based on the STDC
classes, seechapter 7.

4.1 Working with files

The basic class for working with files, or streams as they are also called, isPOSIX_FILE. There
are two kinds of files:POSIX_TEXT_FILEandPOSIX_BINARY_FILE. According to thePOSIX

standard, there is no distinction between binary and text files. But on certain systems you must use
POSIX programs through an emulation layer. For example, on Windows Cygwin is a well--known
POSIX emulator. To maintain compatibility with other Windows programs, Cygwin distinguishes
between text and binary files. If you use Cygwin to compile yourPOSIX programs, this distinction
is therefore still important.

The first example shows how to open a text file, see also the corresponding BON diagram in
figure 4.1.

class EX_FILE1

creation

make

feature

make is
local
file: POSIX_TEXT_FILE

do
create file.open_read("/etc/group")
from
file.read_string(256)

until
file.eof



Basic Posix examples 14

STDC FILE
*

STDC TEXT FILE
+

POSIX FILE
*

POSIX TEXT FILE
+

EX FILE1

Figure 4.1 BON diagram of opening a text file.

loop
print (file.last_string)
file.read_string(256)

end
file.close

end

end

It simply opens a file for reading and prints every line in it. Note that you have to specify the
maximum number of characters you are prepared to read. The minimum characters read are 256,
but perhaps you want to be able to read text files consisting of 1024 characters per line.

Every line that is read includes the end--of--line character if one was present. This is unlike Pascal
for example, but more like Perl. e-POSIX provides the featurePOSIX_TEXT_FILE.chopwhich
removes the last character oflast_stringif and only if it is an end--of--line character. And that is
unlike Perl, which removes any character. With e-POSIX it is not necesary to test for the end--of--
line characters if you just want to remove it in case one is present.

At the end, the file is closed. You don’t need to explicitly close a file as it will be closed when your
object is garbaged collected. But I think it’s a good thing not to rely or depend on this, but to close
your external resources as soon as you’re done using them. For example many systems have easily
reached limits on the number of files a process can have open.

Reading binary files is almost the same loop, only you read it in chunks:



15 Working with files

class EX_FILE2

creation

make

feature

chunk_size: INTEGER is 512

make is
local

file: POSIX_BINARY_FILE
buffer: POSIX_BUFFER

do
create file.open_read("/bin/sh")
create buffer.allocate(chunk_size)
from

file.read_buffer(buffer, 0, chunk_size)
until

file.eof
loop

file.read_buffer(buffer, 0, chunk_size)
end
file.close

end

end

This example uses a more safe version of buffer reading,POSIX_FILE.read_buffer. There is an
untyped variantPOSIX_FILE.readwhich accepts a pure pointer. There is no need to mention that
you need to watch buffer overflows carefully with this last one!

Correctly looping through files, takes care. For example the following loop also works, but is less
correct:

class EX_WRONG1

creation

make

feature

make is
local

file: POSIX_TEXT_FILE
do

create file.open_read("/etc/group")



Basic Posix examples 16

from
until

file.eof
loop

file.read_string(256)
print (file.last_string)

end
file.close

end

end

After POSIX_TEXT_FILE.read_string, eofmight be True. Because the string is empty in that case,
nothing will be printed. You will make an unnecessary extra loop. The correctly coded variant is:

class EX_WRONG2

creation

make

feature

make is
local

file: POSIX_TEXT_FILE
do

create file.open_read("/etc/group")
from
until

file.eof
loop

file.read_string(256)
if not file.eof then

print (file.last_string)
end

end
file.close

end

end

I myself prefer the first example, as the check is only in theuntil part, and not repeated in the loop.

The following examples shows how a binary file is created and a string is written to it.

class EX_FILE3

inherit

POSIX_FILE_SYSTEM



17 Working with files

creation

make

feature

make is
local

file: POSIX_BINARY_FILE
do

create file.create_write(expand_path("$HOME/myfile.tmp"))
file.write_string ("hello world.%N")
file.close

end

end

Depending on the platform you are running a backslash is turned into a slash or vice versa.

This example also demonstrates how path names —file and directory names— can be expanded: if
you callPOSIX_FILE_SYSTEM.expand_path, any environment variables in the path are expanded.
Backslashes and slashes are always translated, but environment variable expansion has to be done
explicitly.

You can move the file pointer with two different methods:POSIX_FILE.seekandset_position. The
seekworks with files up to 2 GB,set_positionhas no such limits. Usetell to get a position that can
be passed toseek. Useget_positionto get a position that can be passed toset_position.

class EX_FILE5

creation

make

feature

make is
local

file: POSIX_BINARY_FILE
pos1: INTEGER
pos2: STDC_FILE_POSITION

do
create file.create_read_write("test.bin")
file.write_string ("one")
pos1 := file.tell
pos2 := file.get_position
file.write_string ("two")
file.seek(pos1)
-- or file.set_position (pos2)
file.read_string(3)



Basic Posix examples 18

if not file.last_string.is_equal("two") then
print ("unexpected read.%N")

end
file.close

end

end

4.2 Working with file descriptors

The file descriptors classes are quite equal to the file classes. The following example opens a file
usingPOSIX_FILE_DESCRIPTORand reads the first 64 bytes.

class EX_FD1

creation

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
do

create fd.open_read("/etc/group")
fd.read_string(64)
print (fd.last_string)
fd.close

end

end

Unlike POSIX_TEXT_FILE, there is no easy way to detect end of line and end of file conditions.
However, a file descriptor can easily be turned into a file as the following example demonstrates.

class EX_FD2

creation

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
file: POSIX_TEXT_FILE



19 Working with file descriptors

do
create fd.open_read("/etc/group")
create file.make_from_file_descriptor(fd, "r")
from

file.read_string(256)
until

file.eof
loop

print (file.last_string)
file.read_string(256)

end
file.close
fd.close

end

end

A file descriptor can also be used to lock, unlock or test for locks on a given file as the following
example demonstrates. See also the accompanying BON diagram infigure 4.2.

class EX_FD4

creation

make

feature

make is
local

some_lock,
lock: POSIX_LOCK
fd: POSIX_FILE_DESCRIPTOR

do
create fd.create_read_write("test.tmp")
fd.write_string ("Test")

create lock.make
lock.set_allow_read
lock.set_start(2)
lock.set_length(1)
some_lock:= fd.get_lock(lock)
if some_lock/= Void then

print ("There is already a lock?%N")
end

-- create exclusive lock
lock.set_allow_none



Basic Posix examples 20

lock.set_start(0)
lock.set_length(4)
fd.set_lock(lock)

fd.close
end

end

POSIX_FILE_DESCRIPTOR.get_lockis command--query separated, that is why it returns a new
lock when queried and there is a lock. If there is no lockget_lockreturns Void. The passed lock is
not modified.

POSIX BASE
*

POSIX FILE DESCRIPTOR
+

POSIX LOCK
+

EX FD4

Figure 4.2 BON diagram of locking a portion of a file.

A file descriptor also gives you access to the attached terminal, if any. The following example
demonstrates how to read a password without the password appearing on the screen.

class EX_FD3

inherit

POSIX_CURRENT_PROCESS

creation

make

feature

make is
do

print ("Password: ")
stdout.flush



21 Working with the file system

-- turn off echo
fd_stdin.terminal.set_echo_input(False)
fd_stdin.terminal.apply_flush

-- read password
fd_stdin.read_string(256)

-- turn echo back on
fd_stdin.terminal.set_echo_input(True)
fd_stdin.terminal.apply_now

print ("%NYour password was: ")
print (fd_stdin.last_string)

end

end

4.3 Working with the file system

POSIX defines many commands to navigate a file system. They’re made available by thePOSIX_-
FILE_SYSTEM. The following example navigates to the user’s home directory, create a directory
and removes it.

class EX_DIR1

inherit

POSIX_FILE_SYSTEM

creation

make

feature

make is
do

change_directory(expand_path("˜"))
make_directory("qqtest.xyz.tmp")
remove_directory("qqtest.xyz.tmp")

end

end

To get access to the file system, inheriting from thePOSIX_FILE_SYSTEMclass is easiest.

There are also lots of functions to test for existence, readability or writability of files. Useis_-
modifiableto test if a file is readable and writable.



Basic Posix examples 22

class EX_DIR2

inherit

POSIX_FILE_SYSTEM

creation

make

feature

make is
local

perm: POSIX_PERMISSIONS
do

print_info (is_existing("/tmp"), "existing")
print_info (is_executable("/bin/ls"), "executable")
print_info (is_readable("/etc/passwd"), "readable")
print_info (is_writable ("/etc/passwd"), "writable")
print_info (is_modifiable("/etc/passwd"), "readable and writable")

perm := permissions("/etc/passwd")

if perm.allow_group_readthen
print ("Group is allowed to read/etc/passwd.%N")

else
print ("Group is not allowed to read/etc/passwd.%N")

end

if perm.allow_anyone_read_writethen
print ("Anyone is allowed to read file.tmp.%N")

else
print ("Anyone is not allowed to read file.tmp.%N")

end

end

print_info (ok: BOOLEAN; what: STRING) is
do

print ("is_")
print (what)
print (" returned ")
print (ok)
print (".%N")

end



23 Working with the file system

end

Be aware thatPOSIX_FILE_SYSTEM.is_readableuses the real user and group IDs instead of the
effective ones.

As can be seen in the above example, one can test for the permissions of a file using thePOSIX_-
PERMISSIONSclass. A new permissions class is created for everyPOSIX_FILE_SYSTEM.permis-
sionscall, so it is best to cache this object. If the permissions change on the file system, this class
does not reflect reality anymore, because it caches the permissions. UsePOSIX_PERMISSIONS.
refreshto update the contents. Useset_allow_group_write, set_allow_anyone_readand such to set
permissions.

e-POSIXalso gives you access to thestatfunction using thePOSIX_STATUSclass.

class EX_DIR4

inherit

POSIX_FILE_SYSTEM

creation

make

feature

make is
local

stat: POSIX_STATUS
do

stat := status ("/etc/passwd")
print ("size: ")
print (stat.size.out)
print (".%N")
print ("uid: ")
print (stat.permissions.uid)
print (".%N")

end

end

The POSIX_STAT, and through itPOSIX_PERMISSIONS, are also returned byPOSIX_FILE_-
DESCRIPTOR.status.

Browsing a directory can be done by allocated aPOSIX_DIRECTORYclass through thePOSIX_FILE_SYSTEM.
browse_directoryfeature:

class EX_DIR3

inherit

POSIX_FILE_SYSTEM



Basic Posix examples 24

creation

make

feature

make is
local

dir: POSIX_DIRECTORY
do

from
dir := browse_directory(".")
dir.start

until
dir.exhausted

loop
print (dir.item)
print ("%N")
dir.forth

end
dir.close

end

end

As can be seen,POSIX_DIRECTORYfollows EiffelBase conventions.

When browsing a directory, all entries in that directory are returned. You might want to be interested
only in certain files. e-POSIXhas the ability to define arbitrary filters. Standard e-POSIXcomes with
an extension filter that only shows files with a certain extension:

class EX_DIR6

inherit

POSIX_FILE_SYSTEM

creation

make

feature

make is
local

dir: POSIX_DIRECTORY
do

from
dir := browse_directory(".")



25 Executing a child command

dir.set_extension_filter(".e")
dir.start

until
dir.exhausted

loop
print (dir.item)
print ("%N")
dir.forth

end
dir.close

end

end

4.4 Executing a child command

Any command line can be executed by using thePOSIX_SHELL_COMMANDclass. Just pass a
command line andexecuteit.

class EX_CMD

creation

make

feature

make is
local

command: POSIX_SHELL_COMMAND
do

create command.make("/bin/ls *")
command.execute
print ("Exit code: ")
print (command.exit_code)
print ("%N")

end

end

Often one wants to redirect the output of the program that is being executed. For such cases use the
POSIX_EXEC_PROCESSclass.

class EX_EXEC1

inherit

POSIX_CURRENT_PROCESS



Basic Posix examples 26

creation

make

feature

make is
local
ls: POSIX_EXEC_PROCESS

do
-- list contents of current directory
create ls.make_capture_output("ls", <<"-1", ".">>)
ls.execute
print ("ls pid: ")
print (ls.pid)
print ("%N")
from
ls.stdout.read_string(512)

until
ls.stdout.eof

loop
print (ls.stdout.last_string)
ls.stdout.read_string(512)

end

-- close captured io
ls.stdout.close

-- wait for process
ls.wait_for (True)

end

end

Besides capturing output, you can also capture the standard input and standard error of the executed
process.

It is important to wait for the child that has been executed at some point in time, just like anyPOSIX

would have to do. If you do not wait for a child process, memory in the kernel is not released
and eventually you would run out of processes. Also, after thePOSIX_EXEC_PROCESS.wait_for
command, the exit code of the process becomes available.

4.5 Current time

e-POSIXhas a very complete class to work with times. A time can be set from the current time
by usingPOSIX_TIME.make_from_now. Before a time can be printed, it needs to be converted
to either local time orUTC. Do this by callingto_local or to_utc. Date and times can be printed



27 Current time

using features asdefault_format, local_date_string, local_time_stringor a custom format through
format.

class EX_TIME1

creation

make

feature

make is
local

time1,
time2: POSIX_TIME

do
create time1.make_from_now
time1.to_local
print_time (time1)
time1.to_utc
print_time (time1)
create time2.make_time(0, 0, 0)
print_time (time2)
create time2.make_date_time(1970, 10, 31, 6, 55, 0)
time2.to_utc
print_time (time2)

if time2 < time1 then
print ("time2 is less than time1 as expected.%N")

else
print ("!! time2 is not less than time1.%N")

end
end

print_time (time: POSIX_TIME) is
do

print ("Date: ")
print (time.year)
print ("-")
print (time.month)
print ("-")
print (time.day)
print (" ")
print (time.hour)
print (":")
print (time.minute)
print (":")
print (time.second)



Basic Posix examples 28

print ("%N")
print ("Weekday: ")
print (time.weekday)
print ("%N")
print ("default string: ")
print (time.default_format)
print ("%N")

end

end

4.6 Accessing environment variables

With the classPOSIX_ENV_VAR, the contents of environment variables can be queried.

class EX_ENV1

creation

make

feature

make is
local

env: POSIX_ENV_VAR
do

create env.make("HOME")
print (env.value)
print ("%N")

end

end

Unfortunately, it is not possible inPOSIX to set an environment variable. This is possible with the
Single Unix Specification classes, seesection 6.1.

4.7 Allocating memory

Allocating dynamic memory is very useful, but not portably available for Eiffel programmers. With
POSIX_BUFFERmemory can be allocated, read and written to.

class EX_MEM

creation

make



29 Redirecting stderr to stdout

feature

make is
local

mem: POSIX_BUFFER
byte: INTEGER

do
create mem.allocate(256)
mem.poke_uint8(2, 57)
byte := mem.peek_uint8(2)
mem.resize(512)
mem.deallocate

end

end

For more information about the dynamic memory class, seesection 7.1.

4.8 Redirecting stderr to stdout
If you want to redirect all output written by your program or any child you spawn to stdout, you
can use thePOSIX_FILE_DESCRIPTOR.make_as_duplicatecall:

class EX_REDIRECT1

inherit

POSIX_CURRENT_PROCESS

creation

make

feature

make is
do

-- flush stream buffers, else output may be in wrong order
stdout.flush
stderr.flush

fd_stderr.make_as_duplicate(fd_stdout)
-- all output written to stderr goes to stdout now

end

end

It’s a good idea to call this at the beginning of your program, before you have written anything to
stderr or stdout. If you do that, you don’t have to flush the stream buffers.



In this chapter:

• Catching a signal
• General wait for child handler
• Forking a child process
• Creating a daemon
• Asynchronous I/O
• Talking to your modem
• Using shared memory
• More examples

5
Advanced Posix

examples

5.1 Catching a signal

Every class can become a signal handler by inheriting fromPOSIX_SIGNAL_HANDLER. Im-
plement thesignalledmethod as that is the function that is called when the signal occurs. Use
POSIX_SIGNAL.set_handlerto make your class a signal handler and callapply to start receiving
signals when they occur.

The following examples demonstrates a program that can be safely interrupted by pressing Ctrl+C:

class EX_SIGNAL1

inherit

POSIX_CURRENT_PROCESS

POSIX_CONSTANTS

POSIX_SIGNAL_HANDLER

creation

make

feature

handled: BOOLEAN

make is
local

signal: POSIX_SIGNAL
do

create signal.make(SIGINT)
signal.set_handler(Current)
signal.apply



31 General wait for child handler

print ("Wait 30s or press Ctrl+C.%N")
sleep (30)
if handled then

print ("Ctrl+C pressed.%N")
else

print ("Ctrl+C not pressed.%N")
end

end

signalled (signal_value: INTEGER) is
do

handled := True
end

end

All precautions and warnings when handling signals in C apply equally well in Eiffel of course.
While in a signal handler, the signal will not be delivered again. CallSTDC_SIGNAL_HANDLER.
reestablishto make your signal handler interruptable.

You can write a single signal handler, that handles multiple signals. This makes it possible to have
signal handling code in just one place. Create a class that inherits fromPOSIX_SIGNAL_HANDLER.
Pass this class to thePOSIX_SIGNAL.set_handlerfor every signal you want to catch. The signal
value is passed as parameter toPOSIX_SIGNAL_HANDLER.signalled, so you can write aninspect
statement based on the value.

5.2 General wait for child handler

If you do not want to wait for every child process explicitly, you can write a simple SIGCHLD
handler that just does a wait (I found this idea in [43]):

class EX_SIGNAL2

inherit

POSIX_CURRENT_PROCESS

POSIX_CONSTANTS

POSIX_SIGNAL_HANDLER

creation

make

feature

make is
local



Advanced Posix examples 32

signal: POSIX_SIGNAL
do

create signal.make(SIGCHLD)
signal.set_handler(Current)
signal.apply

-- spawn child processes here
-- you dont have to wait for them

end

signalled (signal_value: INTEGER) is
do

wait
end

end

In Unix 98 you should be able to set the ignore handler for this signal. In purePOSIX systems the
behaviour of the ignore handler is unspecified.

5.3 Forking a child process

Forking is very easy with this EiffelPOSIX implementation. The steps:

1. Write a child by inheriting fromPOSIX_FORK_ROOTand implementing itsexecutemethod.

2. The class that will do the forking, should inherit fromPOSIX_CURRENT_PROCESS.

3. Pass the child to the inherited featurePOSIX_CURRENT_PROCESS.forkand the forking has
begun.

The following class shows the process that forks the child.

class

EX_FORK1

inherit

POSIX_CURRENT_PROCESS

POSIX_FILE_SYSTEM

creation

make

feature



33 Forking a child process

POSIX CURRENT PROCESS POSIX CHILD PROCESS
*

POSIX TEXT FILE
+

POSIX FORK ROOT
*

FORK CHILD
*

EX FORK1

Figure 5.1 BON diagram of forking a child process.

make is
local

reader: POSIX_TEXT_FILE
stop_sign: BOOLEAN
child: FORK_CHILD

do
-- necessary for SmallEiffel before -0.75 beta 7
ignore_child_stop_signal

unlink ("berend.tmp")
create_fifo("berend.tmp", S_IRUSR+ S_IWUSR)
create child
fork (child)

-- we will now block until file is opened for writing
create reader.open_read("berend.tmp")
from

stop_sign:= False
until

stop_sign
loop

reader.read_string(128)



Advanced Posix examples 34

print (reader.last_string)
stop_sign:= equal(reader.last_string,"stop%N")

end
reader.close

-- now wait for the writer to terminate
child.wait_for (True)

unlink ("berend.tmp")
end

end

This class just displays anything that the writer, the child class, writes to theFIFO. When it recognizes
stop, the reader stops after waiting for the child it has spawned. Note that this is very important!
Wait for any child you have spawned else you might get spurious errors if the process exits and a
child has not yet finished.

The following class shows the forked child.

class FORK_CHILD

inherit

POSIX_FORK_ROOT

feature

executeis
local

writer: POSIX_TEXT_FILE
do

create writer.open_append("berend.tmp")
writer.write_string ("first%N")
writer.write_string ("stop%N")
writer.close

-- we give the reader some time to process these messages
sleep (10)

end

end

5.4 Creating a daemon

Creating a simple daemon is easy if you inherit fromPOSIX_DAEMON. Implement theexecute
method, and you’re done. At run--time, calldetachto fork off a child. You can calldetachas many
times as you want to spawn daemons.



35 Asynchronous I/O

class EX_DAEMON

inherit

POSIX_DAEMON

ARGUMENTS

creation

make

feature -- the parent

make is
do
-- necessary under SmallEiffel
ignore_child_stop_signal

if argument_count= 0 then
print ("Options:%N")
print ("-d start daemon%N")

else
if equal(argument(1), "-d") then
detach
print ("Daemon started.%N")
print ("Its pid: ")
print (last_child_pid)
print ("%N")

end
end

end

feature -- the daemon

executeis
do
-- daemon stays alive for 20 seconds
sleep (20)

end

end

5.5 Asynchronous I/O
e-POSIX supports the asynchronous i/o features ofPOSIX. Not all Free Unices seem to support this
feature, nor does their support seems to be error free.



Advanced Posix examples 36

Take a look at the following example:

class EX_ASYNC1

creation

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
request: POSIX_ASYNC_IO_REQUEST

do
create fd.create_read_write("test.tmp")
create request.make(fd)
request.set_offset(0)
request.write_string("hello world.")
request.wait_for
fd.close

end

end

The basic idea is that each asynchronous request is a separate object, modeled byPOSIX_ASYNC-
_IO_REQUEST. You prepare it through calls likeset_buffer, set_countandset_offset. You execute
the request by callingreador write.

You can wait for the request to be complete by callingwait_for. It should be possible to force
open requests to be synchronized to the disk withsynchronize, but this does give strange results on
Linux. So far I haven’t got access to a machine that also implements asynchronous i/o to test if my
code is correct.

5.6 Talking to your modem

With e-POSIXyou can talk to your modem. The implementation contains not all the details to write
a full--featured program as minicom, but they will be added upon request.

The following example tries to talk to your modem —which is expected to be at/dev/modem—
and queries its manufacturer.

class EX_MODEM

inherit

POSIX_CURRENT_PROCESS

creation



37 Talking to your modem

make

feature

make is
local

modem: POSIX_FILE_DESCRIPTOR
term: POSIX_TERMIOS

do
-- assume there is a /dev/modem device
create modem.open_read_write("/dev/modem")
term := modem.terminal
term.flush_input
print ("Input speed: ")
print (term.speed_to_baud_rate(term.input_speed))
print ("%N")
print ("Output speed: ")
print (term.speed_to_baud_rate(term.output_speed))
print ("%N")

term.set_input_speed(B9600)
term.set_output_speed(B9600)
term.set_receive(True)
term.set_echo_input(False)
term.set_echo_new_line(False)
term.set_input_control(True)
term.apply_flush

-- expect modem to echo commands
modem.write_string("AT%N")
modem.read_string(64)
print ("Command: ")
print (modem.last_string)
modem.read_string(64)
print ("Response(expect ok): ")
print (modem.last_string)
modem.write_string("ATI0%N")
modem.read_string(64)
print ("Command: ")
print (modem.last_string)
modem.read_string(64)
print ("Response: ")
print (modem.last_string)
modem.close

end

end



Advanced Posix examples 38

POSIX BASE
*

POSIX FILE DESCRIPTOR
+

POSIX TERMIOS
+

EX MODEM

Figure 5.2 BON diagram of talking to a modem.

5.7 Using shared memory

You can use shared memory to exchange data between different processes. It’s dependent on your
POSIXversion if this is supported, so check for this capability explicitly!

class EX_SHARED_MEM1

inherit

POSIX_SYSTEM

POSIX_CURRENT_PROCESS

POSIX_FILE_SYSTEM

creation

make

feature

make is
local

fd: POSIX_SHARED_MEMORY
do

if not supports_shared_memory_objectsthen
stderr.puts("Shared memory objects not supported.%N")
exit_with_failure

end



39 More examples

create fd.create_read_write("/test.berend")
fd.write_string ("Hello world.%N")
fd.close
unlink_shared_memory_object("/test.berend")

end

end

Make sure you always start a shared memory object with a slash. Else the behaviour is undefined
or processes might not be able to find your shared memory.

5.8 More examples

If you are looking for more examples, you might take a look at the classes in thetest suite
directory. These classes should demonstrate and test almost every feature available in thePOSIX

classes.



In this chapter:

• Environment variables
• Logging messages and errors
• Sockets
• HTTP client

6
Single Unix

Specification
classes

6.1 Environment variables

UsingSUS_ENV_VARset_value it is possible to set environment variables.

6.2 Logging messages and errors

AlthoughPOSIXdoesn’t have logging facilities, the Single Unix Specification does. This specifica-
tion requires the presence of thesyslogd daemon for centralizes logging facilities. The following
example shows you to write messages to this daemon

class EX_SYSLOG

inherit

SUS_CONSTANTS

SUS_SYSLOG_ACCESSOR

creation

make

feature

make is
do

syslog.open("test", LOG_ODELAY+ LOG_PID, LOG_USER)

syslog.debug_dump("this is a debug message")
syslog.info("this is an informational message")
syslog.warning("this is a warning")
syslog.error("this is an error message")

syslog.close
end



41 Sockets

end

Always use theSUS_SYSLOG_ACCESSORto access the syslog wrapper classSUS_SYSLOG.
SUS_SYSLOGis a singleton, it makes no sensen to open a connection to the syslog daemon twice.

6.3 Sockets

e-POSIX currently has initial socket support. It will work only onPOSIX systems, support for
Windows through the EPX layer will be added in a future release.

The following example demonstrates a simple echo client:

class EX_ECHO1

creation

make

feature

hello: STRINGis "Hello World.%N"

make is
local

host: SUS_HOST
service: SUS_SERVICE
echo: SUS_TCP_SOCKET
sa: SUS_SOCKET_ADDRESS

do
-- create host.make_from_name ("localhost")
create host.make_from_name("bmach")
create service.make_from_name("echo", "tcp")

create sa.make(host, service)

create echo.open_by_address(sa)
echo.write_string(hello)
echo.read_string(256)
if not echo.last_string.is_equal(hello) then

print ("!! got: ")
print (echo.last_string)

end
end

end



Single Unix Specification classes 42

6.4 HTTP client

The following example demonstrates retrieval of a file through HTTP using theEPX_HTTP_10_CLIENT
class:

class EX_HTTP1

creation

make

feature

url: STRINGis "http://www.freebsd.org/index.html"

make is
local
uri: EPX_URI
client: EPX_HTTP_10_CLIENT

do
create uri.make (url)
create client.make(uri.authority) -- www.freebsd.org
client.get (uri.path) -- /index.html
client.read_response
print (client.body.as_string)

end

end

It also demonstrates the use of theEPX_URIclass to parse an URI into its components.



In this chapter:

• Allocating memory
• Accessing environment variables
• Working with streams
• Working with the file system
• Catching a signal

7
Standard C ex-

amples

If you don’t have access to aPOSIX compatible system, you can use the underlying Standard
C classes. Standard C is quite restricted in certain respects: you cannot change directories for
example. On the other hand, this library gives you access to all Standard C routines, so you can use
what’s there and write an extremely portable program.

All Standard C classes start withSTDC_. They are:

1. STDC_TEXT_FILE: access text files.

2. STDC_BINARY_FILE: access binary files.

3. STC_TEMPORARY_FILE: create a temporary file, a file that is removed when it is closed or
when the program terminates.

4. STDC_CONSTANTS: access Standard C constants like error codes and such.

5. STDC_BUFFER: allocate dynamic memory.

6. STDC_ENV_VAR: access environment variables.

7. STDC_FILE_SYSTEM: delete and rename files.

8. STDC_SHELL_COMMAND: pass an arbitrary command to the native shell.

9. STDC_SYSTEM: access information about the system the program is running on.

10.STDC_CURRENT_PROCESS: access to current process related information like its standard
input, output and error streams.

11.STDC_TIME: access current time. Also can format a given time in various formats.

7.1 Allocating memory

You can dynamically allocate memory withSTDC_BUFFERwhich works just likePOSIX_BUFFER.

class EX_MEM2

creation

make

feature



Standard C examples 44

make is
local

mem: STDC_BUFFER
byte: INTEGER

do
create mem.allocate_and_clear(128)
mem.poke_uint8(2, 57)
byte := mem.peek_uint8(2)
mem.resize(256)
mem.deallocate

end

end

With the featureSTDC_BUFFER.allocate_and_clearmemory is allocated and cleared to all zeros.

STDC_BUFFERcontains many routines to read bytes and strings from the memory it manages like
peek_int16, peek_uint16, or peek_int32. It supports reading and writing 16 and 32 bit integers in
little and big endian order with routines aspeek_int16_big_endian, peek_int16_little_endian, and
poke_int32_big_endian.

7.2 Accessing environment variables

Standard C supports reading environment variables withSTDC_ENV_VAR.

class EX_ENV2

creation

make

feature

make is
local

env: STDC_ENV_VAR
do

create env.make("HOME")
print (env.value)
print ("%N")

end

end

7.3 Working with streams

Working with text files is equal to thePOSIXclasses, only you use theSTCprefix.

class EX_FILE4



45 Working with the file system

creation

make

feature

make is
local

file: STDC_TEXT_FILE
do

create file.open_read("/etc/group")
from

file.read_string(256)
until

file.eof
loop

print (file.last_string)
file.read_string(256)

end
file.close

end

end

Its BON diagram, seefigure 7.1 is therefore quite equal to thePOSIXone, seefigure 4.1.

STDC FILE
*

STDC TEXT FILE
+

EX FILE3

Figure 7.1 BON diagram of
opening a Standard C text file.

7.4 Working with the file system

Standard C doesn’t offer much for file systems. You can only delete and rename files.

class EX_DIR5



Standard C examples 46

inherit

STDC_FILE_SYSTEM

creation

make

feature

make is
do

rename_to("qqtest.abc.tmp", "qqtest.xyz.tmp")
remove_file("qqtest.xyz.tmp")

end

end

The BON diagram is shown infigure 7.2.

STDC BASE
*

STDC FILE SYSTEM
+

EX DIR5

Figure 7.2 BON diagram of deleting and
renaming files with Standard C.



47 Catching a signal

7.5 Catching a signal
You can catch signals with Standard C. The following example demonstrates a program that can be
safely interrupted by pressing Ctrl+C:

class EX_SIGNAL3

inherit

EPX_CURRENT_PROCESS

STDC_CONSTANTS

STDC_SIGNAL_HANDLER

creation

make

feature

handled: BOOLEAN

make is
local
signal: STDC_SIGNAL

do
create signal.make(SIGINT)
signal.set_handler(Current)
signal.apply

print ("Wait 10s or press Ctrl+C.%N")
sleep (10)
if handled then
print ("Ctrl+C pressed.%N")

else
print ("Ctrl+C not pressed.%N")

end
end

signalled (signal_value: INTEGER) is
do
handled := True

end

end

As Standard C doesn’t have a sleep command, this program usesEPX_CURRENT_PROCESSto
get either thesleepfrom POSIXor from Windows.



Standard C examples 48

More explanation about the program itself can be found insection 5.1.



In this chapter:

8
Writing CGI

programs

Although writing aCGI program doesn’t really belong toPOSIX, they still are written often, so I
decided to include a few classes to make this easier. And of course, they build upon the Standard
C classes.

STDC CURRENT PROCESS
+

XML GENERATOR
+

XHTML GENERATOR
+

EPX CGI
+

Figure 8.1 BON diagram ofEPX_CGI.

You just inherit fromEPX_CGIand start calling its features.

class EX_CGI1

inherit

EPX_CGI

creation



Writing CGI programs 50

make

feature

executeis
do

content_text_html

doctype
b_html

b_head
title ("e-POSIX CGI example.")
e_head

b_body

p ("Hello World.")
extend("<p>you can use your<b>own</b> tags.</p>")
b_p
puts ("or use any tag by using:")
e_p

start_tag ("table")
set_attribute("border", Void)
set_attribute("cols", "3")
start_tag ("tr")
start_tag ("td")
add_data("start_tag")
stop_tag
start_tag ("td")
add_data("stop_tag")
stop_tag
stop_tag
stop_tag

e_body
e_html

end

end

Output is written to stdout, but also made available inmy_xml. Generated output isXHTML ,
which usually displays fine with older browsers. If strictXHTML is problematic, you can call
doctype_transitionalinstead ofdoctype.

It is important not to mix writing to stdout with the features you inherit fromEPX_CGI. EPX_CGI
does some caching, so after a tag is started byEPX_CGI.start_tagit is not yet written to standard



51

output. If you want to write something to standard output, use theEPX_CGI.add_datafeature or
its shortcut aliasputs. If you want to write real tags, useextend. This last feature allows you to
write anything, whileputsescapes reserved characters like ’>’.

If you use provided features likeb_a, b_pand such, an attempt is made to produce good looking
source. Also your input is somewhat validated againstXHTML standards.

It is also easy to write aCGI program that displays a form and accepts submitted values. Even file
upload is supported. The following example uses the GET method to submit data:

class EX_CGI2

inherit

EPX_CGI

creation

make

feature

executeis
do
content_text_html

doctype
b_html

b_head
title ("e-POSIX CGI form example.")
e_head

b_body

b_form_get("ex_cgi2.bin")

b_p
puts ("Name: ")
b_input ("text", "name")
set_attribute("size", "32")
e_input
e_p

b_p
puts ("City: ")
input_text ("city", 40, "enter city here")
e_p



Writing CGI programs 52

b_p
b_button_submit("action", "GO!")
e_button_submit

nbsp

button_reset
e_p

e_form

hr

p ("In your last submit you entered:")
b_p
if not has_key("name") then
puts ("!!!!!")

end
puts ("name: ")
puts (value ("name"))
puts (", ")
puts ("city: ")
puts (raw_value ("city"))
e_p

e_body
e_html

end

end

You can useEPX_CGI.b_inputto start an input element as shown for the input of a name. Or you
can useinput_textto start a simple text input as shown for the input of a city. Below the line you
see the value a user has submitted, if any. Usevalue to get values with certain meta--characters
removed. The output is still not save to be passed straight to a Unix Shell though! You can use
raw_valueto get the contents as submitted by the user.

In the above example it doesn’t matter much if you useb_form_getor b_form_post. But with
the GET method, you cannot upload files. The following example demonstrates how files can be
uploaded:

class EX_CGI3

inherit

EPX_CGI

creation



53

make

feature

executeis
do
content_text_html

assert_key_value_pairs_created
save_uploaded_files

doctype
b_html

b_head
title ("e-POSIX CGI file upload example.")
e_head

b_body

b_form ("post", "ex_cgi3.bin")
set_attribute("enctype", multipart_encoding)

b_p
puts ("Filename: ")
b_input ("file", "filename")
set_attribute("size", "32")
set_attribute("maxlength", "128")
e_input
e_p

b_p
b_button_submit("action", "Upload file(s)")
e_button_submit

nbsp

button_reset
e_p

e_form

e_body
e_html

end



Writing CGI programs 54

save_uploaded_filesis
local
kv: EPX_KEY_VALUE
buffer: STDC_BUFFER
target_name: STRING
target: STDC_BINARY_FILE

do
create buffer.allocate(8192)
from
cgi_data.start

until
cgi_data.after

loop
kv := cgi_data.item_for_iteration
if kv.file /= Void then
from
target_name:= "/tmp/" + kv.value
create target.create_write(target_name)
kv.file.read_buffer(buffer, 0, 8192)

until
kv.file.eof

loop
target.write_buffer(buffer, 0, kv.file.last_read)
kv.file.read_buffer(buffer, 0, 8192)

end
target.close
kv.file.close

end
cgi_data.forth

end
buffer.deallocate

end

end

It is important to set the encoding type. This example accepts a file and writes it to/tmp. Because
multiple files can be present, this example just loops over all key value pairs and checks if a file is
present. This example isn’t fool--proof with multiple users submitting the same file, but you should
get the idea.

Note that the first line isEPX_CGI.content_text: in case an exception occurs, the web server is still
able to output something back to the user.

After that we make sure that the key value pairs are created withassert_key_value_pairs_created.
They are automatically created if you callvalue, but in this case we want the key value pairs
themselves. InEX_CGI3.save_uploaded_fileswe use theEPX_KEYVALUE.filefeature to check if
that key value pair is an uploaded file: if it is not Void, it points to a temporary file. As this file
will be deleted when it is closed or when your program exits, we have to copy it to a new file.



55

The filename is just the value part of this key value pair. The filename is guaranteed to be free of
directory parts.

In the last example we just print all key/value pairs to the filelist.txt in the temporary directory.
We redirect the user to another file.

class EX_CGI4

inherit

EPX_CGI

EPX_FACTORY

creation

make

feature

executeis
do
assert_key_value_pairs_created
save_values

extend("Location: /mydir/myfile.html")
new_line
new_line

end

save_valuesis
local
fout: STDC_TEXT_FILE
kv: EPX_KEY_VALUE

do
create fout.create_write(fs.temporary_directory+ "/list.txt")
from
cgi_data.start

until
cgi_data.after

loop
kv := cgi_data.item_for_iteration
fout.puts(kv.key)
fout.puts("%T")
fout.puts(kv.value)
fout.puts("%N")
cgi_data.forth

end



Writing CGI programs 56

fout.close
end

end



In this chapter:

• Compiling POSIX programs in Windows
• Native Windows
• Binary mode versus text mode

9
e-POSIX in

Windows

e-POSIXoffers three alternatives to writing programs that run on both Unix and Windows platforms:

1. Write programs that only rely on Standard C. If you use only Standard C classes your program
is probably quite portable. Standard C doesn’t offer that much however.

2. Write programs that are based onPOSIX. You use aPOSIX emulator to compile and run your
program unchanged on Windows. The only thing you have to be aware of is the distinction
between binary and text files.

3. Write programs that are based upon e-POSIX’s EPX_XXXX layer. This layer is based on e-
POSIX’s ABSTRACT_XXXX classes, that covers code that is common between Windows and
a POSIXplatform.

Previous versions of e-POSIXused a factory class approach to access this common code. This is
no longer needed. The ABSTRACT_XXXX are maded effective through EPX_XXXX classes
when compiling for Windows or forPOSIX.

The following sections offer more details about the last two approaches.

9.1 Compiling POSIX programs in Windows

You can also use a very large subset ofPOSIX under Windows with aPOSIX emulator. I’ve tested
this using SmallEiffel and Cygwin’s freely available emulator. Here the steps:

1. Download the Cygwin toolkit fromhttp://sources.redhat.com/cygwin.

2. Set the compiler incompiler.se to gcc. Leave the system insystem.se to Windows.

3. Configure e-POSIXas described in1.2and createlibeposix se.a

A few things are not available under Cygnus’POSIXemulation:

1. POSIX_FILE_SYSTEM.create_fifois not supported. Any attempt to use it will returnENOSYS.
I’m not sure if returning an error is the correct solution for applications that requirePOSIX

compatibility, because you are only warned at run--time. Another solution would be to include
a call tomkfifoand if you use it, let the linker complain.

2. There is no locking, so calls toPOSIX_FILE_DESCRIPTOR.get_lockand such will fail.

http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin


e-POSIX in Windows 58

3. CertainPOSIX tests assume that a more Unix like environment is available, so not all tests will
run. For example the standard Cygwin distribution doesn’t have amore utility. If you make a
symbolic link fromless to more the child process test will run.

4. The current list of implemented functions is available fromhttp://sources.redhat.com
/cygwin/faq/faq 3.html#SEC17.

9.2 Native Windows

Previous versions of e-POSIX used a factory class approach to access Windows orPOSIX specific
code. This is obsolete.

If you want to write code that is portable between Windows andPOSIX use the EPX_XXXX class
layer. For example you can use theEPX_FILE_DESCRIPTORto use file descriptors that are
completely portable between these two OSes. UseEPX_FILE_SYSTEMto have access to file
system specific code to change directories or get the temporary directory.

In general you can replace the POSIX_ prefix with EPX_ to compile most of the examples presented
in the previousPOSIX specific chapters. The classes currently available in the EPX_XXXX layer
are:

• EPX_CURRENT_PROCESS.

• EPX_EXEC_PROCESS.

• EPX_FILE_DESCRIPTOR.

• EPX_FILE_SYSTEM.

• EPX_PIPE.

Figure one shows hoe theEPX_FILE_DESCRIPTORclass is derived fromABSTRACT_FILE_-
DESCRIPTOR. Both Windows andPOSIXhave an effectiveEPX_FILE_DESCRIPTORclass. Class-
es asPOSIX_FILE_DESCRIPTORimplementPOSIXspecific functionality for a file descriptor.

An example of using theEPX_FILE_SYSTEMclass is shown below:

class EX_EPX1

inherit

EPX_FILE_SYSTEM

creation

make

feature

make is
local

http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17
http://sources.redhat.com/cygwin/faq/faq_3.html#SEC17


59 Binary mode versus text mode

POSIX BASE
*

ABSTRACT FD
*

WINDOWS BASE
*

EPX FD
+

EPX FD
+

POSIX FD
+

WINDOWS FD
+

Figure 9.1 How EPX_XXXX classes are related to thePOSIX and Windows classes

dir: STRING
do

print ("Current directory: ")
dir := current_directory
print (dir)
print ("%N")
change_directory("..")
change_directory(dir)
make_directory("abc")
rename_to("abc", "def")
remove_directory("def")

end

end

In appendix Call abstract classes are listed. There deferred features are made effective in theEPX

class for the operating system you’re compiling for.

9.3 Binary mode versus text mode
Independent of what layer you use to write Windows programs, you have to deal with binary and
text modes. And if you usually write Unix programs and want them to work on Windows too, you
have to bother with it too.



e-POSIX in Windows 60

On Windows, each line of a text files ends with a carriage return character followed by a line
feed character. In Eiffel this is the string"%R%N". If you use streams,STDC_TEXT_FILEand
STDC_BINARY_FILE, this distinction is transparently handled.

For file descriptions, it depends. If you use Cygwin, file descriptors can either be binary or text.
This depends on Cygwin settings. If you use the EPX layer, file descriptors are binary, period.
The reason for this is that the underlying code is the Win32 file API which is binary only. This
is usually no problem. Reading a line will still stop when a’%N’ is encountered. If you use the
ABSTRACT_FILE_DESCRIPTOR.chop_last_stringmethod, it automatically removes any’%R’ if
there was such a character just before the’%N’.

At this moment, there is no explicit support for creating text files using file descriptors with the
proper Windows end of file characters.STDC_TEXT_FILEworks fine here work fine here.

If you want to use binary standard input or binary standard output, use the file descriptors available
in EPX_CURRENT_PROCESSasfd_stdinandfd_stdout.

For Cygwin users, the following information can be helpful to get the binary versus text file
distinction correct:

• Mount the volume in binary mode.

• Set the environment variable CYGWIN to ‘binary’.

More information about Cygwin and CR/LF handling can be found athttp://sources.redhat.
com/cygwin/faq/faq toc.html#TOC62.

http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62
http://sources.redhat.com/cygwin/faq/faq_toc.html#TOC62


In this chapter:

• Error handling with exceptions
• Manual error handling

10
Error handling

This chapter describes certain error handling strategies that are possible with e-POSIX. Basically
there are two strategies: using the Eiffel exception mechanism or doing the error handling all
yourself.

10.1 Error handling with exceptions

The opinion of the author of e-POSIX is that Eiffel’s exception mechanism is very well suited to
deal with things like files that cannot be opened or directories that do not exist. Others disagree,
seesection 10.2. e-POSIX is designed such that when aPOSIX routine returns an error code, an
exception is thrown. Here my arguments why I favor this style of error handling:

1. We all know that exceptions are to be used for breach of contract. This idea is formulated in
[43]and is the best expressed opinion of exception handling I know.

So if you ask an e-POSIXmethod to open a file, it will do that for you. If it cannot open the file,
for whatever reason, it will raise an exception. The same argument hold if you ask it to go to a
directory, to start a program, or to open a connection to another machine.

This approach is also reflected in the names of e-POSIX’s features. The name isPOSIX_TEXT_-
FILE.open_readand notPOSIX_TEXT_FILE.attempt_open_read.

2. It is usually not wise to trust clients with error handling. The larger a distance between a
software failure and the error report, the more difficult it is to make a correct diagnosis of what
went wrong (see [43]). e-POSIXuses the fail early, fail hard approach.

3. Error handling is often forgotten or left to some global general error handling mechanism. In
an interesting article (see [43]) James Whittaker describes how he modified certain system calls
to return legitimate, but unexpected return codes. Memory allocation failed for example, or
opening a file returned with no more file handles. Applications failed within seconds, but it was
usually completely unclear why.

4. It’s a lot easier for programmer’s. You don’t have to write any error handling. If your program
completed, you know that there wasn’t a single system call that failed, that you didn’t continue
despite some error. This will make it possible to write programs that do their work correctly if
no errors occur, or else do nothing.

First an example. Let’s take a look at the code you have to write in case you want to handle failure
of opening a file:

class EX_ERROR1

inherit



Error handling 62

POSIX_CURRENT_PROCESS

creation

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
do

fd := attempt_create_file
end

attempt_create_file: POSIX_FILE_DESCRIPTORis
local

attempt: INTEGER
still_exists: BOOLEAN

do
create Result.create_with_mode("myfile", O_CREAT+O_TRUNC+O_EXCL, 0)

rescue
still_exists := errno.value= EEXIST
attempt := attempt+ 1
if still_existsand then attempt<= 3 then

sleep (1)
retry

end
end

end

In this example we try to create a file exclusively. The create will fail if the file already exists. In
case this happens, we retry 3 times. Before retrying we wait 1 second. Note that if the error is not
EEXIST, we fail directly, without retrying.

In my opinion above’s code is just the code you want to write usually: do not worry about errors,
if something goes wrong, your application will fail.

My preferred way of error handling is (or sometimes should be) also reflected in the preconditions.
For example thePOSIX_FILE_SYSTEM.browse_directoryhas the precondition that the given path
should exist and should be a directory. Quite reasonable I think. The argument against such
preconditions is that it is somewhat strange: if a client has honoured the precondition by checking
that the directory exists, it should be able to assume that it safely can call the routine. But between
its own check and the actual call, the directory can be removed by another process.

This is the concurrent precondition paradox (see [43]). In my opinion it would not be wise to
remove this precondition. It is true that honouring it, will not make sure the contract is not broken.
But it still serves a very usefull purpose: documentation.



63 Manual error handling

For example the routinePOSIX_FILE_SYSTEM.remove_filedoes not have the precondition that
the file should exist. That isn’t an oversight. This routine does not fail if the file no longer exists
for good reason: it honours its postcondition after all. So when you call this routine, the file may
or may not exist. The routine doesn’t care.

10.2 Manual error handling

In spite of the arguments listed in the previous section, automatic error handling is perhaps tedious
to use when you expect a lot of errors. And some programmers just do not like Eiffel’s exception
mechanism. Therefore e-POSIX implements a completely different style of error handling. In this
case, e-POSIX continues when an error occurs, but it safes the errorcode, and you can check the
errorcode of the first error when you wish. This first errorcode has to be reset by the programmer.
An example:

class EX_ERROR2

inherit

STDC_SECURITY_ACCESSOR

creation

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
do

security.error_handling.disable_exceptions
create fd.create_write("myfile")
if fd.errno.first_value= 0 then

fd.write_string ("1%N")
fd.write_string ("2%N")
fd.close

else
fd.errno.clear_first

end
end

end

Exception handling is turned off by a call toSTDC_SECURITY_ACCESSOR.security.error_handling.
disable_exceptions. It can be enabled again by callingsecurity.error_handling.enable_exceptions.
In between, you’re on your own, just like a C programmer. Ifmyfile cannot be opened, nothing
happens, and thePOSIX_FILE_DESCRIPTOR.write_stringfeature is called. Depending if you
have enabled precondition checking or not,write_stringwill fail. The precondition ifwrite_string



Error handling 64

is that the file has to be open. Therefore, at certain points, you’re still forced to deal with errors.
Every object has anerrno variable. This variable points to the globalSTDC_ERRNOobject (its
a once routine). So there basically is just onefirst_valueerror value. Whatever object caused the
error, you can check theerrno.first_valueof any e-POSIX object. The last error is still available in
errno.value.

If there is no error, the program continues writing. IfPOSIX_FILE_DESCRIPTOR.write_string
failed, the next one is still executed. If there is an error, we reset it withSTDC_ERRNO.clear_first.
This gives us the chance to catch another error value if an error occurs. If this method is not called,
first_valuewill keep its original value.

The following example is the same asEX_ERROR1. It shows how to open a file exclusively with
manual error handling.

class EX_ERROR3

inherit

POSIX_CURRENT_PROCESS

EXCEPTIONS

creation

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
do

security.error_handling.disable_exceptions
fd := attempt_create_file

end

attempt_create_file: POSIX_FILE_DESCRIPTORis
require

manual_error: not security.error_handling.exceptions_enabled
local

attempt: INTEGER
still_exists: BOOLEAN

do
from

attempt := 1
still_exists := True

until
not still_existsor else attempt> 3

loop



65 Manual error handling

create Result.create_with_mode("myfile", O_CREAT+O_TRUNC+O_EXCL, 0)
still_exists := errno.first_value= EEXIST
if still_exists then

sleep (1)
attempt := attempt+ 1

end
end
if still_exists then

raise ("failed to create file")
end

end

end

As you can see, manual error handling does not necessarily translate into less code.

The summary of this section is that you chould check each distinctive step when using manual error
handling. You don’t have to check intermediate steps.



In this chapter:

• Denial of service attacks
• Authorization bypass attacks

11
Security

e-POSIX is well--suited to write server applications likeCGI scripts and daemons. As these appli-
cations can be hosted on servers that are attached to the Internet, they could be prone to attack.
Applications written with e-POSIX could be misused in a denial of service attack or to gain root
access. e-POSIXoffers certain protection mechanisms that enable your applications to fend off such
penetrations.

This chapter shows you how applications can be misused and what mechanisms e-POSIXoffers for
certain attacks.

“Programmers typically focus on "positive" aspects of programs, that is, what is the function-
ality required for the task to be accomplished. Programmers rarely focus on the negative
aspects of programs, that is, what functionality is not required for the program to accomplish
its task. Attackers take advantage of proggrammers failure to consider negative functional-
ity. Perhaps a reason that programmers avoid negative functionality is that there is no good
way to specify what a program should not be permitted to do.”

11.1 Denial of service attacks

In a denial of service attack, crackers attempt to deplete one or more finite resources. Resources can
be software related like database connections orTCP/IP connections, but ultimately resources are
finite because of hardware limitations. This manual distinguishes the following hardware resources:

• Memory.

• CPU.

• Disk space.

• Network bandwidth.

A denial of service attack succeeds if a cracker depletes these resources in such a way that the
server cannot handle request anymore, or handles them very slowly. For example, Linux 2.2 is easy
to bring to its knees if you keep on allocating memory. In normal situations your application runs
fine, and allocates only a limited amount of memory. But an attacker might have found a way to
make your application allocate much more memory. Even if you are sure that the code you have
written is not prone to such an attack, you might use a library based on e-POSIX that does have code
that is exploitable.

e-POSIX has some limited support to set limits on memory, file handle (a memory issue) and cpu
usage. When a set limit has been exceeded, an exception is raised.

To limit the amount of memory, inherit fromSTDC_SECURITY_ACCESSORand callsecurity.
memory.set_max_allocation. Currently this limits the amount of memory that can be allocated with



67 Authorization bypass attacks

STDC_BUFFER. It does not limit the amount of memory that is allocated bySTRINGor other
classes. You can also limit the amount of memory that can be allocated with a single call by calling
security.memory.set_max_single_allocation.

You can limit the number of file handles a program can open by callingsecurity.files.set_max_open_files.
This works only with files and sockets opened by e-POSIX classes asSTDC_FILEandPOSIX_-
FILE_DESCRIPTOR, not with files opened through other means. In this case you cannot rely on the
garbage collection to close your file. Certain garbage collectors do not allow calling other classes
in theMEMORY.disposemethod. e-POSIX needs to do this to decrement its idea of the number of
open handles. Only when you explicitly callSTDC_FILE.closewill the e-POSIX decrease its open
file handles.

You can limit the amount of CPU time by callingsecurity.cpu.set_max_process_time. It is not
possible to automatically halt your application when this time has exceeded. You have to call
security.cpu.check_process_timeto actually check the processor time used.

Currently e-POSIXcannot check disk space or network bandwidth limitations.

Discuss here that decrementing only works for manual deallocations, I’m very
sorry about that, but this is a problem of ISE. I’m thinking about ways to work
around this.

11.2 Authorization bypass attacks

A hacker can bypass authorization if he or she, through your program, can gain the following
access:

• Access to more information than your program is written to provide. Security is not breached
here, but your program is used in an ‘innovative’ way. Note that if your program runs within
the root security context (suid root), security can be breached!

• Security is breached when your program is used to get more access rights than your program is
written to provide. Especially suid root programs are an attractive target here.

Usually Eiffel programs do not allocate buffers on the stack, so they are not prone to the so called
‘buffer overflow’ attack. As certain vendors might provide some ‘native’ class that allocate things
on the stack, leave precondition checking always on in suid root programs.

Currently e-POSIXdoesn’t offer much protection for suid root programs. Much better security will
be the topic of a next release.



In this chapter:

• Making C Headers available to Eiffel
• Distinction between Standard C andPOSIXheaders
• C translation details

12
Accessing C

headers

This chapter explains the conventions that e-POSIXuses to access the C--headers.

12.1 Making C Headers available to Eiffel

The most portable and safest header translation comes when a C function is not called verbatim, but
instead a translation function is used. For example to make the Standard C functionfopenavailable
within Eiffel a new header file is created which lists an Eiffel compatible way to call this routine:

#include "eiffel.h"
#include <stdio.h>

EIF_POINTER posix_fopen(EIF_POINTER filename, EIF_POINTER mode);

Instead of using C types, we use Eiffel types here, which are made available by includingeiffel.h.

The corresponding C file contains the following implementation:

#include "my_new_header.h"

EIF_POINTER posix_fopen(EIF_POINTER filename, EIF_POINTER mode)
{
return ( (EIF_POINTER) fopen (filename, mode));

}

It simply calls the original function, returning the result. Type conversion between Eiffel and C
types shouldn’t pose problems this way.

To be able to call this function from Eiffel, anexternal feature needs to be written. For example:

class HEADER_STDIO

feature { NONE} -- C binding for stream functions

posix_fopen(path, a_mode: POINTER): POINTER is
-- Opens a stream

require
valid_mode: a_mode/= default_pointer

external "C"
end

end



69 Distinction between Standard C andPOSIX headers

Of course, the Eiffel function can have all Design By Contract features Eiffel programmers are
accustomed too.

To recapitulate: every header that is to be translated, needs:

1. a new header file, and

2. a corresponding C file, and

3. an Eiffel class.

For example to translate<stdio.h> a header file likeeiffel stdio.h and a C fileeiffel
stdio.c is needed. The Eiffel class could be inheader stdio.e.

12.2 Distinction between Standard C andPOSIX headers

However,POSIX sometimes defines extensions to existing Standard C headers. Simply using a
translation header file likeeiffel stdio.h will not work for pure Standard C Eiffel programs, as
it can includePOSIXspecific extensions that might simply not be available on a given platform.

Therefore, e-POSIXdivides the C headers in several groups:

1. The Standard C headers.

2. ThePOSIXheaders.

3. The Single Unix Specification headers.

4. Microsoft Windows headers (as far as they definePOSIXfunctions, this library does not translate
Microsoft Windows specific functions).

Every group gets its own translation header with its own prefix. A translated header has a prefix, an
underscore and next the original header name. The Standard C translation of<stdio.h> is done
in c stdio.h andc stdio.c. ThePOSIX extensions to this header are available inp stdio.h
andp stdio.c.

The corresponding Eiffel class follows similar conventions. It has the group’s prefix, next the string
‘API’, an underscore and next the name of the header. So all<stdio.h> functions are made
available inCAPI_STDIO.

In table 12.1all the groups with there translation header prefix and Eiffel class prefix are listed.
See also the directory structure infigure 12.1.

12.3 C translation details

This translation wants to do as less as possible at the C level. It attempts to just make available the
C constants and C functions and do the actual work in Eiffel.

A few details:



Accessing C headers 70

Figure 12.1 e-POSIX

directory structure

Group directory header prefix class prefix

Standard C src/capi c CAPI

POSIX src/[api p PAPI

Single Unix Specification src/sapi s SAPI

Windows src/wapi w WAPI

Table 12.1 e-POSIX prefix conventions

1. Constants, C macro definitions, are exported in the header file with the prefix ‘const_’ and next
the macro name. The Eiffel API class exports these constants with the original, uppercased
name.

2. Struct members are exported with getter and setter functions. The get function has the prefix
‘posix’, an underscore, the struct name, an underscore and as last the member name. The
set function has the prefix ‘posix’, an underscore, ‘set’, an underscore, the struct name, an
underscore and as last the member name.



In this chapter:

A
Posix function
to Eiffel class

mapping list

The following table defines exactly where a given Posix function is used in a Eiffel class mapping.
The table is sorted in alphabetic order. Note that when a STDC_ class is listed, the feature is also
available in the corresponding POSIX_ class.

Function Header Class Comment

abort <stdlib.h> STDC_CURRENT_PROCESS.abort
access <unistd.h> ABSTRACT_FILE_SYSTEM.is_accessible
aio_cancel <aio.h> POSIX_ASYNC_IO_REQUEST.cancel
aio_error <aio.h> POSIX_ASYNC_IO_REQUEST.is_pending
aio_fsync <aio.h> POSIX_ASYNC_IO_REQUEST.synchronize
aio_read <aio.h> POSIX_ASYNC_IO_REQUEST.read
aio_return <aio.h> POSIX_ASYNC_IO_REQUEST.return_status
aio_suspend <aio.h> POSIX_ASYNC_IO_REQUEST.wait_for
aio_write <aio.h> POSIX_ASYNC_IO_REQUEST.write
alarm <unistd.h> POSIX_TIMED_COMMAND
asctime <time.h> STDC_TIME.default_format
atexit <stdlib.h> probably not applicable.
calloc <stdlib.h> STDC_BUFFER.allocate_and_clear
cfgetispeed <termios.h> POSIX_TERMIOS.input_speed
cfgetospeed <termios.h> POSIX_TERMIOS.output_speed
cfsetispeed <termios.h> POSIX_TERMIOS.set_input_speed
cfsetospeed <termios.h> POSIX_TERMIOS.set_output_speed
chdir <unistd.h> POSIX_FILE_SYSTEM.change_directory
chmod <sys/stat.h> POSIX_FILE_SYSTEM.change_mode
chown <unistd.h> POSIX_PERMISSIONS_PATH.apply_owner_and_group
clearerr <stdio.h> STDC_FILE.clear_error
clock <time.h> STDC_CURRENT_PROCESS.clock
clock_getres <time.h>
clock_gettime <time.h>
clock_settime <time.h>
close <unistd.h> POSIX_FILE_DESCRIPTOR.close
closedir <dirent.h> POSIX_DIRECTORY
creat <fcntl.h> POSIX_FILE_DESCRIPTOR.create_read_write
ctermid <unistd.h>
ctime <time.h> Can be emulated withSTDC_TIME.
cuserid <stdio.h> seegetlogin
difftime <time.h> STDC_TIME
dup <unistd.h> POSIX_FILE_DESCRIPTOR.make_as_duplicate
dup2 <unistd.h> POSIX_FILE_DESCRIPTOR.make_as_duplicate
execl <unistd.h> Seeexecvp.
execle <unistd.h> Seeexecvp.
execlp <unistd.h> Seeexecvp.
execv <unistd.h> Seeexecvp.
execve <unistd.h> Seeexecvp.



Posix function to Eiffel class mapping list 72

execvp <unistd.h> POSIX_EXEC_PROCESS.execute
exit <stdlib.h> STDC_CURRENT_PROCESS.exit
_exit <unistd.h>
fclose <stdio.h> STDC_FILE.close
fcntl <unistd.h> POSIX_FILE_DESCRIPTOR attempt_lock,get_lock, set_lock

and others.
fdatasync <unistd.h> POSIX_FILE_DESCRIPTOR.synchronize_data This function is not avail-

able on many so called
POSIXsystems. In such cas-
es it is mapped tofsync.

fdopen <stdio.h> POSIX_FILE.make_from_file_descriptor
feof <stdio.h> STDC_FILE.eof
ferror <stdio.h> STDC_FILE.error
fflush <stdio.h> STDC_FILE.flush
fgetc <stdio.h> STDC_FILE.get_character
fgetpos <stdio.h> STDC_FILE.get_position
fgets <stdio.h> STDC_FILE.get_string
fileno <stdio.h> POSIX_FILE_DESCRIPTOR.make_from_file
fopen <stdio.h> STDC_FILE various open creation fea-

tures.
fork <unistd.h> POSIX_CURRENT_PROCESS.fork
fpathconf <unistd.h>
fprintf <stdio.h> not applicable.
fputc <stdio.h> STDC_FILE.putc
fputs <stdio.h> STDC_FILE.put_string
fread <stdio.h> STDC_FILE.read Alsoread_stringandread_character.
free <stdlib.h> STDC_BUFFER.deallocate
freopen <stdio.h> STDC_FILE.reopen
fseek <stdio.h> STDC_FILE.seek Alsoseek_from_currentand

seek_from_end.
fsetpos <stdio.h> STDC_FILE.set_position
fstat <sys/stat.h> POSIX_STATUS Returned byPOSIX_FILE_DESCRIPTOR.

status.
fsync <unistd.h> POSIX_FILE_DESCRIPTOR.synchronize
ftell <stdio.h> STDC_FILE.tell
fwrite <stdio.h> STDC_FILE.write
getc <stdioh> Seefgetc.
getchar <stdio.h> Seefgetc.
getcwd <unistd.h> POSIX_FILE_SYSTEM.current_directory
getegid <unistd.h> POSIX_CURRENT_PROCESS.effective_group_id
getenv <stdlib.h> STDC_ENV_VAR.value
geteuid <unistd.h> POSIX_CURRENT_PROCESS.effective_user_id
getgid <unistd.h> POSIX_CURRENT_PROCESS.real_group_id
getgrgid <grp.h> POSIX_GROUP.make_from_gid
getgrnam <grp.h> POSIX_GROUP.make_from_name
getgroups <unistd.h> POSIX_CURRENT_PROCESS.is_in_group
getlogin <unistd.h> POSIX_CURRENT_PROCESS.login_name
getpgrp <unistd.h> POSIX_CURRENT_PROCESS.process_group_id
getpid <unistd.h> POSIX_CURRENT_PROCESS.pid
getppid <unistd.h> POSIX_CURRENT_PROCESS.parent_pid
getpwnam <pwd.h> POSIX_USER.make_from_name
getpwuid <pwd.h> POSIX_USER.make_from_uid
gets <stdio.h> Seefgets.
gettimeofday <sys/time.h> SUS_TIME_VALUE
getuid <unistd.h> POSIX_CURRENT_PROCESS.real_user_id
gmtime <time.h> STDC_TIME.to_utc
isatty <unistd.h> POSIX_FILE_DESCRIPTOR.is_attached_to_terminal
kill <signal.h> POSIX_PROCESS.kill
link <unistd.h> POSIX_FILE_SYSTEM.link



73

lio_listio <aio.h>
localeconv <locale.h> STDC_LOCALE_NUMERIC
localtime <time.h> STDC_TIME.to_local
lseek <unistd.h> POSIX_FILE_DESCRIPTOR.seek Alsoseek_from_currentand

seek_from_end.
malloc <stdlib.h> STDC_BUFFER.allocate
memcpy <string.h> STDC_BUFFER.memory_copy See alsocopy_from.
memchr <string.h>
memcmp <string.h>
memmove <string.h> STDC_BUFFER.memory_move
memset <string.h> STDC_BUFFER.fill_with
mkdir <sys/stat.h> POSIX_FILE_SYSTEM.make_directory
mkfifo <sys/stat.h> POSIX_FILE_SYSTEM.create_fifo
mktime <time.h> STDC_TIME.set_date_time Alsoset_dateandset_time.
mlockall <sys/mman.h>
mlock <sys/mman.h>
mmap <sys/mman.h> POSIX_MEMORY_MAP
mprotect <sys/mman.h>
mq-receive <mqueue.h>
mq_close <mqueue.h>
mq_getattr <mqueue.h>
mq_notify <mqueue.h>
mq_open <mqueue.h>
mq_send <mqueue.h>
mq_setattr <mqueue.h>
mq_unlink <mqueue.h>
msync <sys/mman.h>
munlockall <sys/mman.h>
munlock <sys/mman.h>
munmap <sys/mman.h> POSIX_MEMORY_MAP
nanosleep <time.h>
open <fcntl.h> POSIX_FILE_DESCRIPTOR.open Alsoopen_read, open_read_write

andopen_write
opendir <dirent.h> POSIX_DIRECTORY
pathconf <unistd.h> POSIX_DIRECTORY.max_filename_length
pause <unistd.h> POSIX_CURRENT_PROCESS.pause
perror <stdio.h> e-POSIX generates excep-

tions on error.
pipe <unistd.h> POSIX_PIPE.make
printf <stdio.h> not applicable.
putc <stdio.h> Seefputc.
putchar <stdio.h> Seefputc.
puts <stdio.h> Seefputs.
raise <signal.h> STDC_SIGNAL.raise
rand <stdlib.h> STDC_CURRENT_PROCESS.random
read <unistd.h> POSIX_FILE_DESCRIPTOR.read
readdir <dirent.h> POSIX_DIRECTORY
realloc <stdlib.h> STDC_BUFFER.resize
remove <stdio.h> POSIX_FILE_SYSTEM.remove_file
rename <unistd.h> POSIX_FILE_SYSTEM.rename_to
rewind <stdio.h> STDC_FILE.rewind
rewinddir <dirent.h> POSIX_DIRECTORY
rmdir <unistd.h> POSIX_FILE_SYSTEM.remove_directory
scanf <stdio.h> not applicable.
sem_close <semaphore.h>
sem_destroy <semaphore.h>
sem_getvalue <semaphore.h>
sem_init <semaphore.h> POSIX_UNNAMED_SEMAPHORE.create_shared And create_unshared.
sem_open <semaphore.h>



Posix function to Eiffel class mapping list 74

sem_post <semaphore.h> POSIX_SEMAPHORE.release
sem_trywait <semaphore.h> POSIX_SEMAPHORE.attempt_acquire
sem_unlink <semaphore.h>
sem_wait <semaphore.h> POSIX_SEMAPHORE.acquire
setbuf <stdio.h> STDC_FILE.set_buffer
setgid <unistd.h> POSIX_CURRENT_PROCESS.set_group_id Also restore_group_id.
setlocale <locale.h> STDC_CURRENT_PROCESS.set_locale Alsoset_native_localeand

set_native_time.
setpgid <unistd.h> PAPI_UNISTD.posix_setsid
setsid <unistd.h> PAPI_UNISTD.posix_setsid
setuid <unistd.h> POSIX_CURRENT_PROCESS.set_user_id Also restore_user_id.
setvbuf <stdio.h> STDC_FILE.set_no_buffering Alsoset_full_bufferingand

set_line_buffering
shm_open <sys/mman.h> POSIX_SHARED_MEMORY.open_read_write Andcreate_write, open_read,

Efeatureopen_write.
shm_unlink <sys/mman.h> POSIX_FILE_SYSTEM.unlink_shared_memory_object
sigaction <signal.h> POSIX_SIGNAL
sigaddset <signal.h> POSIX_SIGNAL_SET.add
sigdelset <signal.h> POSIX_SIGNAL_SET.prune
sigemptyset <signal.h> POSIX_SIGNAL_SET.make_empty
sigfillset <signal.h> POSIX_SIGNAL_SET.make_full
sigismember <signal.h> POSIX_SIGNAL_SET.has
signal <signal.h> STDC_SIGNAL.raise
sigpending <signal.h> POSIX_SIGNAL_SET.make_pending
sigprocmask <signal.h> POSIX_SIGNAL_SET.add_to_blocked_signals Alsoremove_from_blocked_signals

andset_blocked_signals
sigqueue <signal.h>
sigsuspend <signal.h> POSIX_SIGNAL_SET.suspend
sigtimedwait <signal.h>
sigwait <signal.h>
sigwaitinfo <signal.h>
sleep <unistd.h> POSIX_CURRENT_PROCESS.sleep
sprintf <stdio.h> Not applicable.
srand <stdlib.h> STDC_CURRENT_PROCESS.set_random_seed
sscanf <stdio.h> Not applicable.
stat <sys/stat.h> POSIX_STATUS
strftime <time.h> STDC_TIME.format
sysconf <unistd.h> POSIX_SYSTEM
system <stdlib.h> STDC_SHELL_COMMAND
tcdrain <unistd.h>
tcflow <unistd.h>
tcflush <unistd.h> POSIX_TERMIOS.flush_input
tcgetattr <unistd.h> POSIX_TERMIOS.make
tcgetpgrp <unistd.h>
tcsendbreak <unistd.h>
tcsetattr <unistd.h> POSIX_TERMIOS.apply_now Alsoapply_drainandapply_flush
tcsetpgrp <unistd.h>
time <time.h> STDC_TIME.make_from_unix_time
timer_create <signal.h>
timer_create <time.h>
times <times.h>
tmpfile <stdio.h> STDC_TEMPORARY_FILE.make
tmpnam <stdio.h> STDC_FILE_SYSTEM.temporary_file_name
ttyname <unistd.h> POSIX_FILE_DESCRIPTOR.ttyname
tzset <time.h>
umask <sys/stat.h>
uname <sys/utsname.h> POSIX_SYSTEM Various queries.
ungetc <stdio.h> STDC_FILE.ungetc
unlink <unistd.h> POSIX_FILE_SYSTEM.unlink



75

utime <utime.h> POSIX_FILE_SYSTEM.utime See also itstouchmethod.
vfprintf <stdio.h> Not applicable.
vprintf <stdio.h> Not applicable.
vsprint <stdio.h> Not applicable.
wait <sys/wait.h> POSIX_CURRENT_PROCESS.wait
waitpid <sys/wait.h> POSIX_FORK_ROOT.wait_pid
write <unistd.h> POSIX_FILE_DESCRIPTOR.write

This tabel does not contain the following category of functions:

1. Math functions.

2. String functions, including wide character/multibyte string. routines. The memory move/copy
functions are included, some of them even supported.

3. No type conversion functions.

4. No functions from<ctype.h>.

5. No functions from<setjmp.h>.

6. No functions from<stdarg.h>.

7. No string formatting functions likesscanf. I suggest you use the Formatter library for
that. You can download this excellent library athttp://www.eiffel-forum.org/archive
/dominicu/format.htm.

Functions in above categories are either not applicable, already present in Eiffel or are better off in
a different library.

http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm
http://www.eiffel-forum.org/archive/dominicu/format.htm


In this chapter:

B
Short (flat) list-

ing of Stan-
dard C classes

B.1 STDC_BASE

class interface STDC_BASE
feature(s) from STDC_BASE

-- errno
errno: STDC_ERRNO

invariant
accessing_real_singleton: security_is_real_singleton;

end of STDC_BASE



77 STDC_BUFFER

B.2 STDC_BUFFER

class interface STDC_BUFFER
creation

allocate (a_capacity: INTEGER)
-- allocate memory ofa_capacitybytes

allocate_and_clear(a_capacity: INTEGER)
-- allocate memory ofa_capacitybytes, make sure its zeroed out

make_from_pointer(a_pointer: POINTER; a_capacity: INTEGER; a_become_owner: BOOLEAN)
-- attach a pointer to this object. Ifa_become_owneris
-- True, it will deallocate the pointer whenclose is
-- called, or when this object is garbage collected.

feature(s) from STDC_BUFFER
-- Creation
allocate (a_capacity: INTEGER)

-- allocate memory ofa_capacitybytes
allocate_and_clear(a_capacity: INTEGER)

-- allocate memory ofa_capacitybytes, make sure its zeroed out
make_from_pointer(a_pointer: POINTER; a_capacity: INTEGER; a_become_owner: BOOLEAN)

-- attach a pointer to this object. Ifa_become_owneris
-- True, it will deallocate the pointer whenclose is
-- called, or when this object is garbage collected.

feature(s) from STDC_BUFFER
-- Other allocation commands
resize (new_capacity: INTEGER)

-- Resize memory tonew_capacitybytes. Expanded memory is not
-- guaranteed to be zeroed out.

feature(s) from STDC_BUFFER
-- Access
resource_usage_can_be_increased: BOOLEAN

-- Can the number of allocated resources increased withcapacity?
feature(s) from STDC_BUFFER

-- Copy data internally or externally
copy_from(source: STDC_BUFFER; src_offset, dest_offset, bytes: INTEGER)

-- Move data from another buffer into ourselves.
-- Start at offsetsrc_offset, into
-- offset dest_offset, moving bytesbytes
-- Memory may overlap.

memory_copy(source: POINTER; src_offset: INTEGER; dest_offset, bytes: INTEGER)
-- Copy data fromsource, offset src_offset, to location
-- dest_offsetin this buffer, for bytesbytes.
-- Memory may not overlap, usemove to copy within buffer
-- or memory_moveto copy from potentially overlapping buffer.

memory_move(source: POINTER; src_offset: INTEGER; dest_offset, bytes: INTEGER)
-- Copy data fromsource, offset src_offset, to location
-- dest_offsetin this buffer, for bytesbytes.
-- Memory may overlap.



Short (flat) listing of Standard C classes 78

move (src_offset, dest_offset: INTEGER; bytes: INTEGER)
-- Move data around in buffer itself from offsetsrc_offsetto
-- offset dest_offset, moving bytesbytes.
-- Memory may overlap.

feature(s) from STDC_BUFFER
-- Set/get bytes (8-bit data)
peek_uint8(index: INTEGER): INTEGER

-- consider memory an array of 8 bit values.
infix "@" (index: INTEGER): INTEGER

-- consider memory an array of 8 bit values.
poke_uint8(index, value: INTEGER)
peek_int8(index: INTEGER): INTEGER

-- consider memory an array of 8 bit values.
poke_int8(index, value: INTEGER)

feature(s) from STDC_BUFFER
-- Set/get integers (16-bit data)
peek_int16(index: INTEGER): INTEGER

-- Read signed 16 bit value at offsetindex in native
-- endian format.

peek_int16_native(index: INTEGER): INTEGER
-- Read signed 16 bit value at offsetindex in native
-- endian format.

peek_uint16(index: INTEGER): INTEGER
-- Read unsigned 16 bit value at offsetindex in native format.

peek_uint16_native(index: INTEGER): INTEGER
-- Read unsigned 16 bit value at offsetindex in native format.

peek_int16_big_endian(index: INTEGER): INTEGER
-- Read 16 bit value at offsetindex in big endian format.

peek_int16_little_endian(index: INTEGER): INTEGER
-- Read 16 bit value at offsetindex in little endian format.

poke_int16(index: INTEGER; value: INTEGER)
-- Write 16 bit value at offsetindex, in native endian format.

poke_int16_native(index: INTEGER; value: INTEGER)
-- Write 16 bit value at offsetindex, in native endian format.

poke_int16_big_endian(index: INTEGER; value: INTEGER)
-- Write 16 bit value at offsetindex, in big endian format.

poke_int16_little_endian(index: INTEGER; value: INTEGER)
-- Write 16 bit value at offsetindex, in little endian format.

feature(s) from STDC_BUFFER
-- Set/get integers (32-bit data)
peek_int32_native(index: INTEGER): INTEGER

-- Read 32 bit value at offsetindex, assume its byte order
-- is native, and return it.

peek_integer(index: INTEGER): INTEGER
-- Read 32 bit value at offsetindex, assume its byte order
-- is native, and return it.

peek_int32_big_endian(index: INTEGER): INTEGER



79 STDC_BUFFER

-- Read 32 bit value at offsetindex, assume its byte order
-- is big endian, and return it in native format.

peek_int32_little_endian(index: INTEGER): INTEGER
-- Read 32 bit value at offsetindex, assume its byte order
-- is little endian, and return it in native format.

peek_uint32_native(index: INTEGER): INTEGER
-- Read 32 bit unsigned int at offsetindex, assume native
-- byte order.

peek_uint32_big_endian(index: INTEGER): INTEGER
-- Read 32 bit unsigned int at offsetindex, assume its
-- byte order is big endian, and return it in native format.

peek_uint32_little_endian(index: INTEGER): INTEGER
-- Read 32 bit unsigned int at offsetindex, assume its
-- byte order is big endian, and return it in native format.

poke_integer(index: INTEGER; value: INTEGER)
-- Write 32 bit value at offsetindex, in native endian format.

poke_int32_native(index: INTEGER; value: INTEGER)
-- Write 32 bit value at offsetindex, in native endian format.

poke_int32_big_endian(index: INTEGER; value: INTEGER)
-- Write 32 bit value at offsetindex, in big endian format.

poke_int32_little_endian(index: INTEGER; value: INTEGER)
-- Write 32 bit value at offsetindex, in little endian format.

feature(s) from STDC_BUFFER
-- Set/get characters
peek_character(index: INTEGER): CHARACTER

-- return value at positionindex as a character
poke_character(index: INTEGER; value: CHARACTER)

-- set character atposition index to value
c_substring_with_string(dest: STRING; start_index, end_index: INTEGER)

-- As c_substringbut useddest as the destination.
c_substring(start_index, end_index: INTEGER): STRING

-- Create a substring containing all characters from
-- start_index up to encountering a %U or when end_index is
-- reached, whatever happens first.

substring (start_index, end_index: INTEGER): STRING
-- Create a substring containing all characters
-- from start_index to end_index inclusive.

feature(s) from STDC_BUFFER
-- Fill
fill_at (start_index, a_count: INTEGER; byte: INTEGER)

-- Starting at positionstart_index, write byte for a_countbytes
feature(s) from STDC_BUFFER

-- Searching
locate_character(other: CHARACTER; start_index: INTEGER): INTEGER

-- Return index ofother in buffer, or -1.
-- Search begins atstart_index.

locate_string(other: STRING; start_index: INTEGER): INTEGER



Short (flat) listing of Standard C classes 80

-- Does buffer contain other?
-- Returns index whereother is found.
-- Returns -1 if not found
-- searching starts at positionstart_index

feature(s) from STDC_BUFFER
-- Queries
is_valid_index(index: INTEGER): BOOLEAN
is_valid_range(from_index, to_index: INTEGER): BOOLEAN

-- Returns True if from_index..to_index is a valid and
-- meaningfull range

feature(s) from STDC_BUFFER
-- Low level handle functions
do_close: BOOLEAN

-- Close resource, return error if any, or zero on
-- success. This routine may never call another object, else
-- it cannot be used safely indispose.

unassigned_value: POINTER
-- The value that indicates thathandle is unassigned.

invariant
accessing_real_singleton: security_is_real_singleton;
capacity_not_negative: capacity >= 0;
valid_capacity: is_allocated= capacity > 0;
open_implies_handle_assigned: is_allocated= ptr /= unassigned_value;
owned_implies_open: is_owner implies is_allocated;
owned_implies_handle_assigned: is_owner implies ptr /= unassigned_value;

end of STDC_BUFFER



81 STDC_CONSTANTS

B.3 STDC_CONSTANTS

class interface STDC_CONSTANTS
feature(s) from STDC_CONSTANTS

-- error codes
edom: INTEGER

-- Math argument out of domain of function
erange: INTEGER

-- Math result not representable
feature(s) from STDC_CONSTANTS

-- standard streams
stream_stdin: POINTER
stream_stdout: POINTER
stream_stderr: POINTER

feature(s) from STDC_CONSTANTS
-- characters
const_eof: INTEGER

-- signals EOF
feature(s) from STDC_CONSTANTS

-- buffering
iofbf : INTEGER

-- full buffering
iolbf : INTEGER

-- line buffering
ionbf: INTEGER

-- no buffering
feature(s) from STDC_CONSTANTS

-- file positioning
seek_set: INTEGER
seek_cur: INTEGER
seek_end: INTEGER

feature(s) from STDC_CONSTANTS
-- Signal related constants
sig_dfl: POINTER
sig_err: POINTER
sig_ign: POINTER

feature(s) from STDC_CONSTANTS
-- Signals
sigabrt: INTEGER
sigfpe: INTEGER

-- erroneous arithmetic operation, such as zero divide or an
-- operation resulting in overflow

sigill: INTEGER
-- illegal instruction

sigint: INTEGER
-- receipt of an interactive attention signal

sigsegv: INTEGER



Short (flat) listing of Standard C classes 82

-- invalid access to storage
sigterm: INTEGER

feature(s) from STDC_CONSTANTS
-- random numbers
rand_max: INTEGER

-- maximum value returned by therandom function
feature(s) from STDC_CONSTANTS

-- category constants
lc_ctype: INTEGER
lc_numeric: INTEGER
lc_time: INTEGER
lc_collate: INTEGER
lc_monetary: INTEGER
lc_all: INTEGER

feature(s) from STDC_CONSTANTS
-- various
clocks_per_sec: INTEGER

feature(s) from STDC_CONSTANTS
-- exit codes
exit_failure: INTEGER

-- exit status when something has gone wrong
exit_success: INTEGER

-- exit status upon success
end of STDC_CONSTANTS



83 STDC_CURRENT_PROCESS

B.4 STDC_CURRENT_PROCESS

class interface STDC_CURRENT_PROCESS
feature(s) from STDC_SECURITY_ACCESSOR

-- The singleton, available to any because its used in preconditions
security: STDC_SECURITY

-- Singleton entry point for security.
feature(s) from STDC_BASE

-- errno
errno: STDC_ERRNO

feature(s) from STDC_CURRENT_PROCESS
-- my stdandard input/output/error
stdin: STDC_TEXT_FILE
stdout: STDC_TEXT_FILE
stderr: STDC_TEXT_FILE

invariant
accessing_real_singleton: security_is_real_singleton;

end of STDC_CURRENT_PROCESS



Short (flat) listing of Standard C classes 84

B.5 STDC_ENV_VAR

class interface STDC_ENV_VAR
creation

make (a_name: STRING)
feature(s) from STDC_ENV_VAR

-- Access
exist: BOOLEAN

-- Is this environment variable defined?
name: STRING

-- Name of environment variable.
value: STRING

-- Current value of environment variable.
invariant

accessing_real_singleton: security_is_real_singleton;
end of STDC_ENV_VAR



85 STDC_FILE

B.6 STDC_FILE

STDC_FILEis a deferred class. UseSTDC_TEXT_FILEfor accessing and creating text files, or
STDC_BINARY_FILEfor binary files.

deferred class interface STDC_FILE
feature(s) from STDC_FILE

-- Initialization
create_read_write(path: STRING)

-- Open file for update (reading and writing). If the file
-- already exists, it is truncated to zero length.
-- So permissions seem to remain.

create_write(path: STRING)
-- create new file for writing. If the file already exists,
-- it is truncated to zero length.
-- So permissions seem to remain.

open (path, a_mode: STRING)
-- open file in given mode

open_append(path: STRING)
-- append to exiting file or create file if it does not exist

open_read(path: STRING)
-- open file for reading

open_read_write(path: STRING)
-- Open file for reading and writing.

feature(s) from STDC_FILE
-- Work with existing streams
attach_to_stream(a_stream: POINTER; a_mode: STRING)

-- Attach to a_stream. Does not become owner of stream so
-- it will not close on close or when garbage collected.

feature(s) from STDC_FILE
-- Reopen
reopen (path, a_mode: STRING)

-- Closes and then opens a stream.
feature(s) from STDC_FILE

-- Control over buffering
flush

-- Updates this stream
setbuf (buffer: POINTER)

-- Determines how the stream will be buffered
-- gives you a fully buffered input and output.
-- Not sure: buffer should have at least BUFSIZ bytes?
-- No operation should yet been performed on this file
-- buffer = default_pointer: default buffer will be allocated
-- buffer /= default_pointer implies buffer size = BUFSIZ

set_buffer(buffer: POINTER)
-- Determines how the stream will be buffered
-- gives you a fully buffered input and output.
-- Not sure: buffer should have at least BUFSIZ bytes?



Short (flat) listing of Standard C classes 86

-- No operation should yet been performed on this file
-- buffer = default_pointer: default buffer will be allocated
-- buffer /= default_pointer implies buffer size = BUFSIZ

set_full_buffering(buffer: POINTER; size: INTEGER)
-- Determines buffering for a stream.
-- If buffer is default_pointer, a buffer ofsize bytes
-- will be allocated by this routine.

set_line_buffering(buffer: POINTER; size: INTEGER)
-- Determines buffering for a stream.
-- Give NULL buffer so setvbufwill allocate a buffer.

set_no_buffering
-- Turn buffering off.

feature(s) from STDC_FILE
-- read, C like
last_byte: INTEGER

-- last read character ofget_character
-- can be negative, so is more a last_shortint or so!

getc
-- Reads a C unsigned char and converts it to an integer,
-- the result is left inlast_byte
-- This function probably can be used to read a single
-- byte

get_character
-- Reads a C unsigned char and converts it to an integer,
-- the result is left inlast_byte
-- This function probably can be used to read a single
-- byte

gets (bytes: INTEGER)
-- Reads at most one less thanbytescharacters.
-- No additional characters are read after a newline character
-- or after end-of-file. If a newline character is read, it
-- is returned too.
-- Result is placed inlast_string

get_string (bytes: INTEGER)
-- Reads at most one less thanbytescharacters.
-- No additional characters are read after a newline character
-- or after end-of-file. If a newline character is read, it
-- is returned too.
-- Result is placed inlast_string

read (buf: POINTER; offset, bytes: INTEGER)
-- Read chunk, setlast_read. offset determines how far
-- in buf you want to start writing.

feature(s) from STDC_FILE
-- write, C like
putc (c: INTEGER)

-- write a single character
put_character(c: INTEGER)



87 STDC_FILE

-- write a single character
ungetc (c: INTEGER)

-- pushesc back to the stream
-- note that file positioning functions discard any
-- pushed-back characters

write (buf: POINTER; offset, bytes: INTEGER)
-- write bytesbytes frombuf at offset offset
-- we do not really care if offset is positive or negative...

feature(s) from STDC_FILE
-- read, Eiffel like
last_read: INTEGER

-- last read bytes by some read_XXXX or get_string call
last_boolean: BOOLEAN

-- last boolean read byread_boolean
last_character: CHARACTER

-- last character read byread_character
last_double: DOUBLE

-- last double lread byread_double
last_integer: INTEGER
last_real: REAL

-- last real read byread_real
last_string: STRING

-- Last string read byread_stringor
-- get_string. Includes the end-of-line character, if any.

read_boolean
-- attempt to read back a boolean written by write_boolean

read_buffer(buf: STDC_BUFFER; offset, bytes: INTEGER)
-- More safe version ofread in case you have a
-- STDC_BUFFER object. Read starts atoffset bytes in buf.
-- Check last_read for number of bytes actually read.

read_double
read_character

-- read a single character and setlast_character
-- if end-of-file encountered,eof is True

read_integer
read_real
read_string (bytes: INTEGER)

-- Read at mostn characters, a value more expected by
-- programmers not used to strings with a trailing byte.
-- result is placed inlast_string
-- last_string includes the newline character ifbytes
-- are longer then the length of the actual line!

feature(s) from STDC_FILE
-- write, Eiffel like
last_written: INTEGER

-- last written bytes by some write_XXXX call
put (any: ANY)



Short (flat) listing of Standard C classes 88

-- write class as string
write_buffer (buf: STDC_BUFFER; offset, bytes: INTEGER)

-- more safe version ofwrite in case you have a
-- STDC_BUFFER object
-- Check last_written for number of bytes actually written,
-- if you use asynchronous writing.

write_boolean(b: BOOLEAN)
-- write a boolean in Standard C %f format

write_character(c: CHARACTER)
-- write a single character

write_double(d: DOUBLE)
-- write a double in Standard C %f format

write_integer (i: INTEGER)
-- write an integer in Standard C %d format

write_real (r: REAL)
-- write a real in Standard C %f format

write_string (s: STRING)
-- write a string

puts (s: STRING)
-- write a string

put_string (s: STRING)
-- write a string

feature(s) from STDC_FILE
-- file position
getpos: STDC_FILE_POSITION

-- get the current position, useset_positionto return to
-- this saved position

get_position: STDC_FILE_POSITION
-- get the current position, useset_positionto return to
-- this saved position

rewind
-- Sets the file position to the beginning of the file

seek(offset: INTEGER)
-- set file position to given absoluteoffset

seek_from_current(offset: INTEGER)
-- set file position relative to current position

seek_from_end(offset: INTEGER)
-- set file position relative to end of file

setpos(a_position: STDC_FILE_POSITION)
-- set the current position

set_position(a_position: STDC_FILE_POSITION)
-- set the current position

tell: INTEGER
-- The current position

feature(s) from STDC_FILE
-- other
clearerr



89 STDC_FILE

-- Clears end-of-file and error indicators for a stream.
clear_error

-- Clears end-of-file and error indicators for a stream.
feature(s) from STDC_FILE

-- Access
eof: BOOLEAN

-- True if eof encountered by getc or,
-- if the end-of-file indicator is set.

error: BOOLEAN
-- True if and only if the error indicator is set

filename: STRING
--The filename of this file.

mode: STRING
-- mode in which the file is opened/created

resource_usage_can_be_increased: BOOLEAN
-- Is it allowed to open another file?

feature(s) from STDC_FILE
-- is mode binary or text
is_binary_mode_specification(a_mode: STRING): BOOLEAN

-- True if last character of a_mode = b
is_text_mode_specification(a_mode: STRING): BOOLEAN

-- True if last character of a_mode = t
feature(s) from STDC_FILE

-- Low level handle functions
do_close: BOOLEAN

-- Close resource. Return False if an error occurred. Error
-- value should be inerrno. This routine may never call
-- another object, else it cannot be used safely in
-- dispose.
-- This routine is usely redefined to actually close or
-- deallocate the resource in addition of resettinghandle.

unassigned_value: POINTER
-- The value that indicates thathandle is unassigned.

invariant
accessing_real_singleton: security_is_real_singleton;
capacity_not_negative: capacity >= 0;
valid_capacity: is_open= capacity > 0;
open_implies_handle_assigned: is_open= stream /= unassigned_value;
owned_implies_open: is_owner implies is_open;
owned_implies_handle_assigned: is_owner implies stream /= unassigned_value;
last_string_valid: last_string /= Void;
gets_buf_valid: gets_buf/= Void;

end of deferred STDC_FILE



Short (flat) listing of Standard C classes 90

B.7 STDC_FILE_SYSTEM

class interface STDC_FILE_SYSTEM
feature(s) from STDC_FILE_SYSTEM

-- path names
expand_path(a_path: STRING): STDC_PATH

-- returns a new path
feature(s) from STDC_FILE_SYSTEM

-- rename files/directories, remove files/directories
remove_file(a_path: STRING)

-- Removes a file from a directory.
-- For Standard C, its implementation defined what
-- remove_file does if file is opened by some process
-- (remove_filefails on Windows for example).
-- doesnt remove a directory.

rename_to(current_path, new_path: STRING)
-- Rename a file or a directory.
-- new_pathshould not be an existing path.

feature(s) from STDC_FILE_SYSTEM
-- accessibility of files
is_modifiable(a_path: STRING): BOOLEAN

-- Is a_path readable and writable by this program?
-- Does this by attemting to opena_path file read/write.

is_readable(a_path: STRING): BOOLEAN
-- tests if file is readable by this program
-- does this by attemting to opena_path file read-only

invariant
accessing_real_singleton: security_is_real_singleton;

end of STDC_FILE_SYSTEM



91 STDC_SECURITY

B.8 STDC_SECURITY

class interface STDC_SECURITY
feature(s) from STDC_SECURITY

-- modes
make_allow_all

-- just allow everything
make_allow_sandbox

-- allow very little, use for setuid root programs
feature(s) from STDC_SECURITY

-- the security aspects
cpu: STDC_SECURITY_CPU
error_handling: STDC_SECURITY_ERROR_HANDLING
files: STDC_SECURITY_FILES
memory: STDC_SECURITY_MEMORY

feature(s) from STDC_SECURITY
-- various
assert_once_memory_allocated

-- make sure that certain once functions in STDC_BASE are
-- called. These once functions are called when an error
-- occurs, at that time there might not be memory left to
-- create them

invariant
accessing_real_singleton: security_is_real_singleton;
remain_single: Current = the_singleton;

end of STDC_SECURITY



Short (flat) listing of Standard C classes 92

B.9 STDC_SIGNAL

class interface STDC_SIGNAL
creation

make (a_value: INTEGER)
feature(s) from STDC_SIGNAL

-- creation
make (a_value: INTEGER)

feature(s) from STDC_SIGNAL
-- set signal properties, make effective withapply
apply

-- Make changes effective.
set_default_action

-- install signal-specific default action
set_ignore_action

-- ignore signal
set_handler(a_handler: STDC_SIGNAL_HANDLER)

-- Install ones own signal handler.
feature(s) from STDC_SIGNAL

-- signal functions
raise

-- raise the signal
feature(s) from STDC_SIGNAL

-- signal state
is_ignorable: BOOLEAN

-- All signals Standard C knows about are ignorable...
value: INTEGER

-- the signal
invariant

accessing_real_singleton: signal_switch_is_real_singleton;
accessing_real_singleton: security_is_real_singleton;
valid_signal_value: value >= 1;

end of STDC_SIGNAL



93 STDC_SIGNAL_HANDLER

B.10 STDC_SIGNAL_HANDLER

deferred class interface STDC_SIGNAL_HANDLER
invariant

accessing_real_singleton: signal_switch_is_real_singleton;
end of deferred STDC_SIGNAL_HANDLER



Short (flat) listing of Standard C classes 94

B.11 STDC_SYSTEM

class interface STDC_SYSTEM
feature(s) from STDC_SYSTEM

-- run-time determined queries
is_shell_available: BOOLEAN

-- Return True if command interpreter is available
feature(s) from STDC_SYSTEM

-- compile time determined queries
clocks_per_second: INTEGER

-- number per second of the value returned by theclock function
feature(s) from STDC_SYSTEM

-- endianess
is_big_endian: BOOLEAN

-- True if this is a big endian architecture
is_little_endian: BOOLEAN

-- True if this is a little endian architecture
invariant

accessing_real_singleton: security_is_real_singleton;
end of STDC_SYSTEM



95 STDC_TIME

B.12 STDC_TIME

class interface STDC_TIME
creation

make_date(a_year, a_month, a_day: INTEGER)
-- create a time according to this day, time 00:00:00
-- date is assumed to be local date

make_date_time(a_year, a_month, a_day, a_hour, a_minute, a_second: INTEGER)
-- date is assumed to be local date
-- we assume daylight saving time setting in effect is
-- available from system

make_from_now
-- Make value equal to current unix time.
-- Afterwards call to_local or to_utc to turn individual
-- fields in local time or in utc time.

make_time(a_hour, a_minute, a_second: INTEGER)
-- We assume daylight saving time setting in effect is
-- available from system.
-- Day will be January 1, 1970

make_from_unix_time(a_value: INTEGER)
-- a_value is a time_t value.
-- Afterwards call to_local or to_utc to turn individual
-- fields in local time or in utc time.

feature(s) from STDC_TIME
-- Initialization
make_date(a_year, a_month, a_day: INTEGER)

-- create a time according to this day, time 00:00:00
-- date is assumed to be local date

make_date_time(a_year, a_month, a_day, a_hour, a_minute, a_second: INTEGER)
-- date is assumed to be local date
-- we assume daylight saving time setting in effect is
-- available from system

make_from_now
-- Make value equal to current unix time.
-- Afterwards call to_local or to_utc to turn individual
-- fields in local time or in utc time.

make_time(a_hour, a_minute, a_second: INTEGER)
-- We assume daylight saving time setting in effect is
-- available from system.
-- Day will be January 1, 1970

make_from_unix_time(a_value: INTEGER)
-- a_value is a time_t value.
-- Afterwards call to_local or to_utc to turn individual
-- fields in local time or in utc time.

feature(s) from STDC_TIME
-- make individual time fields valid
to_local



Short (flat) listing of Standard C classes 96

-- switch time fields to local time
to_utc

-- switch time fields to utc time
feature(s) from STDC_TIME

-- manually set individual time fields
set_date(a_year, a_month, a_day: INTEGER)

-- set date part, time remains unchanged
set_date_time(a_year, a_month, a_day, a_hour, a_minute, a_second: INTEGER)

-- we assume daylight saving time setting in effect (or not)
-- has been set

set_dst_to_current
-- Let system figure out if daylight saving time is in effect.

set_dst_to_none
-- Daylight saving time is not in effect.

set_dst_in_effect
-- Daylight saving time is in effect.

set_time(a_hour, a_minute, a_second: INTEGER)
-- set time part, date remains unchanged

feature(s) from STDC_TIME
-- individual time fields, need call toto_local or to_utc
year: INTEGER
month: INTEGER
day: INTEGER

-- Day of the month
weekday: INTEGER

-- Days since Sunday
day_of_year: INTEGER

-- Days since January 1st
hour: INTEGER
minute: INTEGER
second: INTEGER
is_daylight_savings_in_effect: BOOLEAN

-- Return True if we know for sure daylight savings is effective
is_daylight_savings_unknown: BOOLEAN

-- Return True if we do not know if daylight savings is effective
feature(s) from STDC_TIME

-- time as string
short_weekday_name: STRING

-- Abbreviated weekday name
weekday_name: STRING

-- Full weekday name
short_month_name: STRING

-- Abbreviated month name
month_name: STRING

-- Full month name
format (format_str: STRING): STRING

-- Return formatted date time according toformat_str. See



97 STDC_TIME

-- man strftime for details.
default_format: STRING

-- Returns a string of the form "Mon Apr 17 21:49:20 2000"
local_date_string: STRING

-- Return date part in format local to current country
local_time_string: STRING

-- Return time part in format local to current country
feature(s) from STDC_TIME

-- date calculations
is_equal (other: like Current): BOOLEAN

-- Is other attached to an object considered equal to
-- current object ?

infix "-" (other: like Current): like Current
-- Creates a new time which is the difference between
-- Current and Other

infix "<" (other: like Current): BOOLEAN
-- Is current object less thanother?

feature(s) from STDC_TIME
-- state
hash_code: INTEGER

-- The hash-code value ofCurrent.
value: INTEGER

-- time in seconds from January 1, 1970
-- perhaps since 1980 for Windows systems

feature(s) from STDC_TIME
-- non POSIX, but Gates specific stuff
minimum_year: INTEGER

-- returns the minimum year for the current platform
-- for POSIX is 1970, for Windows is 1980

invariant
accessing_real_singleton: security_is_real_singleton;
valid_tm_struct: tm /= Void;

end of STDC_TIME



In this chapter:

C
Short listing of
abstract classes

An abstract class is somewhat above the Standard C classes, and between the features you get when
you use aPOSIX or Windows class. It is mainly aimed at users who want to write software usable
on Unix and Windows, and who do not want to use aPOSIXemulator.

You never use an abstract class directly, always use the corresponding effective EPX_XXXX, for
which there is a variant in thesrc/posix or src/windows directory.

C.1 ABSTRACT_CURRENT_PROCESS

deferred class interface ABSTRACT_CURRENT_PROCESS
feature(s) from STDC_SECURITY_ACCESSOR

-- The singleton, available to any because its used in preconditions
security: STDC_SECURITY

-- Singleton entry point for security.
feature(s) from STDC_BASE

-- errno
errno: STDC_ERRNO

feature(s) from STDC_CURRENT_PROCESS
-- my stdandard input/output/error
stdin: STDC_TEXT_FILE
stdout: STDC_TEXT_FILE
stderr: STDC_TEXT_FILE

feature(s) from ABSTRACT_PROCESS
-- Process properties
pid: INTEGER

-- The process identifier.
is_pid_valid: BOOLEAN

-- current process id is always valid
feature(s) from ABSTRACT_PROCESS

-- Signal this process
terminate

-- Attempt to gracefully terminate this process.
require

valid_pid: is_pid_valid
feature(s) from ABSTRACT_CURRENT_PROCESS

-- every process also has standard file descriptors which might not be compatible with stdin/stdout/stderr (Windows)
fd_stdin: ABSTRACT_FILE_DESCRIPTOR
fd_stdout: ABSTRACT_FILE_DESCRIPTOR



99 ABSTRACT_CURRENT_PROCESS

fd_stderr: ABSTRACT_FILE_DESCRIPTOR
invariant

accessing_real_singleton: security_is_real_singleton;
end of deferred ABSTRACT_CURRENT_PROCESS



Short listing of abstract classes 100

C.2 ABSTRACT_EXEC_PROCESS

deferred class interface ABSTRACT_EXEC_PROCESS
feature(s) from ABSTRACT_EXEC_PROCESS

-- Initialization
make (a_program: STRING; a_arguments: ARRAY[STRING])
make_capture_input(a_program: STRING; a_arguments: ARRAY[STRING])
make_capture_output(a_program: STRING; a_arguments: ARRAY[STRING])
make_capture_io(a_program: STRING; a_arguments: ARRAY[STRING])

-- Why not use threedirectional i/o, because youre getting
-- yourself in great, great trouble anyway.
-- A bit of advice: call stdin.close before starting to call
-- stdout.read_string and such...

make_capture_all(a_program: STRING; a_arguments: ARRAY[STRING])
-- Threedirectional i/o is a great way to get yourself in trouble.

feature(s) from ABSTRACT_EXEC_PROCESS
-- (re)set arguments
set_arguments(a_arguments: ARRAY[STRING])

feature(s) from ABSTRACT_EXEC_PROCESS
-- i/o capturing
capture_input: BOOLEAN

-- is input captured on execute?
capture_output: BOOLEAN

-- is output captured on execute?
capture_error: BOOLEAN

-- is error captured on execute?
set_capture_input(on: BOOLEAN)
set_capture_output(on: BOOLEAN)
set_capture_error(on: BOOLEAN)
fd_stdin: ABSTRACT_FILE_DESCRIPTOR
fd_stdout: ABSTRACT_FILE_DESCRIPTOR
fd_stderr: ABSTRACT_FILE_DESCRIPTOR

feature(s) from ABSTRACT_EXEC_PROCESS
-- Execute
execute

-- Executesprogram_name. After execution, at some point in
-- time, you have towait or wait_for for this process to
-- terminate.
require

not_already_started: is_terminated
feature(s) from ABSTRACT_EXEC_PROCESS

-- Actions that parent may execute
wait_for (suspend: BOOLEAN)

-- Wait for child process to terminate ifsuspend.
require

pid_refers_to_child: is_pid_valid;
not_terminated: not is_terminated



101 ABSTRACT_EXEC_PROCESS

ensure
stdin_closed: is_terminatedimplies fd_stdin = Void or else fd_stdin.is_closed;
stdout_closed: is_terminatedimplies fd_stdout= Void or else fd_stdout.is_closed;
stderr_closed: is_terminatedimplies fd_stderr = Void or else fd_stderr.is_closed;
terminated: suspendimplies is_terminated

feature(s) from ABSTRACT_EXEC_PROCESS
-- Accessible state
program_name: STDC_PATH

-- program to execute
arguments: ARRAY[STRING]

-- arguments to pass to program
invariant

accessing_real_singleton: security_is_real_singleton;
program_name_not_empty: program_name/= Void and then not program_name.is_empty;
arguments_not_void: arguments/= Void;

end of deferred ABSTRACT_EXEC_PROCESS



Short listing of abstract classes 102

C.3 ABSTRACT_FILE_DESCRIPTOR

deferred class interface ABSTRACT_FILE_DESCRIPTOR
feature(s) from STDC_SECURITY_ACCESSOR

-- The singleton, available to any because its used in preconditions
security: STDC_SECURITY

-- Singleton entry point for security.
feature(s) from STDC_BASE

-- errno
errno: STDC_ERRNO

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Creation
open (a_path: STRING; a_flags: INTEGER)

-- open given file with access given byflags
open_read(a_path: STRING)

-- open given file with read-only access
open_write(a_path: STRING)
open_read_write(a_path: STRING)
open_truncate(a_path: STRING)
create_read_write(a_path: STRING)

-- Always create a file, existing or not.
-- Give read/write permissions to user only.

create_write(a_path: STRING)
-- Always create a file, existing or not.
-- Give read/write permissions to user only.

create_with_mode(a_path: STRING; flags, mode: INTEGER)
-- create a file according toflags and with modeaccess
-- permissions. Make sure you have th O_CREAT flag in flags
-- if you really want to create something!

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Special creation
attach_to_fd(a_fd: INTEGER)

-- Create file descriptor with valuea_fd. File descriptor
-- does not become owner, so it will not closea_fd.

make_as_duplicate(another: ABSTRACT_FILE_DESCRIPTOR)
-- On creation, create a duplicate from another file descriptor
-- As normal call, closes its own descriptor first (if open) and
-- duplicates next.

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Close
close

-- We always describe an existing object, however user
-- probably wants to have control about closing a file.

detach
-- Forget the current file descriptor.

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Change ownership of the descriptor. Can help to influence subtile garbage collector problems



103 ABSTRACT_FILE_DESCRIPTOR

make_owner
-- this file descriptor will (start to) own its descriptor

unown
-- When a stream is opened on a file descriptor the file
-- descriptor itself should not close itself, the stream
-- will close it.

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Stream or file behaviour
is_streaming: BOOLEAN

-- Is data from this file descriptor coming through a network
-- stream?

set_streaming(enable: BOOLEAN)
-- Influence behaviour of certain functions if they should be
-- optimized for data coming from disk or data coming from
-- the network. In particularis_streamingimplies that a
-- client application is prepared to handlereads that
-- return less than the requested number of bytes, but dont
-- assume that means end-of-file.

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Raw read and write
last_blocked: BOOLEAN

-- True if last read or write call would be blocked
last_read: INTEGER

-- How many bytes were read by last call toread
-- -1 implies last_blocked

last_written: INTEGER
-- How many bytes were written by last call to write
-- -1 implies last_blocked

read_loop_disabled: BOOLEAN
-- For data coming from the network, a read does not always
-- return the requested number of bytes. In such a case,
-- reading again probably will return more bytes as they have
-- arrived in the network buffers, or perhaps by reading you
-- have freed the network buffers for more data.
-- However, certain file descriptors block when reading
-- again, because they dont return EOF when there is no more
-- data. A typical example is a character special file.
-- And sometimes the application can handle streaming reads
-- just fine and doesnt care if not all requested bytes are
-- returned.
-- This variable influences ifread will attempt to read
-- more bytes in its loop, or not.

read (buf: POINTER; offset, nbytes: INTEGER)
-- Read data intobuf at offset for nbytesbytes.
-- Number of bytes actually read are available in last_read.
-- Dont mix this routine with read_string or read_character!

write (buf: POINTER; offset, nbytes: INTEGER)



Short listing of abstract classes 104

-- write given data frombuf at offset, for nbytesbytes.
feature(s) from ABSTRACT_FILE_DESCRIPTOR

-- Safer read/write
read_buffer(buf: STDC_BUFFER; offset, nbytes: INTEGER)

-- more safe version ofread in case you have a
-- STDC_BUFFER object

write_buffer (buf: STDC_BUFFER; offset, bytes: INTEGER)
-- more safe version ofwrite in case you have a
-- STDC_BUFFER object

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Read routines that can be mixed withread calls
last_line: STRING

-- last line read byread_line (includes %N), see STRING_HELPER.chop
read_line (max_length: INTEGER)

-- Raw, and slow, read of characters up to end of line. Can
-- be safely mixed withread, unlike read_string. Only
-- max_lengthcharacters are returned.

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Eiffel like output
put (a: ANY)

-- write any Eiffel object as string
write_character(c: CHARACTER)
write_string (s: STRING)
puts (s: STRING)
put_string (s: STRING)

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Buffered input, line reading instead of block reading, dont mix with rawread calls!
last_character: CHARACTER
last_string: STRING

-- last read string (includes %N), see STRING_HELPER.chop
read_character

-- Sets last_character.
read_string (a_size: INTEGER)

-- Implements line reading on top ofread. Sets
-- last_string which includes the new line character if
-- any. Reads until eof or new line encountered, returns max
-- a_sizecharacters.

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- file position
seek(offset: INTEGER)

-- set file position to given absoluteoffset
seek_from_current(offset: INTEGER)

-- set file position relative to current position
seek_from_end(offset: INTEGER)

-- set file position relative to end of file
feature(s) from ABSTRACT_FILE_DESCRIPTOR

-- queries



105 ABSTRACT_FILE_DESCRIPTOR

eof: BOOLEAN
-- True if end-of-file reached.
-- Currently Im unsure if detection is reliable

isatty: BOOLEAN
-- return true if handle associated with character device

is_attached_to_terminal: BOOLEAN
-- return true if handle associated with character device

is_blocking_io: BOOLEAN
-- True if blocking i/o enabled (default)

is_closed: BOOLEAN
-- Is file descriptor is closed?

is_open: BOOLEAN
-- Does value describes a valid file descriptor?

is_owner: BOOLEAN
-- Does this file descriptor own its descriptor? Only when
-- it owns the descriptor it will close it whenclose or
-- disposeis called

status: ABSTRACT_STATUS
-- The status for this file descriptor. Cached value,
-- refreshed only when file reopened.

value: INTEGER
-- return the value of the file descriptor

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Access
fd: INTEGER

-- The actual file descriptor.
invariant

accessing_real_singleton: security_is_real_singleton;
valid_internal_file_descriptor: fd >= -1;
valid_open: is_openimplies fd >= 0;
valid_close: not is_openimplies fd = -1;
valid_status: is_closedimplies my_status= Void;
open_and_close_in_balance: is_open= not is_closed;
owner_implies_open: is_owner implies is_open;

end of deferred ABSTRACT_FILE_DESCRIPTOR



Short listing of abstract classes 106

C.4 ABSTRACT_FILE_SYSTEM

deferred class interface ABSTRACT_FILE_SYSTEM
feature(s) from STDC_SECURITY_ACCESSOR

-- The singleton, available to any because its used in preconditions
security: STDC_SECURITY

-- Singleton entry point for security.
feature(s) from STDC_BASE

-- errno
errno: STDC_ERRNO

feature(s) from STDC_FILE_SYSTEM
-- path names
expand_path(a_path: STRING): STDC_PATH

-- returns a new path
feature(s) from STDC_FILE_SYSTEM

-- rename files/directories, remove files/directories
remove_file(a_path: STRING)

-- Removes a file from a directory.
-- For Standard C, its implementation defined what
-- remove_file does if file is opened by some process
-- (remove_filefails on Windows for example).
-- doesnt remove a directory.

rename_to(current_path, new_path: STRING)
-- Rename a file or a directory.
-- new_pathshould not be an existing path.

feature(s) from STDC_FILE_SYSTEM
-- accessibility of files
is_modifiable(a_path: STRING): BOOLEAN

-- tests if file is readable and writable by this program
-- uses real user ID and real group ID instead of effective ones

is_readable(a_path: STRING): BOOLEAN
-- tests if file is readable by this program
-- uses real user ID and real group ID instead of effective ones

feature(s) from ABSTRACT_FILE_SYSTEM
-- directory access
change_directory(a_directory: STRING)

-- Changes the current working directory
chdir (a_directory: STRING)

-- Changes the current working directory
current_directory: STRING

-- The current directory
getcwd: STRING

-- The current directory
pwd: STRING

-- The current directory
make_directory(a_directory: STRING)

-- Makes a directory, only accessible by owner



107 ABSTRACT_FILE_SYSTEM

mkdir (a_directory: STRING)
-- Makes a directory, only accessible by owner

remove_directory(a_directory: STRING)
-- Removes an empty directory, see alsoforce_remove_directory

rmdir (a_directory: STRING)
-- Removes an empty directory, see alsoforce_remove_directory

force_remove_directory(a_directory: STRING)
-- Removes a directory, even when not empty.
-- I suggest you do not have hard or symbolic links ina_directory...

feature(s) from ABSTRACT_FILE_SYSTEM
-- file statistics
status (a_path: STRING): ABSTRACT_STATUS_PATH

-- Gets information about a file
require

valid_path: a_path /= Void and then not a_path.is_empty;
existing_file: is_existing(a_path)

ensure
status_returned: Result /= Void

feature(s) from ABSTRACT_FILE_SYSTEM
-- directory browsing
browse_directory(a_path: STRING): ABSTRACT_DIRECTORY

-- Gets information about a directory
require

valid_path: a_path /= Void and then not a_path.is_empty;
path_is_directory: security.error_handling.exceptions_enabledand then status(a_path).is_directory

ensure
directory_returned: Result /= Void

feature(s) from ABSTRACT_FILE_SYSTEM
-- accessibility of files
last_access_result: INTEGER

-- value of last access test
is_accessible(a_path: STRING; a_mode: INTEGER): BOOLEAN

-- Tests for file accessibility
access(a_path: STRING; a_mode: INTEGER): BOOLEAN

-- Tests for file accessibility
is_directory (a_path: STRING): BOOLEAN

-- return True if a_path exists and if it is a directory
is_existing(a_path: STRING): BOOLEAN

-- tests if file does exist, not if it is readable or writable by
-- this program!
-- uses real user ID and real group ID instead of effective ones

is_empty(a_path: STRING): BOOLEAN
-- True if file exists and has a size equal to zero.

is_executable(a_path: STRING): BOOLEAN
-- tests if file is executable by this program

is_writable (a_path: STRING): BOOLEAN
-- tests if file is writable by this program



Short listing of abstract classes 108

-- uses real user ID and real group ID instead of effective ones
feature(s) from ABSTRACT_FILE_SYSTEM

-- various
is_case_sensitive: BOOLEAN

-- is file system case sensitive or not?
-- This query is dedicated to jwz

path_separator: CHARACTER
-- What is the path separator?

feature(s) from ABSTRACT_FILE_SYSTEM
-- file system properties
temporary_directory: STRING

-- returns temporary directory.
ensure

directory_returned: Result /= Void;
directory_exists: is_directory(Result);
directory_is_writable: is_modifiable(Result);
last_char_not_separator: Result.item(Result.count) /= path_separator

invariant
accessing_real_singleton: security_is_real_singleton;

end of deferred ABSTRACT_FILE_SYSTEM



109 ABSTRACT_PIPE

C.5 ABSTRACT_PIPE

deferred class interface ABSTRACT_PIPE
feature(s) from ABSTRACT_PIPE

-- creation
make

feature(s) from ABSTRACT_PIPE
-- pipe operations
close

feature(s) from ABSTRACT_PIPE
-- the pipe
fdout: ABSTRACT_FILE_DESCRIPTOR
fdin: ABSTRACT_FILE_DESCRIPTOR

invariant
accessing_real_singleton: security_is_real_singleton;
valid_pipe: fdin /= Void and fdout /= Void;

end of deferred ABSTRACT_PIPE



Short listing of abstract classes 110

C.6 ABSTRACT_STATUS

deferred class interface ABSTRACT_STATUS
feature(s) from ABSTRACT_STATUS

refresh
-- refresh the cached information

feature(s) from ABSTRACT_STATUS
-- stat members
atime: INTEGER

-- Unix time of last access.
access_time: INTEGER

-- Unix time of last access.
device_number: INTEGER

-- ID of device containing the file.
-- Windows: Drive number of the disk containing the file.

is_character_special: BOOLEAN
-- Is this file a character-special file?

is_directory: BOOLEAN
is_fifo: BOOLEAN
is_regular_file: BOOLEAN
mtime: INTEGER

-- Unix time of last data modification.
modification_time: INTEGER

-- Unix time of last data modification.
nlink: INTEGER
number_of_hard_links: INTEGER
size: INTEGER

-- Size of file in bytes.
status_change_time: INTEGER

-- Unix time of last status change.
-- For example changing the permission bits will set this time.

feature(s) from ABSTRACT_STATUS
-- Direct access to the individual stat fields, not recommended
unix_mode: INTEGER

invariant
accessing_real_singleton: security_is_real_singleton;
valid_stat: stat /= Void and then stat.capacity>= abstract_stat_size;

end of deferred ABSTRACT_STATUS



In this chapter:

D
Short (flat) list-

ing of POSIX

classes

D.1 POSIX_ASYNC_IO_REQUEST

class interface POSIX_ASYNC_IO_REQUEST
creation

make (a_fd: POSIX_FILE_DESCRIPTOR)
feature(s) from POSIX_ASYNC_IO_REQUEST

-- creation
make (a_fd: POSIX_FILE_DESCRIPTOR)

feature(s) from POSIX_ASYNC_IO_REQUEST
-- request properties
raw_pointer: POINTER

-- Location for read or written data, usuallybuffer is a
-- better idea.

count: INTEGER
-- number of bytes to read/write

offset: INTEGER
-- file offset

feature(s) from POSIX_ASYNC_IO_REQUEST
-- set request properties
set_buffer(a_buffer: STDC_BUFFER)

-- set memory location to read/write from.
set_count(a_count: INTEGER)

-- set number of bytes to read/write
set_offset(a_offset: INTEGER)
set_raw_pointer(a_pointer: POINTER)

-- set memory location to read/write from. Make sure you have
-- called set_countfirst!

feature(s) from POSIX_ASYNC_IO_REQUEST
-- basic read/write requests
read

-- execute async read request
write

-- execute async write request
feature(s) from POSIX_ASYNC_IO_REQUEST

-- Eiffel friendly reads and writes



Short (flat) listing of POSIX classes 112

last_string: STRING
-- attempt to return buffer as an Eiffel string
-- buffer should have a terminating byte!

read_string
write_string (text: STRING)

feature(s) from POSIX_ASYNC_IO_REQUEST
-- other operations
cancel_failed: BOOLEAN

-- set by cancel, True if cancel request failed, probably
-- because operation was already performed

cancel
-- cancel request

synchronize
-- force all i/o operations queued for the file descriptor
-- associated with this request to the synchronous state.
-- Function returns when the request has been initiated or
-- queued to the file or device (even when the data cannot be
-- synchronized immediately)

synchronize_data
-- force all i/o operations queued for the file descriptor
-- associated with this request to the synchronous state.
-- Function returns when the request has been initiated or
-- queued to the file or device (even when the data cannot be
-- synchronized immediately)

wait_for
-- suspend process, until request completed

feature(s) from POSIX_ASYNC_IO_REQUEST
-- state
buffer: STDC_BUFFER

-- buffer where data that is being read/write comes from,
-- unless set_pointer has been called

fd: POSIX_FILE_DESCRIPTOR
is_pending: BOOLEAN

-- True if io request is still pending
return_status: INTEGER

-- return status of asynchronous i/o operation, equal to what
-- the synchronous read, write of fsync would have returned

invariant
accessing_real_singleton: security_is_real_singleton;
valid_aiocb: aiocb /= Void;
synced_buffer_and_raw_pointer: buffer /= Void implies buffer.ptr = raw_pointer;

end of POSIX_ASYNC_IO_REQUEST



113 POSIX_BASE

D.2 POSIX_BASE

class interface POSIX_BASE
invariant

accessing_real_singleton: security_is_real_singleton;
end of POSIX_BASE



Short (flat) listing of POSIX classes 114

D.3 POSIX_CHILD_PROCESS

deferred class interface POSIX_CHILD_PROCESS
feature(s) from POSIX_CHILD_PROCESS

-- Childs pid
pid: INTEGER

-- The process identifier.
is_pid_valid: BOOLEAN

-- return True if this object refers to a child process, so
-- it has an id

feature(s) from POSIX_CHILD_PROCESS
-- Actions that parent may execute
wait_for (suspend: BOOLEAN)

-- wait for this process to terminate. Ifsuspendthen we
-- wait until the information about this process is available,
-- else we return immediately.
-- If suspend is False, check the running property to see
-- if this child is really terminated.

invariant
accessing_real_singleton: security_is_real_singleton;

end of deferred POSIX_CHILD_PROCESS



115 POSIX_CONSTANTS

D.4 POSIX_CONSTANTS

class interface POSIX_CONSTANTS
feature(s) from STDC_CONSTANTS

-- error codes
edom: INTEGER

-- Math argument out of domain of function
erange: INTEGER

-- Math result not representable
feature(s) from STDC_CONSTANTS

-- standard streams
stream_stdin: POINTER
stream_stdout: POINTER
stream_stderr: POINTER

feature(s) from STDC_CONSTANTS
-- characters
const_eof: INTEGER

-- signals EOF
feature(s) from STDC_CONSTANTS

-- buffering
iofbf : INTEGER

-- full buffering
iolbf : INTEGER

-- line buffering
ionbf: INTEGER

-- no buffering
feature(s) from STDC_CONSTANTS

-- file positioning
seek_set: INTEGER
seek_cur: INTEGER
seek_end: INTEGER

feature(s) from STDC_CONSTANTS
-- Signal related constants
sig_dfl: POINTER
sig_err: POINTER
sig_ign: POINTER

feature(s) from STDC_CONSTANTS
-- Signals
sigabrt: INTEGER
sigfpe: INTEGER

-- erroneous arithmetic operation, such as zero divide or an
-- operation resulting in overflow

sigill: INTEGER
-- illegal instruction

sigint: INTEGER
-- receipt of an interactive attention signal

sigsegv: INTEGER



Short (flat) listing of POSIX classes 116

-- invalid access to storage
sigterm: INTEGER

feature(s) from STDC_CONSTANTS
-- random numbers
rand_max: INTEGER

-- maximum value returned by therandom function
feature(s) from STDC_CONSTANTS

-- category constants
lc_ctype: INTEGER
lc_numeric: INTEGER
lc_time: INTEGER
lc_collate: INTEGER
lc_monetary: INTEGER
lc_all: INTEGER

feature(s) from STDC_CONSTANTS
-- various
clocks_per_sec: INTEGER

feature(s) from STDC_CONSTANTS
-- exit codes
exit_failure: INTEGER

-- exit status when something has gone wrong
exit_success: INTEGER

-- exit status upon success
feature(s) from POSIX_CONSTANTS

-- error codes
eagain: INTEGER
ebadf: INTEGER
eexist: INTEGER
einprogress: INTEGER
eintr: INTEGER
enoent: INTEGER

-- A file or directory does not exist
enospc: INTEGER

-- There is no free space remaining on the device
enosys: INTEGER

feature(s) from POSIX_CONSTANTS
-- standard file numbers
stderr_fileno: INTEGER
stdin_fileno: INTEGER
stdout_fileno: INTEGER

feature(s) from POSIX_CONSTANTS
-- posix open symbolic constants
o_append: INTEGER

-- Set the file offset to the end-of-file prior to each write
o_creat: INTEGER

-- If the file does not exist, allow it to be created. This
-- flag indicates that the mode argument is present in the



117 POSIX_CONSTANTS

-- call to open.
o_dsync: INTEGER

-- Write according to synchronized i/o data integrity completion
o_excl: INTEGER

-- Open fails if the file already exists
o_exclusive: INTEGER

-- Open fails if the file already exists
o_noctty: INTEGER

-- prevents terminal from becoming the controlling terminal
-- for this process

o_nonblock: INTEGER
-- Do not wait for device or file to be ready or available

o_rdonly: INTEGER
-- Open for reading only

o_rdwr: INTEGER
-- Open fo reading and writing

o_rsync: INTEGER
-- Synchronized read i/o operations

o_sync: INTEGER
-- Write according to synchronized i/o file integrity completion

o_trunc: INTEGER
-- Use only on ordinary files opened for writing. It causes
-- the file to be truncated to zero length.

o_wronly: INTEGER
-- Open for writing only

feature(s) from POSIX_CONSTANTS
-- posix permission symbolic constants
s_irusr: INTEGER
s_iread: INTEGER
s_iwusr: INTEGER
s_iwrite: INTEGER
s_ixusr: INTEGER
s_iexec: INTEGER
s_irgrp: INTEGER
s_iwgrp: INTEGER
s_ixgrp: INTEGER
s_iroth: INTEGER
s_iwoth: INTEGER
s_ixoth: INTEGER
s_isuid: INTEGER
s_isgid: INTEGER

feature(s) from POSIX_CONSTANTS
-- Posix accessibility constants
f_ok: INTEGER
r_ok: INTEGER
w_ok: INTEGER
x_ok: INTEGER



Short (flat) listing of POSIX classes 118

feature(s) from POSIX_CONSTANTS
-- Posix signal constants
sa_nocldstop: INTEGER
sighup: INTEGER

-- hangup detected on controlling terminal or death of
-- controlling process

signal_hangup: INTEGER
-- hangup detected on controlling terminal or death of
-- controlling process

sigalrm: INTEGER
-- Timeout signal, such as initiated by the alarm() function
-- or see POSIX_TIMED_COMMAND

signal_alarm: INTEGER
-- Timeout signal, such as initiated by the alarm() function
-- or see POSIX_TIMED_COMMAND

sigchld: INTEGER
-- Child process terminated or stopped

signal_child: INTEGER
-- Child process terminated or stopped

sigkill: INTEGER
-- Termination signal (cannot be caught or ignored)

signal_kill: INTEGER
-- Termination signal (cannot be caught or ignored)

sigpipe: INTEGER
-- Write on a pipe with no readers

signal_pipe: INTEGER
-- Write on a pipe with no readers

sigquit: INTEGER
-- Interactive termination signal

signal_quit: INTEGER
-- Interactive termination signal

sigcont: INTEGER
-- Continue if stopped

signal_continue: INTEGER
-- Continue if stopped

sigstop: INTEGER
-- Stop signal, cannot be caught or ignored

signal_stop: INTEGER
-- Stop signal, cannot be caught or ignored

sigtstp: INTEGER
-- Interactive stop signal

signal_interactive_stop: INTEGER
-- Interactive stop signal

sigttin: INTEGER
-- Read from control terminal attempted by a member of a
-- background process group

signal_terminal_in: INTEGER



119 POSIX_CONSTANTS

-- Read from control terminal attempted by a member of a
-- background process group

sigttou: INTEGER
-- Write to control terminal attempted by a member of a
-- background process group

signal_terminal_out: INTEGER
-- Write to control terminal attempted by a member of a
-- background process group

feature(s) from POSIX_CONSTANTS
-- sigprocmask how values
sig_block: INTEGER
sig_unblock: INTEGER
sig_setmask: INTEGER

feature(s) from POSIX_CONSTANTS
-- Posix pathconf constants
pc_name_max: INTEGER

-- The maximum length of a filename for this directory
feature(s) from POSIX_CONSTANTS

-- terminal i/o local mode flags
isig: INTEGER
icanon: INTEGER
echo: INTEGER

-- If set, input characters are echoed back to the terminal
echoe: INTEGER
echok: INTEGER
echonl: INTEGER
noflsh: INTEGER
tostop: INTEGER
iexten: INTEGER

feature(s) from POSIX_CONSTANTS
-- set terminal settings options
tcsanow: INTEGER
tcsadrain: INTEGER
tcsaflush: INTEGER

feature(s) from POSIX_CONSTANTS
-- Semaphore constants
sem_value_max: INTEGER

-- Valid maximum initial value for a semaphore.
feature(s) from POSIX_CONSTANTS

-- terminal baud rates
b0: INTEGER
b50: INTEGER
b75: INTEGER
b110: INTEGER
b134: INTEGER
b150: INTEGER
b200: INTEGER



Short (flat) listing of POSIX classes 120

b300: INTEGER
b600: INTEGER
b1200: INTEGER
b1800: INTEGER
b2400: INTEGER
b4800: INTEGER
b9600: INTEGER
b19200: INTEGER
b38400: INTEGER
b57600: INTEGER
b115200: INTEGER
b230400: INTEGER

feature(s) from POSIX_CONSTANTS
-- terminal i/o control mode constants
csize: INTEGER
cs5: INTEGER
cs6: INTEGER
cs7: INTEGER
cs8: INTEGER
cstopb: INTEGER
cread: INTEGER
parenb: INTEGER
parodd: INTEGER
hupcl: INTEGER
clocal: INTEGER

feature(s) from POSIX_CONSTANTS
-- terminal i/o input control flags
ignbrk: INTEGER
brkint: INTEGER
ignpar: INTEGER
parmrk: INTEGER
inpck: INTEGER
istrip: INTEGER
inlcr: INTEGER
igncr: INTEGER
icrnl: INTEGER
ixon: INTEGER
ixoff : INTEGER

feature(s) from POSIX_CONSTANTS
-- category constants
lc_messages: INTEGER

feature(s) from POSIX_CONSTANTS
-- pathname variable values
max_input: INTEGER

-- Minimum number of bytes for which space will be available
-- in a terminal input queue; therefore, the maximum number
-- of bytes a portable application may required to be typed



121 POSIX_CONSTANTS

-- as input before eading them
name_max: INTEGER

-- Maximum number of bytes in a file name
path_max: INTEGER

-- Maximum number of bytes in a pathname
pipe_buf: INTEGER

-- Maximum number of bytes that can be written atomically
-- when writing to a pipe.

feature(s) from POSIX_CONSTANTS
-- invariant values
ssize_max: INTEGER

-- The maximum value that can be stored in an object of type ssize_t
end of POSIX_CONSTANTS



Short (flat) listing of POSIX classes 122

D.5 POSIX_CURRENT_PROCESS

class interface POSIX_CURRENT_PROCESS
feature(s) from STDC_CURRENT_PROCESS

-- my stdandard input/output/error
stdin: POSIX_TEXT_FILE
stdout: POSIX_TEXT_FILE
stderr: POSIX_TEXT_FILE

feature(s) from ABSTRACT_CURRENT_PROCESS
-- process properties
pid: INTEGER

-- The process identifier.
is_pid_valid: BOOLEAN

-- current process id is always valid
feature(s) from ABSTRACT_CURRENT_PROCESS

-- every process also has standard file descriptors which might not be compatible with stdin/stdout/stderr (Windows)
fd_stdin: POSIX_FILE_DESCRIPTOR
fd_stdout: POSIX_FILE_DESCRIPTOR
fd_stderr: POSIX_FILE_DESCRIPTOR

feature(s) from STDC_SECURITY_ACCESSOR
-- The singleton, available to any because its used in preconditions
security: STDC_SECURITY

-- Singleton entry point for security.
feature(s) from STDC_BASE

-- errno
errno: STDC_ERRNO

feature(s) from ABSTRACT_PROCESS
-- Signal this process
terminate

-- attempt to gracefully terminate this process
feature(s) from POSIX_PROCESS

-- signal this process
kill (a_signal_code: INTEGER)

-- Send signalsignal_codeto the process
feature(s) from POSIX_CURRENT_PROCESS

-- POSIX locale specifics
set_native_messages

-- Select native language as the language in which messages
-- are displayed

invariant
accessing_real_singleton: security_is_real_singleton;

end of POSIX_CURRENT_PROCESS



123 POSIX_DAEMON

D.6 POSIX_DAEMON

deferred class interface POSIX_DAEMON
feature(s) from POSIX_DAEMON

-- Daemon specific actions
detach

-- detach from command-line, not very useful if you want to
-- spawn multiple daemons, but you can always pass daemons to
-- the fork routine yourself.

after_fork
-- Code thanks to W. Richard Stevens.
-- If you are started from inetd, youre in big trouble
-- already and getting deeper in the mud. For inetd there will
-- be another method to call, perhapsinit_inetd or so.

invariant
accessing_real_singleton: security_is_real_singleton;

end of deferred POSIX_DAEMON



Short (flat) listing of POSIX classes 124

D.7 POSIX_DIRECTORY

class interface POSIX_DIRECTORY
creation

make (a_directory_name: STRING)
feature(s) from POSIX_DIRECTORY

max_filename_length: INTEGER
-- maximum length of a file in this directory

invariant
accessing_real_singleton: security_is_real_singleton;
dirp_remains_valid: is_openimplies dirp /= default_pointer;
directory_name_not_empty: directory_name/= Void and then not directory_name.is_empty;
my_item_not_void: my_item/= Void;
valid_is_dot: my_is_dot= my_item.is_equal(".");
valid_is_dotdot: my_is_dotdot= my_item.is_equal("..");
my_status_tracks_item: my_status/= Void implies my_status.path.is_equal(full_name);

end of POSIX_DIRECTORY



125 POSIX_EXEC_PROCESS

D.8 POSIX_EXEC_PROCESS

class interface POSIX_EXEC_PROCESS
creation

make (a_program: STRING; a_arguments: ARRAY[STRING])
make_capture_input(a_program: STRING; a_arguments: ARRAY[STRING])
make_capture_output(a_program: STRING; a_arguments: ARRAY[STRING])
make_capture_io(a_program: STRING; a_arguments: ARRAY[STRING])

-- Why not use threedirectional i/o, because youre getting
-- yourself in great, great trouble anyway.
-- A bit of advice: call stdin.close before starting to call
-- stdout.read_string and such...

make_capture_all(a_program: STRING; a_arguments: ARRAY[STRING])
-- Threedirectional i/o is a great way to get yourself in trouble.

feature(s) from STDC_CHILD_PROCESS
-- termination info
is_terminated: BOOLEAN

-- Is process not running any more?
exit_code: INTEGER

-- Low-order 8 bits of call to _exit or exit for this process.
feature(s) from ABSTRACT_CHILD_PROCESS

-- Actions that parent may execute
wait_for (suspend: BOOLEAN)

-- wait for this process to terminate. Ifsuspendthen we
-- wait until the information about this process is available,
-- else we return immediately.
-- If suspend is False, check the running property to see
-- if this child is really terminated.

feature(s) from STDC_CURRENT_PROCESS
-- my stdandard input/output/error
child_stdin: POSIX_TEXT_FILE
child_stdout: POSIX_TEXT_FILE
child_stderr: POSIX_TEXT_FILE

feature(s) from ABSTRACT_CURRENT_PROCESS
-- process properties
pid: INTEGER

-- either the current process identifier or the childs
is_pid_valid: BOOLEAN

-- current process id is always valid
feature(s) from ABSTRACT_CURRENT_PROCESS

-- every process also has standard file descriptors which might not be compatible with stdin/stdout/stderr (Windows)
child_fd_stin: POSIX_FILE_DESCRIPTOR
child_fd_stdout: POSIX_FILE_DESCRIPTOR
child_fd_sterr: POSIX_FILE_DESCRIPTOR

feature(s) from STDC_SECURITY_ACCESSOR
-- The singleton, available to any because its used in preconditions
security: STDC_SECURITY



Short (flat) listing of POSIX classes 126

-- Singleton entry point for security.
feature(s) from STDC_BASE

-- errno
errno: STDC_ERRNO

feature(s) from ABSTRACT_PROCESS
-- Signal this process
terminate

-- attempt to gracefully terminate this process
feature(s) from POSIX_PROCESS

-- signal this process
kill (a_signal_code: INTEGER)

-- Send signalsignal_codeto the process
feature(s) from POSIX_CURRENT_PROCESS

-- POSIX locale specifics
set_native_messages

-- Select native language as the language in which messages
-- are displayed

feature(s) from ABSTRACT_EXEC_PROCESS
-- Initialization
make (a_program: STRING; a_arguments: ARRAY[STRING])
make_capture_input(a_program: STRING; a_arguments: ARRAY[STRING])
make_capture_output(a_program: STRING; a_arguments: ARRAY[STRING])
make_capture_io(a_program: STRING; a_arguments: ARRAY[STRING])

-- Why not use threedirectional i/o, because youre getting
-- yourself in great, great trouble anyway.
-- A bit of advice: call stdin.close before starting to call
-- stdout.read_string and such...

make_capture_all(a_program: STRING; a_arguments: ARRAY[STRING])
-- Threedirectional i/o is a great way to get yourself in trouble.

feature(s) from ABSTRACT_EXEC_PROCESS
-- (re)set arguments
set_arguments(a_arguments: ARRAY[STRING])

feature(s) from ABSTRACT_EXEC_PROCESS
-- i/o capturing
capture_input: BOOLEAN

-- is input captured on execute?
capture_output: BOOLEAN

-- is output captured on execute?
capture_error: BOOLEAN

-- is error captured on execute?
set_capture_input(on: BOOLEAN)
set_capture_output(on: BOOLEAN)
set_capture_error(on: BOOLEAN)
fd_stdin: POSIX_FILE_DESCRIPTOR
fd_stdout: POSIX_FILE_DESCRIPTOR
fd_stderr: POSIX_FILE_DESCRIPTOR

feature(s) from ABSTRACT_EXEC_PROCESS



127 POSIX_EXEC_PROCESS

-- Execute
execute

-- Executesprogram_name
-- dont forget towait for this process to terminate

feature(s) from ABSTRACT_EXEC_PROCESS
-- Accessible state
program_name: STDC_PATH

-- program to execute
arguments: ARRAY[STRING]

-- arguments to pass to program
feature(s) from POSIX_FORK_ROOT

-- process properties
is_valid_child_process: BOOLEAN

-- returns True if this object seems to refer to a valid child process
-- the real child process might have stopped though

feature(s) from POSIX_FORK_ROOT
-- deferred routines
after_fork

-- chance for code to do something before the main execute
-- mainly here for POSIX_DAEMON.

feature(s) from POSIX_FORK_ROOT
-- termination info
is_terminated_normally: BOOLEAN

-- Has this process been terminated normally?
is_exited: BOOLEAN

-- Has this process been terminated normally?
is_signalled: BOOLEAN

-- Child process was terminated due to receipt of a signal
-- that was not caught.

signal_code: INTEGER
-- Signal of process terminated abnormally or was stopped.

invariant
accessing_real_singleton: security_is_real_singleton;
program_name_not_empty: program_name/= Void and then not program_name.is_empty;
arguments_not_void: arguments/= Void;

end of POSIX_EXEC_PROCESS



Short (flat) listing of POSIX classes 128

D.9 POSIX_FILE

deferred class interface POSIX_FILE
feature(s) from POSIX_FILE

-- special makes
make_from_file_descriptor(a_file_descriptor: ABSTRACT_FILE_DESCRIPTOR; a_mode: STRING)

-- Open a stream from a given file descriptor.
-- The stream will become remains leading so when the file
-- descriptor is closed, it will not close, you have to close
-- the strema to close the file descriptor.

invariant
accessing_real_singleton: security_is_real_singleton;
capacity_not_negative: capacity >= 0;
valid_capacity: is_open= capacity > 0;
open_implies_handle_assigned: is_open= stream /= unassigned_value;
owned_implies_open: is_owner implies is_open;
owned_implies_handle_assigned: is_owner implies stream /= unassigned_value;
last_string_valid: last_string /= Void;
gets_buf_valid: gets_buf/= Void;

end of deferred POSIX_FILE



129 POSIX_FILE_DESCRIPTOR

D.10 POSIX_FILE_DESCRIPTOR

class interface POSIX_FILE_DESCRIPTOR
creation

open (a_path: STRING; a_flags: INTEGER)
-- open given file with access given byflags

open_read(a_path: STRING)
-- open given file with read-only access

open_write(a_path: STRING)
open_read_write(a_path: STRING)
open_truncate(a_path: STRING)
create_read_write(a_path: STRING)

-- Always create a file, existing or not.
-- Give read/write permissions to user only.

create_write(a_path: STRING)
-- Always create a file, existing or not.
-- Give read/write permissions to user only.

create_with_mode(a_path: STRING; flags, mode: INTEGER)
-- create a file according toflags and with modeaccess
-- permissions. Make sure you have th O_CREAT flag in flags
-- if you really want to create something!

make_as_duplicate(another: ABSTRACT_FILE_DESCRIPTOR)
-- On creation, create a duplicate from another file descriptor
-- As normal call, closes its own descriptor first (if open) and
-- duplicates next.

make_from_file(file: STDC_FILE)
-- Create file descriptor from given stream
-- The stream is leading, so this file descriptor will
-- never close itself, unless it is made an owner.

attach_to_fd(a_fd: INTEGER)
-- Create file descriptor with valuea_fd. File descriptor
-- does not become owner, so it will not closea_fd.

feature(s) from STDC_SECURITY_ACCESSOR
-- The singleton, available to any because its used in preconditions
security: STDC_SECURITY

-- Singleton entry point for security.
feature(s) from STDC_BASE

-- errno
errno: STDC_ERRNO

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Creation
open (a_path: STRING; a_flags: INTEGER)

-- open given file with access given byflags
open_read(a_path: STRING)

-- open given file with read-only access
open_write(a_path: STRING)
open_read_write(a_path: STRING)



Short (flat) listing of POSIX classes 130

open_truncate(a_path: STRING)
create_read_write(a_path: STRING)

-- Always create a file, existing or not.
-- Give read/write permissions to user only.

create_write(a_path: STRING)
-- Always create a file, existing or not.
-- Give read/write permissions to user only.

create_with_mode(a_path: STRING; flags, mode: INTEGER)
-- create a file according toflags and with modeaccess
-- permissions. Make sure you have th O_CREAT flag in flags
-- if you really want to create something!

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Special creation
attach_to_fd(a_fd: INTEGER)

-- Create file descriptor with valuea_fd. File descriptor
-- does not become owner, so it will not closea_fd.

make_as_duplicate(another: ABSTRACT_FILE_DESCRIPTOR)
-- On creation, create a duplicate from another file descriptor
-- As normal call, closes its own descriptor first (if open) and
-- duplicates next.

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Close
close

-- We always describe an existing object, however user
-- probably wants to have control about closing a file.

detach
-- Forget the current file descriptor.

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Change ownership of the descriptor. Can help to influence subtile garbage collector problems
make_owner

-- this file descriptor will (start to) own its descriptor
unown

-- When a stream is opened on a file descriptor the file
-- descriptor itself should not close itself, the stream
-- will close it.

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Stream or file behaviour
is_streaming: BOOLEAN

-- Is data from this file descriptor coming through a network
-- stream?

set_streaming(enable: BOOLEAN)
-- Influence behaviour of certain functions if they should be
-- optimized for data coming from disk or data coming from
-- the network. In particularis_streamingimplies that a
-- client application is prepared to handlereads that
-- return less than the requested number of bytes, but dont
-- assume that means end-of-file.



131 POSIX_FILE_DESCRIPTOR

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Raw read and write
last_blocked: BOOLEAN

-- True if last read or write call would be blocked
last_read: INTEGER

-- How many bytes were read by last call toread
-- -1 implies last_blocked

last_written: INTEGER
-- How many bytes were written by last call to write
-- -1 implies last_blocked

read_loop_disabled: BOOLEAN
-- For data coming from the network, a read does not always
-- return the requested number of bytes. In such a case,
-- reading again probably will return more bytes as they have
-- arrived in the network buffers, or perhaps by reading you
-- have freed the network buffers for more data.
-- However, certain file descriptors block when reading
-- again, because they dont return EOF when there is no more
-- data. A typical example is a character special file.
-- And sometimes the application can handle streaming reads
-- just fine and doesnt care if not all requested bytes are
-- returned.
-- This variable influences ifread will attempt to read
-- more bytes in its loop, or not.

read (buf: POINTER; offset, nbytes: INTEGER)
-- Read data intobuf at offset for nbytesbytes.
-- Number of bytes actually read are available in last_read.
-- Dont mix this routine with read_string or read_character!

write (buf: POINTER; offset, nbytes: INTEGER)
-- write given data frombuf at offset, for nbytesbytes.

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Safer read/write
read_buffer(buf: STDC_BUFFER; offset, nbytes: INTEGER)

-- more safe version ofread in case you have a
-- STDC_BUFFER object

write_buffer (buf: STDC_BUFFER; offset, bytes: INTEGER)
-- more safe version ofwrite in case you have a
-- STDC_BUFFER object

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Read routines that can be mixed withread calls
last_line: STRING

-- last line read byread_line (includes %N), see STRING_HELPER.chop
read_line (max_length: INTEGER)

-- Raw, and slow, read of characters up to end of line. Can
-- be safely mixed withread, unlike read_string. Only
-- max_lengthcharacters are returned.

feature(s) from ABSTRACT_FILE_DESCRIPTOR



Short (flat) listing of POSIX classes 132

-- Eiffel like output
put (a: ANY)

-- write any Eiffel object as string
write_character(c: CHARACTER)
write_string (s: STRING)
puts (s: STRING)
put_string (s: STRING)

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Buffered input, line reading instead of block reading, dont mix with rawread calls!
last_character: CHARACTER
last_string: STRING

-- last read string (includes %N), see STRING_HELPER.chop
read_character

-- Sets last_character.
read_string (a_size: INTEGER)

-- Implements line reading on top ofread. Sets
-- last_string which includes the new line character if
-- any. Reads until eof or new line encountered, returns max
-- a_sizecharacters.

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- file position
seek(offset: INTEGER)

-- set file position to given absoluteoffset
seek_from_current(offset: INTEGER)

-- set file position relative to current position
seek_from_end(offset: INTEGER)

-- set file position relative to end of file
feature(s) from ABSTRACT_FILE_DESCRIPTOR

-- queries
eof: BOOLEAN

-- True if end-of-file reached.
-- Currently Im unsure if detection is reliable

isatty: BOOLEAN
-- return true if handle associated with character device

is_attached_to_terminal: BOOLEAN
-- return true if handle associated with character device

is_blocking_io: BOOLEAN
-- True if blocking i/o enabled (default)

is_closed: BOOLEAN
-- Is file descriptor is closed?

is_open: BOOLEAN
-- Does value describes a valid file descriptor?

is_owner: BOOLEAN
-- Does this file descriptor own its descriptor? Only when
-- it owns the descriptor it will close it whenclose or
-- disposeis called

status: POSIX_STATUS



133 POSIX_FILE_DESCRIPTOR

-- The status for this file descriptor. Cached value,
-- refreshed only when file reopened.

value: INTEGER
-- return the value of the file descriptor

feature(s) from ABSTRACT_FILE_DESCRIPTOR
-- Access
fd: INTEGER

-- The actual file descriptor.
feature(s) from POSIX_FILE_DESCRIPTOR

-- Initialization
make_from_file(file: STDC_FILE)

-- Create file descriptor from given stream
-- The stream is leading, so this file descriptor will
-- never close itself, unless it is made an owner.

feature(s) from POSIX_FILE_DESCRIPTOR
-- Close
close_on_execute

-- close this descriptor when forking
feature(s) from POSIX_FILE_DESCRIPTOR

-- Synchronisation
supports_file_synchronization: BOOLEAN

-- Do we support synchronization?
supports_data_synchronization: BOOLEAN

-- Do we support synchronization of data without metadata?
synchronize

-- Synchronize the state of a file (includes synchronize_data).
synchronize_data

-- Synchronize the data of a file. Cheaper than
-- synchronize, but not always supported.

feature(s) from POSIX_FILE_DESCRIPTOR
-- Locking
get_lock (lock_to_test: POSIX_LOCK): POSIX_LOCK

-- Gets lock information, returns True if a lock is set on
-- the region in a_lock. a_lock is overwritten with that lock.

set_lock_failed: BOOLEAN
-- Did set_lock obtain a lock?

attempt_lock(a_lock: POSIX_LOCK)
-- Attempt to set lock, if not possible, set
-- set_lock_failed.

set_lock(a_lock: POSIX_LOCK)
-- Attempt to set lock, wait if necessary.

feature(s) from POSIX_FILE_DESCRIPTOR
-- non-blocking i/o
set_blocking_io(enable: BOOLEAN)

feature(s) from POSIX_FILE_DESCRIPTOR
-- Queries
terminal: POSIX_TERMIOS



Short (flat) listing of POSIX classes 134

-- terminal settings
ttyname: STRING

-- Terminal path name, or empty if this file descriptor does
-- not refer to a terminal

invariant
accessing_real_singleton: security_is_real_singleton;
valid_internal_file_descriptor: fd >= -1;
valid_open: is_openimplies fd >= 0;
valid_close: not is_openimplies fd = -1;
valid_status: is_closedimplies my_status= Void;
open_and_close_in_balance: is_open= not is_closed;
owner_implies_open: is_owner implies is_open;

end of POSIX_FILE_DESCRIPTOR



135 POSIX_FILE_SYSTEM

D.11 POSIX_FILE_SYSTEM

class interface POSIX_FILE_SYSTEM
feature(s) from STDC_SECURITY_ACCESSOR

-- The singleton, available to any because its used in preconditions
security: STDC_SECURITY

-- Singleton entry point for security.
feature(s) from STDC_BASE

-- errno
errno: STDC_ERRNO

feature(s) from STDC_FILE_SYSTEM
-- path names
expand_path(a_path: STRING): STDC_PATH

-- returns a new path
feature(s) from STDC_FILE_SYSTEM

-- rename files/directories, remove files/directories
remove_file(a_path: STRING)

-- calls unlink when a_path is a file, or rmdir when
-- a_path is a directory.
-- error when file could not be removed (and it exists)

rename_to(current_path, new_path: STRING)
-- Rename a file or a directory.
-- new_pathshould not be an existing path.

feature(s) from STDC_FILE_SYSTEM
-- accessibility of files
is_modifiable(a_path: STRING): BOOLEAN

-- tests if file is readable and writable by this program
-- uses real user ID and real group ID instead of effective ones

is_readable(a_path: STRING): BOOLEAN
-- tests if file is readable by this program
-- uses real user ID and real group ID instead of effective ones

feature(s) from ABSTRACT_FILE_SYSTEM
-- directory access
change_directory(a_directory: STRING)

-- Changes the current working directory
chdir (a_directory: STRING)

-- Changes the current working directory
current_directory: STRING

-- The current directory
getcwd: STRING

-- The current directory
pwd: STRING

-- The current directory
make_directory(a_directory: STRING)

-- Makes a directory, only accessible by owner
mkdir (a_directory: STRING)

-- Makes a directory, only accessible by owner



Short (flat) listing of POSIX classes 136

remove_directory(a_directory: STRING)
-- Removes an empty directory, does not fail if directory
-- does not exist

rmdir (a_directory: STRING)
-- Removes an empty directory, does not fail if directory
-- does not exist

force_remove_directory(a_directory: STRING)
-- Removes a directory, even when not empty.
-- I suggest you do not have hard or symbolic links ina_directory...

feature(s) from ABSTRACT_FILE_SYSTEM
-- file statistics
status (a_path: STRING): POSIX_STATUS_PATH

-- Gets information about a file
feature(s) from ABSTRACT_FILE_SYSTEM

-- directory browsing
browse_directory(a_path: STRING): POSIX_DIRECTORY

-- Gets information about a directory
feature(s) from ABSTRACT_FILE_SYSTEM

-- accessibility of files
last_access_result: INTEGER

-- value of last access test
is_accessible(a_path: STRING; a_mode: INTEGER): BOOLEAN

-- Tests for file accessibility
access(a_path: STRING; a_mode: INTEGER): BOOLEAN

-- Tests for file accessibility
is_directory (a_path: STRING): BOOLEAN

-- return True if a_path exists and if it is a directory
is_existing(a_path: STRING): BOOLEAN

-- tests if file does exist, not if it is readable or writable by
-- this program!
-- uses real user ID and real group ID instead of effective ones

is_empty(a_path: STRING): BOOLEAN
-- True if file exists and has a size equal to zero.

is_executable(a_path: STRING): BOOLEAN
-- tests if file is executable by this program

is_writable (a_path: STRING): BOOLEAN
-- tests if file is writable by this program
-- uses real user ID and real group ID instead of effective ones

feature(s) from ABSTRACT_FILE_SYSTEM
-- various
is_case_sensitive: BOOLEAN

-- is file system case sensitive or not?
path_separator: CHARACTER

-- What is the path separator?
feature(s) from ABSTRACT_FILE_SYSTEM

-- file system properties
temporary_directory: STRING



137 POSIX_FILE_SYSTEM

-- the temporary directory
feature(s) from POSIX_FILE_SYSTEM

-- read/write permissions
chmod (a_path: STRING; a_mode: INTEGER)

-- Changes file mode
change_mode(a_path: STRING; a_mode: INTEGER)

-- Changes file mode
permissions(a_path: STRING): POSIX_PERMISSIONS

-- return the permissions object (a new one every time!) for
-- the given file

set_read_only(a_path: STRING)
-- Make given file read_only

set_writable(a_path: STRING)
-- Make given file read_only

feature(s) from POSIX_FILE_SYSTEM
-- file times
touch (a_path: STRING)

-- Sets the modification and access times ofa_path to the
-- current time of day.
-- File is created if it does not exist.

utime (a_path: STRING; access_time, modification_time: POSIX_TIME)
-- Sets file access and modification times

feature(s) from POSIX_FILE_SYSTEM
-- further directory access
link (existing, new: STRING)

-- Creates a hard link to a file
unlink (a_path: STRING)

-- Removes a directory entry, should be a file, not a directory.
-- its not an error if path does not exist, but all other
-- errors are reported

feature(s) from POSIX_FILE_SYSTEM
-- mkfifo
create_fifo(a_path: STRING; a_mode: INTEGER)

-- Creates a FIFO special file.
mkfifo (a_path: STRING; a_mode: INTEGER)

-- Creates a FIFO special file.
feature(s) from POSIX_FILE_SYSTEM

-- Shared memory
unlink_shared_memory_object(name: STRING)

-- Remove a shared memory object.
invariant

accessing_real_singleton: security_is_real_singleton;
end of POSIX_FILE_SYSTEM



Short (flat) listing of POSIX classes 138

D.12 POSIX_FORK_ROOT

deferred class interface POSIX_FORK_ROOT
feature(s) from STDC_CHILD_PROCESS

-- termination info
is_terminated: BOOLEAN

-- Is process not running any more?
exit_code: INTEGER

-- Low-order 8 bits of call to _exit or exit for this process.
feature(s) from ABSTRACT_CHILD_PROCESS

-- Actions that parent may execute
wait_for (suspend: BOOLEAN)

-- wait for this process to terminate. Ifsuspendthen we
-- wait until the information about this process is available,
-- else we return immediately.
-- If suspend is False, check the running property to see
-- if this child is really terminated.

feature(s) from STDC_CURRENT_PROCESS
-- my stdandard input/output/error
stdin: POSIX_TEXT_FILE
stdout: POSIX_TEXT_FILE
stderr: POSIX_TEXT_FILE

feature(s) from ABSTRACT_CURRENT_PROCESS
-- process properties
pid: INTEGER

-- either the current process identifier or the childs
is_pid_valid: BOOLEAN

-- current process id is always valid
feature(s) from ABSTRACT_CURRENT_PROCESS

-- every process also has standard file descriptors which might not be compatible with stdin/stdout/stderr (Windows)
fd_stdin: POSIX_FILE_DESCRIPTOR
fd_stdout: POSIX_FILE_DESCRIPTOR
fd_stderr: POSIX_FILE_DESCRIPTOR

feature(s) from STDC_SECURITY_ACCESSOR
-- The singleton, available to any because its used in preconditions
security: STDC_SECURITY

-- Singleton entry point for security.
feature(s) from STDC_BASE

-- errno
errno: STDC_ERRNO

feature(s) from ABSTRACT_PROCESS
-- Signal this process
terminate

-- attempt to gracefully terminate this process
feature(s) from POSIX_PROCESS

-- signal this process
kill (a_signal_code: INTEGER)



139 POSIX_FORK_ROOT

-- Send signalsignal_codeto the process
feature(s) from POSIX_CURRENT_PROCESS

-- POSIX locale specifics
set_native_messages

-- Select native language as the language in which messages
-- are displayed

feature(s) from POSIX_FORK_ROOT
-- process properties
is_valid_child_process: BOOLEAN

-- returns True if this object seems to refer to a valid child process
-- the real child process might have stopped though

feature(s) from POSIX_FORK_ROOT
-- deferred routines
after_fork

-- chance for code to do something before the main execute
-- mainly here for POSIX_DAEMON.

execute
-- Start if child process.

feature(s) from POSIX_FORK_ROOT
-- termination info
is_terminated_normally: BOOLEAN

-- Has this process been terminated normally?
is_exited: BOOLEAN

-- Has this process been terminated normally?
is_signalled: BOOLEAN

-- Child process was terminated due to receipt of a signal
-- that was not caught.

signal_code: INTEGER
-- Signal of process terminated abnormally or was stopped.

invariant
accessing_real_singleton: security_is_real_singleton;

end of deferred POSIX_FORK_ROOT



Short (flat) listing of POSIX classes 140

D.13 POSIX_GROUP

class interface POSIX_GROUP
creation

make_from_name(a_name: STRING)
make_from_gid(a_gid: INTEGER)

feature(s) from POSIX_GROUP
-- creation
make_from_name(a_name: STRING)
make_from_gid(a_gid: INTEGER)

feature(s) from POSIX_GROUP
-- refresh cache
refresh

-- refresh cache with latest info from user database
feature(s) from POSIX_GROUP

-- queries
name: STRING

-- group name
gid: INTEGER

-- ID number
invariant

accessing_real_singleton: security_is_real_singleton;
valid_group: group /= default_pointer;

end of POSIX_GROUP



141 POSIX_LOCK

D.14 POSIX_LOCK

class interface POSIX_LOCK
creation

make
feature(s) from POSIX_LOCK

-- creation
make

feature(s) from POSIX_LOCK
-- members
allow_read: BOOLEAN

-- This is a read lock
allow_all: BOOLEAN

-- No lock or used to remove a lock
allow_none: BOOLEAN

-- This is a write lock
start: INTEGER
length: INTEGER
pid: INTEGER

feature(s) from POSIX_LOCK
-- settable members
set_allow_read

-- this is a read or shared lock
set_allow_all

-- to remove a lock
set_allow_none

-- this is a write or exclusive lock
set_seek_start

-- start is measured from the beginning of the file
set_seek_current

-- start is measured from the current position
set_seek_end

-- start is measured from the end of the file
set_start(a_start: INTEGER)

-- set relative offset in bytes
set_length(a_length: INTEGER)

-- number of bytes to lock
invariant

accessing_real_singleton: security_is_real_singleton;
valid_buf: buf /= Void;
lock_type_known: allow_all or else allow_noneor else allow_read;

end of POSIX_LOCK



Short (flat) listing of POSIX classes 142

D.15 POSIX_MEMORY_MAP

class interface POSIX_MEMORY_MAP
creation

make (a_fd: POSIX_FILE_DESCRIPTOR; a_offset, a_size: INTEGER; a_base: POINTER; a_prot, a_flags: INTEGER)
-- Raw interface to mmap.
-- This function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE.

make_private(a_fd: POSIX_FILE_DESCRIPTOR; a_offset, a_size: INTEGER)
-- A mapping where changes are private.
-- a_offsetdenotes the offset froma_fd.
-- This function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE.

make_shared(a_fd: POSIX_FILE_DESCRIPTOR; a_offset, a_size: INTEGER)
-- Make a mapping where changes are shared, i.e. the
-- a_offsetdenotes the offset froma_fd.
-- underlying object is also changed.
-- This function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE.

feature(s) from POSIX_MEMORY_MAP
-- Initialization
make (a_fd: POSIX_FILE_DESCRIPTOR; a_offset, a_size: INTEGER; a_base: POINTER; a_prot, a_flags: INTEGER)

-- Raw interface to mmap.
-- This function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE.

make_private(a_fd: POSIX_FILE_DESCRIPTOR; a_offset, a_size: INTEGER)
-- A mapping where changes are private.
-- a_offsetdenotes the offset froma_fd.
-- This function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE.

make_shared(a_fd: POSIX_FILE_DESCRIPTOR; a_offset, a_size: INTEGER)
-- Make a mapping where changes are shared, i.e. the
-- a_offsetdenotes the offset froma_fd.
-- underlying object is also changed.
-- This function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE.

feature(s) from POSIX_MEMORY_MAP
-- Cleanup
dispose

-- Close handle if owner.
feature(s) from POSIX_MEMORY_MAP

-- Unmap
close

-- Remove the mapping.
feature(s) from POSIX_MEMORY_MAP

-- State
offset: INTEGER



143 POSIX_MEMORY_MAP

-- Offset from file.
fd: POSIX_FILE_DESCRIPTOR

-- The file that is mapped.
invariant

accessing_real_singleton: security_is_real_singleton;
capacity_not_negative: capacity >= 0;
valid_capacity: is_allocated= capacity > 0;
open_implies_handle_assigned: is_allocated= ptr /= unassigned_value;
owned_implies_open: is_owner implies is_allocated;
owned_implies_handle_assigned: is_owner implies ptr /= unassigned_value;
size_positive: is_openimplies capacity > 0;
ptr_valid: is_openimplies ptr /= default_pointerand not is_openimplies ptr = default_pointer;
offset_not_negative: offset >= 0;

end of POSIX_MEMORY_MAP



Short (flat) listing of POSIX classes 144

D.16 POSIX_PERMISSIONS

deferred class interface POSIX_PERMISSIONS
feature(s) from POSIX_PERMISSIONS

apply
-- make permissions changes (if any) permanent

refresh
-- synchronize with permission changes possibly made on disk

feature(s) from POSIX_PERMISSIONS
-- query mode
allow_anyone_execute: BOOLEAN

-- anyone allowed to execute the file?
allow_anyone_read: BOOLEAN

-- anyone allowed to read the file?
allow_anyone_read_write: BOOLEAN

-- anyone allowed to read and write the file?
allow_anyone_write: BOOLEAN

-- anyone allowed to write the file?
allow_group_execute: BOOLEAN

-- process with a group ID that matches the files group
-- allowed to execute the file?

allow_group_read: BOOLEAN
-- process with a group ID that matches the files group
-- allowed to read the file?

allow_group_read_write: BOOLEAN
-- process with a group ID that matches the files group
-- allowed to read the file?

allow_group_write: BOOLEAN
-- process with a group ID that matches the files group
-- allowed to write the file?

allow_owner_execute: BOOLEAN
-- owner allowed to execute the file

allow_read: BOOLEAN
allow_owner_read: BOOLEAN
allow_read_write: BOOLEAN
allow_owner_read_write: BOOLEAN
allow_write: BOOLEAN
allow_owner_write: BOOLEAN
is_set_group_id: BOOLEAN

-- group ID set on execution?
is_set_gid: BOOLEAN

-- group ID set on execution?
is_set_user_id: BOOLEAN

-- user ID set on execution?
is_set_uid: BOOLEAN

-- user ID set on execution?
feature(s) from POSIX_PERMISSIONS



145 POSIX_PERMISSIONS

-- set permissions
set_allow_anyone_execute(allow: BOOLEAN)

-- give anyone execute permission
set_allow_anyone_read(allow: BOOLEAN)

-- give anyone read permission
set_allow_anyone_read_write(allow: BOOLEAN)

-- give anyone read and write permissions
set_allow_anyone_write(allow: BOOLEAN)

-- give anyone write permission
set_allow_group_execute(allow: BOOLEAN)

-- give group execute permission
set_allow_group_read(allow: BOOLEAN)

-- give group read permission
set_allow_group_read_write(allow: BOOLEAN)

-- give group read and write permission
set_allow_group_write(allow: BOOLEAN)

-- give group write permission
set_allow_owner_execute(allow: BOOLEAN)

-- give owner execute permission
set_allow_read(allow: BOOLEAN)

-- give read permission
set_allow_owner_read(allow: BOOLEAN)

-- give read permission
set_allow_read_write(allow: BOOLEAN)

-- give read/write permission
set_allow_write(allow: BOOLEAN)

-- give write permission
set_allow_owner_write(allow: BOOLEAN)

-- give write permission
feature(s) from POSIX_PERMISSIONS

-- direct access to Unix fields
uid: INTEGER

-- id of object owner, always 0 on NT
owner_id: INTEGER

-- id of object owner, always 0 on NT
gid: INTEGER

-- id of group, always 0 on NT
group_id: INTEGER

-- id of group, always 0 on NT
mode: INTEGER

-- the bit coded Unix mode field
feature(s) from POSIX_PERMISSIONS

-- set owner and group
set_owner_id(a_owner_id: INTEGER)

-- change the owner
set_group_id(a_group_id: INTEGER)

-- change the group



Short (flat) listing of POSIX classes 146

invariant
accessing_real_singleton: security_is_real_singleton;

end of deferred POSIX_PERMISSIONS



147 POSIX_PIPE

D.17 POSIX_PIPE

class interface POSIX_PIPE
creation

make
-- Create pipe

feature(s) from POSIX_PIPE
-- the pipe
fdin: POSIX_FILE_DESCRIPTOR
fdout: POSIX_FILE_DESCRIPTOR

invariant
accessing_real_singleton: security_is_real_singleton;
valid_pipe: fdin /= Void and fdout /= Void;

end of POSIX_PIPE



Short (flat) listing of POSIX classes 148

D.18 POSIX_SEMAPHORE

class interface POSIX_SEMAPHORE
feature(s) from POSIX_SEMAPHORE

-- commands
attempt_acquire

-- Lock the semaphore only if it is not locked. If it is locked
-- by some process, this command returns immediately and the
-- semaphore is not locked

acquire
-- lock the semaphore

release
-- unlock the semaphore

feature(s) from POSIX_SEMAPHORE
-- queries
is_initialized: BOOLEAN

-- True if semaphore is initialized/opened/created
is_locked: BOOLEAN

-- True if this process has locked the semaphore
supports_semaphores: BOOLEAN

-- True if semaphores are supported
-- most systems support unnamed semaphores, but still return False here

value: INTEGER
-- value of semaphore if not locked.
-- Value is <= 0 if this semaphore is locked.

invariant
accessing_real_singleton: security_is_real_singleton;
sem_value_valid: sem_value/= Void;

end of POSIX_SEMAPHORE



149 POSIX_SIGNAL

D.19 POSIX_SIGNAL

class interface POSIX_SIGNAL
creation

make (a_value: INTEGER)
feature(s) from POSIX_SIGNAL

-- Initialization
make (a_value: INTEGER)

feature(s) from POSIX_SIGNAL
-- Set signal properties, make effective withapply
apply

-- Make changes effective.
set_child_stop(stop: BOOLEAN)

-- Generate SIGCHLD when children stop.
set_default_action

-- Install signal-specific default action whenapply is called.
set_ignore_action

-- Ignore signal whenapply is called..
set_handler(a_handler: STDC_SIGNAL_HANDLER)

-- Install ones own signal handler whenapply is called.
set_mask(a_mask: POSIX_SIGNAL_SET)

feature(s) from POSIX_SIGNAL
-- signal functions
raise_in (a_pid: INTEGER)

-- Raise the signal in the given process.
feature(s) from POSIX_SIGNAL

-- Signal state
child_stop: BOOLEAN

-- generate SIGCHLD when children stop
handler: POINTER

-- pointer to function which catches this signal
is_defaulted: BOOLEAN

-- signal is handled by its specific default action
is_ignored: BOOLEAN

-- signal is ignored
is_ignorable: BOOLEAN

-- True if this signal is ignorable, either it is so by
-- default or it may be set so.

mask: POSIX_SIGNAL_SET
refresh

-- get latest state for this signal
invariant

accessing_real_singleton: security_is_real_singleton;
accessing_real_singleton: signal_switch_is_real_singleton;
valid_signal_value: value >= 1;
has_memory: sigaction /= Void;

end of POSIX_SIGNAL



Short (flat) listing of POSIX classes 150

D.20 POSIX_SIGNAL_SET

class interface POSIX_SIGNAL_SET
creation

make_empty
-- make an initially empty signal set

make_full
-- make a set where all signals are enabled

make_pending
-- this signal set will be the set of signals that are blocked
-- and pending

feature(s) from POSIX_SIGNAL_SET
-- creation, make a set
make_empty

-- make an initially empty signal set
make_full

-- make a set where all signals are enabled
make_pending

-- this signal set will be the set of signals that are blocked
-- and pending

feature(s) from POSIX_SIGNAL_SET
-- change a set
extend(signo: INTEGER)

-- add signal to set
put (signo: INTEGER)

-- add signal to set
prune (signo: INTEGER)

-- remove the signal from the set
wipe_out

-- remove all items
feature(s) from POSIX_SIGNAL_SET

-- commands to do something with set
add_to_blocked_signals

-- Add the signals to the set of blocked signals
remove_from_blocked_signals

-- Remove the signals from the set of blocked signals
set_blocked_signals

-- Set the set of blocked signals to this set
suspend

-- Suspend process, until delivery of a signal whose action
-- is either to execute a signal-catching function or to
-- terminate the process

feature(s) from POSIX_SIGNAL_SET
-- queries
has (signo: INTEGER): BOOLEAN

-- is signal signo in the set
invariant



151 POSIX_SIGNAL_SET

accessing_real_singleton: security_is_real_singleton;
have_set: set /= Void;

end of POSIX_SIGNAL_SET



Short (flat) listing of POSIX classes 152

D.21 POSIX_STATUS

deferred class interface POSIX_STATUS
feature(s) from POSIX_STATUS

-- stat members
is_block_special: BOOLEAN

-- True if block-special file
ino: INTEGER
inode: INTEGER
permissions: POSIX_PERMISSIONS

-- file permissions
ensure

valid_result: Result /= Void
feature(s) from POSIX_STATUS

-- direct access to the unix fields, not recommended
unix_gid: INTEGER
unix_uid: INTEGER

invariant
accessing_real_singleton: security_is_real_singleton;
valid_stat: stat /= Void and then stat.capacity>= abstract_stat_size;

end of deferred POSIX_STATUS



153 POSIX_SYSTEM

D.22 POSIX_SYSTEM

class interface POSIX_SYSTEM
feature(s) from POSIX_SYSTEM

-- Sysconf queries, run-time determined
child_max: INTEGER

-- The number of simultaneous processes per real user ID.
clock_ticks: INTEGER

-- The number of clock ticks per second.
has_job_control: BOOLEAN

-- Job control functions are supported.
has_saved_ids: BOOLEAN

-- Each process has a saved set-user-ID and a saved set-group-ID.
ngroups_max: INTEGER

-- The number of simultaneous supplementary group IDs.
page_size: INTEGER

-- granularity in bytes of memory mapping and process memory locking.
posix_version: INTEGER

-- Indicates the 4-digit year and 2-digit month that the
-- standard was approved.

feature(s) from POSIX_SYSTEM
-- Compile-time determined queries
supports_asynchronous_io: BOOLEAN

-- True if the message passing API is supported.
supports_file_synchronization: BOOLEAN

-- True if file synchronization is supported.
supports_memory_mapped_files: BOOLEAN

-- True if memory mapped files are supported.
supports_memory_locking: BOOLEAN

-- True if memory locking is supported.
supports_memlock_range: BOOLEAN

-- True if memory range locking is supported.
supports_memory_protection: BOOLEAN

-- True if memory protection is supported.
supports_message_passing: BOOLEAN

-- True if the message passing API is supported.
supports_priority_scheduling: BOOLEAN

-- True if priority scheduling is supported.
supports_semaphores: BOOLEAN

-- True if semaphores are supported.
supports_shared_memory_objects: BOOLEAN

-- True if shared memory objects are supported.
supports_synchronized_io: BOOLEAN

-- True if synchronized io is supported.
supports_timers: BOOLEAN

-- True if timers are supported.
supports_threads: BOOLEAN



Short (flat) listing of POSIX classes 154

-- True if thread are supported.
invariant

accessing_real_singleton: security_is_real_singleton;
end of POSIX_SYSTEM



155 POSIX_TERMIOS

D.23 POSIX_TERMIOS

class interface POSIX_TERMIOS
creation

make (a_fd: POSIX_FILE_DESCRIPTOR)
feature(s) from POSIX_TERMIOS

-- creation
make (a_fd: POSIX_FILE_DESCRIPTOR)

feature(s) from POSIX_TERMIOS
-- raw individual fields
iflag: INTEGER

-- input mode flags
oflag: INTEGER

-- output mode flags
cflag: INTEGER

-- control mode flags
lflag: INTEGER

-- local mode flags
feature(s) from POSIX_TERMIOS

-- more friendly settings
is_input_echoed: BOOLEAN

-- are input characters echoed back to the terminal?
is_receiving: BOOLEAN

-- If false, no characters are received
set_echo_input(enable: BOOLEAN)
set_echo_new_line(enable: BOOLEAN)
set_input_control(enable: BOOLEAN)

-- enable start/stop input control
set_receive(enable: BOOLEAN)

feature(s) from POSIX_TERMIOS
-- line control functions
flush_input

-- discards all data that has been received but not read
drain

-- wait for all output to be transmitted to the terminal
send_break

-- sends a break to the terminal
feature(s) from POSIX_TERMIOS

-- get/set baudrates as symbols
input_speed: INTEGER

-- returns terminal input baud rate as symbolic value
output_speed: INTEGER

-- returns terminal output baud rate as symbolic value
set_input_speed(new_rate: INTEGER)

-- sets terminal input baud rate,new_rateis one of the
-- BXXXX constants

set_output_speed(new_rate: INTEGER)



Short (flat) listing of POSIX classes 156

-- sets terminal output baud rate,new_rateis one of the
-- BXXXX constants

feature(s) from POSIX_TERMIOS
-- symbol to baud rate conversions
speed_to_baud_rate(symbol: INTEGER): INTEGER

-- given a baud rate symbol, the real baud rate is returned.
feature(s) from POSIX_TERMIOS

-- apply/refresh state
apply_now

-- change occurs immediately
apply_drain

-- change occurs after all output written tofd has been
-- transmitted. This function should be used when changing
-- parameters that affect output.

apply_flush
-- change occurs after all output written tofd has been
-- transmitted. All input that has been received but not
-- read, is discarded before the change is made.

refresh
-- get terminal settings currently in effect

feature(s) from POSIX_TERMIOS
-- state
fd: POSIX_FILE_DESCRIPTOR

-- the file descriptor for these terminal settings
invariant

accessing_real_singleton: security_is_real_singleton;
valid_attr: attr /= Void and then attr.capacity= posix_termios_size;
valid_fd: fd /= Void;

end of POSIX_TERMIOS



157 POSIX_TIMED_COMMAND

D.24 POSIX_TIMED_COMMAND

deferred class interface POSIX_TIMED_COMMAND
feature(s) from POSIX_TIMED_COMMAND

-- Initialization
make (a_seconds: INTEGER)

feature(s) from POSIX_TIMED_COMMAND
-- Execution
execute: BOOLEAN

-- Did do_executecomplete its task withinsecondsseconds?
feature(s) from POSIX_TIMED_COMMAND

-- Access
is_signal_alarm_handled: BOOLEAN

-- Does the signal SIGNAL_ALARM cause an Eiffel exception?
feature(s) from POSIX_TIMED_COMMAND

-- State
remaining_seconds: INTEGER

-- number of seconds left in previous request
seconds: INTEGER

-- the number of seconds available to execute the command
set_seconds(a_seconds: INTEGER)

invariant
accessing_real_singleton: security_is_real_singleton;
valid_seconds: seconds>= 1;

end of deferred POSIX_TIMED_COMMAND



Short (flat) listing of POSIX classes 158

D.25 POSIX_USER

class interface POSIX_USER
creation

make_from_name(a_name: STRING)
make_from_uid(a_uid: INTEGER)

feature(s) from POSIX_USER
-- creation
make_from_name(a_name: STRING)
make_from_uid(a_uid: INTEGER)

feature(s) from POSIX_USER
-- refresh cache
refresh

-- refresh cache with latest info from user database
feature(s) from POSIX_USER

-- queries
name: STRING

-- login name
uid: INTEGER

-- ID number
gid: INTEGER

-- group ID number
home_directory: STRING

-- initial working directory
shell: STRING

-- initial user program
invariant

accessing_real_singleton: security_is_real_singleton;
valid_passwd: passwd/= default_pointer;

end of POSIX_USER



159 POSIX_USER_DATABASE

D.26 POSIX_USER_DATABASE

class interface POSIX_USER_DATABASE
feature(s) from POSIX_USER_DATABASE

-- queries
is_existing_uid(uid: INTEGER): BOOLEAN

-- Returns True if this uid exists in /etc/passwd
-- (or through NIS or whatever mechanisms that might be in use)

is_existing_login(login: STRING): BOOLEAN
-- Returns True if this login exists in /etc/passwd
-- (or through NIS or whatever mechanisms that might be in use)

invariant
accessing_real_singleton: security_is_real_singleton;

end of POSIX_USER_DATABASE



In this chapter:

E
Short (flat) list-

ing of Single
Unix Specifi-
cation classes

Classes in this appendix are based on the Single Unix Specification. They inherit from thePOSIX

classes. Inherited features are not shown.

E.1 SUS_CONSTANTS

class interface SUS_CONSTANTS
feature(s) from SUS_CONSTANTS

-- syslog facility codes
log_kern: INTEGER

-- kernel messages
log_user: INTEGER

-- random user-level messages
log_mail: INTEGER

-- mail system
log_daemon: INTEGER

-- system daemons
log_auth: INTEGER

-- security/authorization messages
log_lpr: INTEGER

-- line printer subsystem
log_news: INTEGER

-- network news subsystem
log_uucp: INTEGER

-- UUCP subsystem
log_cron: INTEGER

-- clock daemon
log_local0: INTEGER

-- Reserved for local use
log_local1: INTEGER

-- Reserved for local use
log_local2: INTEGER

-- Reserved for local use
log_local3: INTEGER



161 SUS_CONSTANTS

-- Reserved for local use
log_local4: INTEGER

-- Reserved for local use
log_local5: INTEGER

-- Reserved for local use
log_local6: INTEGER

-- Reserved for local use
log_local7: INTEGER

-- Reserved for local use
feature(s) from SUS_CONSTANTS

-- syslog open options
log_pid: INTEGER

-- log the pid with each message
log_cons: INTEGER

-- log on the console if errors in sending
log_odelay: INTEGER

-- delay open until first syslog() (default)
log_ndelay: INTEGER

-- dont delay open
end of SUS_CONSTANTS



Short (flat) listing of Single Unix Specification classes 162

E.2 SUS_ENV_VAR

class interface SUS_ENV_VAR
creation

make (a_name: STRING)
feature(s) from SUS_ENV_VAR

-- commands
set_value(new_value: STRING)

invariant
accessing_real_singleton: security_is_real_singleton;

end of SUS_ENV_VAR



163 SUS_FILE_SYSTEM

E.3 SUS_FILE_SYSTEM

class interface SUS_FILE_SYSTEM
feature(s) from SUS_FILE_SYSTEM

-- file statistics
status (a_path: STRING): SUS_STATUS_PATH

-- Return information about path.
symbolic_link_status(a_path: STRING): SUS_STATUS

-- Return information about path, but if it is a symbolic
-- link, about the symbolic link instead of the referenced path

feature(s) from SUS_FILE_SYSTEM
-- symbolic links
create_symbolic_link(old_path, new_path: STRING)

-- Creates a symbolic link
symlink (old_path, new_path: STRING)

-- Creates a symbolic link
feature(s) from SUS_FILE_SYSTEM

-- path names
resolved_path_name(a_path: STRING): STRING

-- derives froma_path an absolute pathname that names the
-- same file, whose resolution does not involve ".", "..", or
-- symbolic links.

realpath (a_path: STRING): STRING
-- derives froma_path an absolute pathname that names the
-- same file, whose resolution does not involve ".", "..", or
-- symbolic links.

invariant
accessing_real_singleton: security_is_real_singleton;

end of SUS_FILE_SYSTEM



Short (flat) listing of Single Unix Specification classes 164

E.4 SUS_HOST

class interface SUS_HOST
creation

make_from_name(a_name: STRING)
make_from_address(a_address: SUS_IP_ADDRESS)

feature(s) from SUS_HOST
-- creation
make_from_name(a_name: STRING)
make_from_address(a_address: SUS_IP_ADDRESS)

feature(s) from SUS_HOST
-- Command
find_by_name

-- Attempt to lookup up the host given inname. Sets
-- found if host could be found.
-- If found, setscanonical_name, aliases,
-- address_type, address_lengthand addresses.

feature(s) from SUS_HOST
-- Queries
found: BOOLEAN

-- True if namewas found.
name: STRING

-- Name as given tomake_from_nameor else equal to
-- canonical_name.

canonical_name: STRING
-- Official (canonical) name of host.

aliases: ARRAY[STRING]
-- Alias names.

address_type: INTEGER
-- Host address type: AF_INET or AF_INET6

address_length: INTEGER
-- Length of address: 4 or 16.

addresses: ARRAY[SUS_IP_ADDRESS]
-- Array with IPv4 or IPv6 addresses.

invariant
accessing_real_singleton: security_is_real_singleton;
name_not_empty: name /= Void and then not name.is_empty;
has_canonical_name: found = canonical_name/= Void;
has_at_least_one_ip_address: found = addresses/= Void and then addresses.count> 0;
has_aliases: found = aliases /= Void;
valid_length: found implies address_length> 0;
consistent: addresses/= Void and then addresses.count> 0 implies found;

end of SUS_HOST



165 SUS_SERVICE

E.5 SUS_SERVICE

class interface SUS_SERVICE
creation

make_from_name(a_name, a_protocol: STRING)
-- Find service witha_nameand optionala_protocol or raise
-- exception.

make_from_port(a_port: INTEGER; a_protocol: STRING)
-- Initialize service from given a_port

feature(s) from SUS_SERVICE
-- creation
make_from_name(a_name, a_protocol: STRING)

-- Find service witha_nameand optionala_protocol or raise
-- exception.

make_from_port(a_port: INTEGER; a_protocol: STRING)
-- Initialize service from given a_port

feature(s) from SUS_SERVICE
-- public state, all data in host byte order
port: INTEGER

-- port number
name: STRING

-- official service name
aliases: ARRAY[STRING]

-- alias list
protocol: STRING

-- protocol to use (udp/tcp)
protocol_type: INTEGER

-- SOCK_STREAM or SOCK_DGRAM
invariant

accessing_real_singleton: security_is_real_singleton;
name_void_or_not_empty: name= Void or else not name.is_empty;
valid_port: port >= 0 and port <= 65535;
valid_protocol: protocol = Void or else protocol.is_emptyor else protocol.is_equal(once_tcp) or protocol.is_equal(once_udp);
valid_protocol_type: protocol_type= sock_streamor else protocol_type= sock_dgram;
valid_aliases: aliases /= Void;

end of SUS_SERVICE



Short (flat) listing of Single Unix Specification classes 166

E.6 SUS_SOCKET_ADDRESS

class interface SUS_SOCKET_ADDRESS
creation

make (a_host: SUS_HOST; a_service: SUS_SERVICE)
-- Initialize socket for known host.

feature(s) from SUS_SOCKET_ADDRESS
-- Creation
make (a_host: SUS_HOST; a_service: SUS_SERVICE)

-- Initialize socket for known host.
feature(s) from SUS_SOCKET_ADDRESS

-- Public state
host: SUS_HOST

-- Resolved host name.
service: SUS_SERVICE

-- Port and protocol (udp/tcp) type.
feature(s) from SUS_SOCKET_ADDRESS

-- Fill socket structure, soptr returns something valid
set_address(item: INTEGER)

-- Use one of the ip addresses ofhost as the socket address.
feature(s) from SUS_SOCKET_ADDRESS

-- Features the C API calls like
length: INTEGER

-- Size of my struct sockaddr_in.
ptr: POINTER

-- Points to struct sockaddr_in or sockaddr_in6.
invariant

accessing_real_singleton: security_is_real_singleton;
host_found: host /= Void and then host.found;
has_service: service /= Void;
valid_buf: buf /= Void and then buf.capacity>= length;

end of SUS_SOCKET_ADDRESS



167 SUS_SYSLOG

E.7 SUS_SYSLOG

class interface SUS_SYSLOG
feature(s) from SUS_SYSLOG

-- open and close
open (a_identification: STRING; a_format, a_facility: INTEGER)

-- start logging with the given identification
close

-- stop logging
feature(s) from SUS_SYSLOG

-- Write log messages, will auto-open if not is_open
emergency(msg: STRING)

-- the system is unusable
alert (msg: STRING)

-- action must be taken immediately
critical (msg: STRING)

-- critical conditions
error (msg: STRING)

-- error conditions
warning (msg: STRING)

-- warning conditions
notice (msg: STRING)

-- normal but significant condition
info (msg: STRING)

-- informational
debug_dump(msg: STRING)

-- Debug-level messages.
feature(s) from SUS_SYSLOG

-- state
identification: STRING
format: INTEGER
facility: INTEGER
is_open: BOOLEAN

invariant
accessing_real_singleton: security_is_real_singleton;
remain_single: Current = the_singleton;
have_identification: is_openimplies identification /= Void and then not identification.is_empty;

end of SUS_SYSLOG



Short (flat) listing of Single Unix Specification classes 168

E.8 SUS_TCP_SOCKET

class interface SUS_TCP_SOCKET
creation

listen_by_address(sa: SUS_SOCKET_ADDRESS)
-- Listen on socket for address specified insa.

open_by_address(sa: SUS_SOCKET_ADDRESS)
-- Open socket to server specified insa.

invariant
accessing_real_singleton: security_is_real_singleton;
valid_internal_file_descriptor: fd >= -1;
valid_open: is_openimplies fd >= 0;
valid_close: not is_openimplies fd = -1;
valid_status: is_closedimplies my_status= Void;
open_and_close_in_balance: is_open= not is_closed;
owner_implies_open: is_owner implies is_open;

end of SUS_TCP_SOCKET



In this chapter:

F
Short (flat) list-

ing of Stan-
dard C bonus

classes

Classes in this appendix are based on Standard C only.

F.1 EPX_CGI

deferred class interface EPX_CGI
feature(s) from EPX_CGI

-- the output routine
execute

-- to be implemented by child
feature(s) from EPX_CGI

-- debug support
dump_input

-- Write cgi input to /tmp/cgi_input.
-- First line contains the content header, is not actually in input!

feature(s) from EPX_CGI
-- Standard variables
auth_type: STRING

-- type of authentication used
content_type: STRING

-- MIME type of data when invoked with POST method
content_length: INTEGER

-- length, in bytes, of data when invoked with POST method
gateway_interface: STRING

-- name and version of the gateway, for example CGI/1.1
http_accept: STRING

-- contents of the Accept header line sent by the client
http_referer: STRING

-- contents of the Referer header line
http_user_agent: STRING

-- name of the client program that is making the request
path_info: STRING

-- extra path information as it was passed to the server in
-- the query URL



Short (flat) listing of Standard C bonus classes 170

path_translated: STRING
-- extra path information translated to a final, usable
-- form. The Web document root is prepended to the query
-- path, and any other path translations are executed.

query_string: STRING
-- the input when invoked with the GET method

remote_addr: STRING
-- IP address of the client that made the request

remote_address: STRING
-- IP address of the client that made the request

remote_host: STRING
-- name of the remote computer that made the request

remote_ident: STRING
-- user name as given by the ident protocol

remote_user: STRING
-- name of the remote user that made the request

request_method: STRING
-- name of the method used to invoke the CGI
-- application. Valid values are GET and POST

script_name: STRING
-- name of script that was invoked

server_name: STRING
-- domain name of the computer that is running the server software

server_port: INTEGER
-- TCP port number on which the server that invoked the CGI
-- application is operating

server_protocol: STRING
-- name of the protocol that the server is using and the
-- version of that protocol. The protocol name and version
-- are separated by a forward slash with no spaces, for
-- instance HTTP/1.0

server_software: STRING
-- name of the server that is handling the request

feature(s) from EPX_CGI
-- Standard cgi header
content_text_html
content_text_plain

feature(s) from EPX_CGI
-- Server push, multipart header
content_multipart_x_mixed_replace(boundary: STRING)
content_next_part

-- write boundary so next part of multipart msg can be written
content_multipart_end

-- write boundary of multipart
is_multipart_message: BOOLEAN

feature(s) from EPX_CGI
-- Form input



171 EPX_CGI

has_input: BOOLEAN
-- True if input passed to cgi program.

has_key(key: STRING): BOOLEAN
-- Returns True if key defined in input.

is_meta_char(c: CHARACTER): BOOLEAN
-- Return True if c is a commonly used meta characters.

meta_chars: STRING
raw_value (key: STRING): STRING

-- Returns value for key.
-- if key does not exist, the empty string is returned.

remove_meta_chars(s: STRING)
-- If s contains meta characters, theyre removed.

value (key: STRING): STRING
-- Returns safe value for key, meta characters are removed.

invariant
-- lower_a_code_definition: lower_a_code = (a).code
-- Same thing for all other codes.
-- (see "note" in indexing clause.)
accessing_real_singleton: security_is_real_singleton;
my_xml_not_void: my_xml /= Void;
same_size: attributes.count= values.count;
has_tag_stack: tags /= Void;
fragment_has_no_header: is_fragmentimplies is_header_written;
values_not_void: values /= Void;
attributes_not_void: attributes /= Void;
every_attribute_has_a_value: attributes.count= values.count;

end of deferred EPX_CGI



Short (flat) listing of Standard C bonus classes 172

F.2 EPX_SOAP_WRITER

class interface EPX_SOAP_WRITER
creation

make
-- Create an XML document with initial capacity of 1024 characters.

make_with_capacity(a_capacity: INTEGER)
-- Create an XML document with initial capacity of
-- a_capacitycharacters.

feature(s) from EPX_SOAP_WRITER
-- SOAP specific calls
start_envelope
stop_envelope
start_header
stop_header
start_body
stop_body

feature(s) from EPX_SOAP_WRITER
-- SOAP header attributes
set_must_understand(value: BOOLEAN)

-- Set the SOAP-Env:mustUnderstand attribute tovalue.
feature(s) from EPX_SOAP_WRITER

-- Queries if tags started
is_envelope_started: BOOLEAN
is_header_started: BOOLEAN
is_body_started: BOOLEAN

feature(s) from EPX_SOAP_WRITER
-- SOAP tags
soap_env_body: STRING
soap_env_envelope: STRING
soap_env_header: STRING

feature(s) from EPX_SOAP_WRITER
-- SOAP name space
soap_env: STRING
soap_name_space: STRING

invariant
-- lower_a_code_definition: lower_a_code = (a).code
-- Same thing for all other codes.
-- (see "note" in indexing clause.)
accessing_real_singleton: security_is_real_singleton;
my_xml_not_void: my_xml /= Void;
same_size: attributes.count= values.count;
has_tag_stack: tags /= Void;
fragment_has_no_header: is_fragmentimplies is_header_written;
values_not_void: values /= Void;
attributes_not_void: attributes /= Void;



173 EPX_SOAP_WRITER

every_attribute_has_a_value: attributes.count= values.count;
end of EPX_SOAP_WRITER



Short (flat) listing of Standard C bonus classes 174

F.3 EPX_URI

class interface EPX_URI
creation

make (a_reference: STRING)
-- Create an absolute or relative URI.

make_resolve(base: EPX_URI; a_reference: STRING)
-- If a_referenceis a partial URI, it is resolved usingbase.

feature(s) from EPX_URI
-- Initialization.
make (a_reference: STRING)

-- Create an absolute or relative URI.
make_resolve(base: EPX_URI; a_reference: STRING)

-- If a_referenceis a partial URI, it is resolved usingbase.
feature(s) from EPX_URI

-- Queries
is_absolute: BOOLEAN

-- True if this is an absolute URI.
is_relative: BOOLEAN

-- True if this is a relative URI.
has_absolute_path: BOOLEAN

-- True if this URI has an absolute path.
feature(s) from EPX_URI

-- Most generic URI components
full_reference: STRING

-- The entire thing.
scheme: STRING

-- Scheme used, like "http" or "ftp", anything before the :.
scheme_specific_part: STRING

-- Interpretation depends on scheme, everything after the :
-- and before the ?

feature(s) from EPX_URI
-- If URI has a hierarchical relationships within the namespace
authority: STRING

-- Authority part of scheme_specific_part, usually a host name.
-- It can be more complex however like: <userinfo>@<host>:<port>.
-- Use parse_authorityto split authority in these
-- components if that is applicable for the protocol.

path: STRING
-- Path in scheme_specific_part, consisting of names
-- separated by slashes.

query: STRING
-- Anything after the ? if present, else Void

fragment: STRING
-- The part after the # if present, else Void

feature(s) from EPX_URI
-- If authority is <userinfo>@<host>:<port>



175 EPX_URI

user_info: STRING
-- Usually a user name.

host: STRING
-- hostname or IP4 address. IP6 addresses are explicitly not
-- supported by RFC 2396

port: INTEGER
-- TCP port, 0 if no port present.

is_server_authority: BOOLEAN
-- True if authority can be parsed as:
-- [ userinfo @ ] host [ : port ]
-- and port, if present, is an integer.

parse_authority(default_port: INTEGER)
-- Assume authority can be parsed as:
-- [ userinfo @ ] host [ : port ].
-- If assumption is untrue, you get a nice exception...
-- default_port is 0 means no default.

invariant
either_absolute_or_relative: is_absolutexor is_relative;
reference_not_empty: full_reference/= Void and then not full_reference.is_empty; -- Im really unsure if these constraints hold for deliberate garbage...

-- Constraints on elements of a parsed URI.
valid_authority: authority = Void or else not authority.is_empty;
valid_path: path = Void or else not path.is_empty;
valid_query: query = Void or else not query.is_empty;
valid_fragment: fragment= Void or else not fragment.is_empty; -- Contraints on parsedauthority
user_info_occurs_in_authority: user_info /= Void implies authority.substring_index(user_info,1) /= 0;
host_occurs_in_authority: host /= Void implies authority.substring_index(host,1) /= 0;
valid_port: port >= 0 and port <= 65535;

end of EPX_URI



Short (flat) listing of Standard C bonus classes 176

F.4 EPX_XML_WRITER

class interface EPX_XML_WRITER
creation

make
-- Create an XML document with initial capacity of 1024 characters.

make_with_capacity(a_capacity: INTEGER)
-- Create an XML document with initial capacity of
-- a_capacitycharacters.

make_fragment
-- Create an XML fragment (document without header) with
-- initial capacity of 1024 characters.

make_fragment_with_capacity(a_capacity: INTEGER)
-- Create an XML fragment (document without header) with
-- initial capacity of a_capacitycharacters.

feature(s) from EPX_XML_WRITER
-- Constants from the XML specification, should be Unicode...
validfirstchars: STRING

-- Which characters are valid as the first character.
validotherchars: STRING

-- Which characters are valid as second etc characters.
feature(s) from EPX_XML_WRITER

-- Queries
has_invalid_control_characters(s: STRING): BOOLEAN

-- Containss characters in the range 0x00-0x1F other then
-- TAB (0x09), CR (0x0A) and LF (0x0D)? is

is_a_parent(tag: STRING): BOOLEAN
-- True if tag is a container (parent) at the current level.
-- That can be a just started tag, or a tag higher up.

is_fragment: BOOLEAN
-- True if the XML document being created is a fragment.

is_header_written: BOOLEAN
-- True if the XML header is written, or if this is a fragment.

is_started(tag: STRING): BOOLEAN
-- True if this tag has just been started.

is_tag_started: BOOLEAN
-- True if one or more tags have been opened.

is_valid_attribute_name(attribute: STRING): BOOLEAN
-- Return True if this is a valid attribute name.

unfinished_xml: STRING
-- The xml in progress.

as_string: STRING
-- The result as plain STRING.

as_uc_string: UC_STRING
-- The result as Unicode string, i.e. UC_STRING.

feature(s) from EPX_XML_WRITER
-- Influence state



177 EPX_XML_WRITER

clear
-- Start fresh.

feature(s) from EPX_XML_WRITER
-- Commands that expandxml
add_header(encoding: STRING)

-- Add the XML header, document is encoded in
-- encoding. Making sure this encoding is followed, is the
-- responsibility of the client.

add_header_iso_8859_1_encoding
-- Document is iso-8859-1 encoded.

add_header_utf_8_encoding
-- Document is utf8 encoded.

add_data(data: STRING)
-- Write data in the current tag.
-- Invalid characters like < or > are quoted.
-- Use add_raw if you dont want quoting.

add_entity(name: STRING)
-- Write entity name.

add_raw (raw_data: STRING)
-- Write data straight in the current tag, meta characters
-- are not quoted, control characters are not checked, etc.

add_system_doctype(root_tag, system_id: STRING)
-- Add a <!DOCTYPE element.
-- Only allowed when no tags have been written.

add_tag (tag, data: STRING)
-- Shortcut foradd_tag, add_dataand stop_tag.

get_attribute(attribute: STRING): STRING
-- Get contents of attributeattribute for
-- current tag.attribute may include a name space.
-- Returns Void if attribute doesnt exist

put (a: ANY)
-- Write data within the current tag.

put_new_line
-- Add a new line in the current tag.

puts (stuff: STRING)
-- Write data within the current tag.

set_attribute(attribute, value: STRING)
-- Set an attribute of the current tag.
-- attribute must be name-space less, else useset_ns_attribute.
-- value may not contain an entity reference.
-- As the attribute is not immediately written, make sure
-- attribute and value do not change (ie are cloned or
-- immutable).

set_a_name_space(a_prefix, a_uri: STRING)
-- Define a name space.
-- As the attribute is not immediately written, make sure
-- a_prefix and a_uri do not change (ie are cloned or



Short (flat) listing of Standard C bonus classes 178

-- immutable).
set_default_name_space(uri: STRING)

-- Set the default name space.
set_ns_attribute(name_space, attribute, value: STRING)

-- Set an attribute of the current tag.value may not
-- contain an entity reference.name_spaceis the optional
-- prefix to be used, not the actual URI.
-- As the attribute is not immediately written, make sure
-- name_space, attribute and value do not change (ie
-- are cloned or immutable).

start_ns_tag(name_space, tag: STRING)
-- Start a new tag in the givenname_space. name_spaceis
-- a prefix only, not the actual URI. Ifname_spaceis Void
-- or empty, the tag will not get a prefix.
-- As the tag is not immediately written, be sure thattag
-- does not change (ie is cloned or immutable) if
-- name_spaceis Void or empty.

start_tag (tag: STRING)
-- Start a new tag.
-- As the tag is not immediately written, make suretag
-- does not change (ie is cloned or immutable).

stop_tag
-- Stop last started tag.

feature(s) from EPX_XML_WRITER
-- Quote unsafe characters
replace_content_meta_characters(s: STRING)

-- Replace all characters ins that have a special meaning in
-- XML. These characters are < and &.
-- For compatibility with SGML a "]]>" should be written as
-- "]]&gt;", but I see no reason to be compatible with SGML
-- these days, so we dont check for that.

feature(s) from EPX_XML_WRITER
-- Comments
start_comment
stop_comment

invariant
-- lower_a_code_definition: lower_a_code = (a).code
-- Same thing for all other codes.
-- (see "note" in indexing clause.)
accessing_real_singleton: security_is_real_singleton;
my_xml_not_void: my_xml /= Void;
same_size: attributes.count= values.count;
has_tag_stack: tags /= Void;
fragment_has_no_header: is_fragmentimplies is_header_written;
values_not_void: values /= Void;
attributes_not_void: attributes /= Void;



179 EPX_XML_WRITER

every_attribute_has_a_value: attributes.count= values.count;
end of EPX_XML_WRITER



Short (flat) listing of Standard C bonus classes 180

F.5 EPX_XHTML_WRITER

class interface EPX_XHTML_WRITER
creation

make
-- Create an XML document with initial capacity of 1024 characters.

make_with_capacity(a_capacity: INTEGER)
-- Create an XML document with initial capacity of
-- a_capacitycharacters.

make_fragment
-- Create an XML fragment (document without header) with
-- initial capacity of 1024 characters.

make_fragment_with_capacity(a_capacity: INTEGER)
-- Create an XML fragment (document without header) with
-- initial capacity of a_capacitycharacters.

feature(s) from EPX_XHTML_WRITER
-- overrule some xml stuff
new_line_after_closing_tag(a_tag: STRING)

-- Outputs a new line, called whena_tag is closed
-- can be overridden to start a new line only occasionally
-- For XHTML documents a new line is treated as a single
-- space, so it can influence layout.

new_line_before_starting_tag(a_tag: STRING)
-- Outputs a new line, called whena_tag is about to begin.

feature(s) from EPX_XHTML_WRITER
-- doctype
doctype
doctype_frameset

-- Output will be frame-based
doctype_strict

-- Output will be strict XHTML
doctype_transitional

-- Output will be transitional XHTML
feature(s) from EPX_XHTML_WRITER

-- page
b_html

-- start html page
e_html

feature(s) from EPX_XHTML_WRITER
-- header
meta_refresh_other(time: INTEGER; url: STRING)
b_head
e_head
title (a_text: STRING)

feature(s) from EPX_XHTML_WRITER
-- body
b_body



181 EPX_XHTML_WRITER

e_body
feature(s) from EPX_XHTML_WRITER

--section headers
h1 (header_text: STRING)

feature(s) from EPX_XHTML_WRITER
-- paragraph
br

-- break, the Appendix C.3 way
b_p
e_p
p (par: STRING)

feature(s) from EPX_XHTML_WRITER
-- layout
b_tt

-- teletype writer font
e_tt

feature(s) from EPX_XHTML_WRITER
-- link
b_a (href: STRING)
e_a
a (href, s: STRING)

feature(s) from EPX_XHTML_WRITER
-- rules
hr

-- horizontal rule
feature(s) from EPX_XHTML_WRITER

-- white space
nbsp

-- non breaking white space
feature(s) from EPX_XHTML_WRITER

-- verbatim
b_pre
e_pre

feature(s) from EPX_XHTML_WRITER
-- tables
b_table
e_table
b_tr
e_tr
td

-- an empty cell
b_td
e_td
th

-- an empty cell
b_th
e_th



Short (flat) listing of Standard C bonus classes 182

feature(s) from EPX_XHTML_WRITER
-- forms
standard_encoding: STRING
plaintext_encoding: STRING
multipart_encoding: STRING
b_form (method, action: STRING)
b_form_get(action: STRING)
b_form_post(action: STRING)
e_form
b_input (type, name: STRING)
e_input
button_hidden(name, value: STRING)
b_button_submit(name, value: STRING)
e_button_submit
b_button_reset
e_button_reset
button_reset
b_checkbox(name, value: STRING)
e_checkbox
b_radio (name, value: STRING)
e_radio
b_select(name: STRING)
e_select
option (text: STRING)
selected_option(choice: STRING)
b_textarea(name: STRING)

-- multiline input
e_textarea
input_text (name: STRING; size: INTEGER; value: STRING)

-- singleline input
feature(s) from EPX_XHTML_WRITER

-- CSS style sheet support
b_style
e_style
set_class(name: STRING)

-- set attribute class
invariant

-- lower_a_code_definition: lower_a_code = (a).code
-- Same thing for all other codes.
-- (see "note" in indexing clause.)
accessing_real_singleton: security_is_real_singleton;
my_xml_not_void: my_xml /= Void;
same_size: attributes.count= values.count;
has_tag_stack: tags /= Void;
fragment_has_no_header: is_fragmentimplies is_header_written;
values_not_void: values /= Void;
attributes_not_void: attributes /= Void;



183 EPX_XHTML_WRITER

every_attribute_has_a_value: attributes.count= values.count;
end of EPX_XHTML_WRITER



In this chapter:

G
Short (flat) list-

ing of Single
Unix Specifi-
cation bonus

classes

Classes in this appendix are based on the Single Unix Specification. Some of them might also be
available under Windows.

G.1 EPX_HTTP_10_CLIENT

class interface EPX_HTTP_10_CLIENT
creation

make (host_name: STRING)
-- Prepare for request tohost_name.

make_from_port(host_name: STRING; port: INTEGER)
-- Prepare for request.
-- Use port is 0 to use the default port (80).

make_from_host(a_host: SUS_HOST)
-- Prepare for request to resolveda_host. If port is 0,
-- the default port is taken, else the port can be overruled.

make_from_host_and_port(a_host: SUS_HOST; port: INTEGER)
-- Prepare for request toa_host. If port is 0, the
-- default port is taken, else the port can be overruled.

feature(s) from EPX_HTTP_10_CLIENT
-- Client http version
client_version: STRING

-- Clients version of the http protocol
feature(s) from EPX_HTTP_10_CLIENT

-- Requests
get (path: STRING)

-- Send GET request to server.
head (path: STRING)

-- Send HEAD request to server.
-- path should not include http: and the host name, only
-- the page that is requested. Any query and fragment parts are ok.

options (path: STRING)



185 EPX_HTTP_10_CLIENT

-- Get server options. Path is required when the request is
-- being made to a proxy.

feature(s) from EPX_HTTP_10_CLIENT
-- Fields that are send with a request if set
user_agent: STRING

-- Identification of client program.
-- Common examples are:
-- Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
-- Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.0.0) Gecko/20020529
-- Microsoft Internet Explorer

set_user_agent(value: STRING)
-- Set the client identification.

feature(s) from EPX_HTTP_10_CLIENT
-- Response
body: EPX_MIME_BODY_TEXT

-- Return body as text, if applicable, else Void.
fields: DS_HASH_TABLE[EPX_MIME_FIELD,STRING]

-- Header fields of response.
is_response_ok: BOOLEAN

-- Does the returnedresponse_codeindicate success?
part: EPX_MIME_PART

-- The entire parsed MIME message
c: CHARACTER
read_response

-- Read entire resonse, parse while reading.
response_code: INTEGER
response_phrase: STRING
server_version: STRING

-- Set by read_response.
feature(s) from EPX_HTTP_10_CLIENT

-- Individual response fields, Void if not available
location: STRING

invariant
accessing_real_singleton: security_is_real_singleton;
host_found: host /= Void and then host.found;
have_address: sa /= Void;

end of EPX_HTTP_10_CLIENT



Short (flat) listing of Single Unix Specification bonus classes 186

G.2 ULM_LOGGING

This class depends on Standard C only. It is theEPX_LOG_HANDLERthat is platform specific.
e-POSIX provides implementations of this class for Unix through syslog and for Windows through
the NT event log.

class interface ULM_LOGGING
creation

make (a_handler: ULM_LOG_HANDLER; a_program_name: STRING)
-- Start logging forprogram. The host name is derived from
-- an OS specific call througha_handler.

feature(s) from ULM_LOGGING
-- Log methods
log_error (level: INTEGER; subsystem: STRING; error_number: INTEGER; error_message: STRING)

-- Useful for logging errors.
log_event(level: INTEGER; subsystem: STRING; fields: ARRAY[ULM_FIELD])

-- Log event, consisting of one or more fields. It is the
-- responsibility of the client to make sure the values are
-- proper for each field.
-- This function adds any ULM required field if not present.
-- subsystem, if present is appended with a dot to
-- program and written in the "PROG" field.
-- DATE is logged in GMT.

log_single_field(level: INTEGER; subsystem, field_name, value: STRING)
-- Log value for field_name. value will be properly
-- quoted if necessary.value should be in the proper
-- format for field_name.
-- This function adds any ULM required field.
-- subsystem, if present is appended with a dot to
-- program and written in the "PROG" field.
-- in the "PROG" field.
-- DATE is logged in GMT.

log_message(level: INTEGER; subsystem, value: STRING)
-- Log a simple message with the MSG field.
-- This function adds any ULM required field.
-- subsystem, if present is appended with a dot to
-- program and written in the "PROG" field.
-- DATE is logged in GMT.

feature(s) from ULM_LOGGING
-- Queries
is_valid_field_name(field_name: STRING): BOOLEAN

-- Returns True iffield_nameis valid according to ULM spec.
-- Basically it should consist of one or more letters and have
-- no spaces.

is_valid_partial_field_list(fields: ARRAY[ULM_FIELD]): BOOLEAN
-- Contains True iffields contains at least one item, and
-- if every item in fields is not Void and if fieldsdoes
-- not contain a duplicate field and iffields does not



187 ULM_LOGGING

-- contain the LVL field.
feature(s) from ULM_LOGGING

-- Standard field names
lvl: STRING

-- Importance and category of the ULM.
host: STRING

-- Name of software component which issues the ULM.
prog: STRING

-- Name of the software component which issued the ULM.
date: STRING

-- Instantaneous date of the event.
lang: STRING

-- Language used for text fields. Default is english (EN).
dur: STRING

-- Indicates duration (in seconds) of the event.
ps: STRING

-- Process id which issued the ULM.
id: STRING

-- System reference to the concerned document.
src_ip: STRING

-- The IP number of the source host.
src_fqdn: STRING

-- Fully qualified Domain Name for the source host.
src_name: STRING

-- Generic name qualifying the source.
src_port: STRING

-- Port number for TCP, UDP or other protocol.
src_usr: STRING

-- User name or user id.
src_mail: STRING

-- Email address.
dst_ip: STRING

-- The IP number of the destination host.
dst_fqdn: STRING

-- Fully qualified Domain Name for the destination host.
dst_name: STRING

-- Generic name qualifying the destination.
dst_port: STRING

-- Port number for TCP, UDP or other protocol.
dst_usr: STRING

-- User name or user id.
dst_mail: STRING

-- Email address.
rel_ip: STRING

-- The IP number of the proxy/relayer host.
rel_fqdn: STRING

-- Fully qualified Domain Name for the proxy/relayer host.



Short (flat) listing of Single Unix Specification bonus classes 188

rel_name: STRING
-- Generic name qualifying the proxy/relayer.

rel_port: STRING
-- Port number for TCP, UDP or other protocol.

rel_usr: STRING
-- User name or user id.

rel_mail: STRING
-- Email address.

vol: STRING
-- Volume (number of bytes) sent and received from the source
-- point of view.

vol_sent: STRING
-- Volume (number of bytes) sent from the source point of view.

vol_rcvd: STRING
-- Volume (number of bytes) received from the source point of view.

cnt: STRING
-- Count (of articles, files, events) sent and received from
-- the source point of view.

cnt_sent: STRING
-- Count (of articles, files, events) sent from the source
-- point of view.

cnt_rcvd: STRING
-- Count (of articles, files, events) received from the
-- source point of view.

prog_file: STRING
-- Name of the program source file from which the ULM was generated.

stat: STRING
-- State or status of the designed process. Possible values
-- for this field may include "Failure", "Success", "Start",
-- "End".

tty: STRING
-- Users physical connection to the host.

doc: STRING
-- Name of accessed document like the path of an ftp file,
-- the name of a newsgroup, or the non-host part of an URL.

prot: STRING
-- Protocol used.

cmd: STRING
-- Issued command.

msg: STRING
-- The only field which should contain arbitrary data.

feature(s) from ULM_LOGGING
-- Public state
host_name: STRING

-- Name of the host which issues the ULM.
program_name: STRING

-- Name of the software component which issues the ULM.



189 ULM_LOGGING

invariant
log_level_text_lower_index_ok: log_level_text.lower= emergency;
log_level_text_upper_index_ok: log_level_text.upper= debugging;
accessing_real_singleton: security_is_real_singleton;
handler_not_void: handler /= Void;
host_name_not_empty: host /= Void and then not host.is_empty;
program_name_not_empty: program_name/= Void and then not program_name.is_empty;
have_my_date: my_date/= Void;
have_my_host: my_host/= Void;
have_my_prog: my_prog /= Void;
have_my_lvl: my_lvl /= Void;

end of ULM_LOGGING



To do

EPX_FILE_SYSTEM

1. MakeEPX_DIRECTORY.

STDC_FILE

1. read_integer, read_double, read_boolean should perhaps be different for the binary or text files.
Now they’re satisfy the mico/e definition, so useful for text files only.

STDC_LOCALE_NUMERIC

1. Complete the list of properties

STDC_PATH

1. make some escape char functionality with ‘%’ or so.

POSIX_STATUS

1. return STDC_TIME instead of unix time

2. Not all stat member fields are currently available.

STDC_TIME

1. Add elapsed seconds

POSIX_EXEC_PROCESS

1. turn off Eiffel exception handling after the final execvp, else you get back signals not captured
by child process as your signals, or so it seems (or perhaps you’re killing the Eiffel process, but
not the subprocess it generated??)

Killing subprocesses works sometimes, but not always.

Remove exception handling just before execvp?

2. how about capture to /dev/null?



191 POSIX_FILE_DESCRIPTOR

3. can we capture i/o for every forked process? If so, move this code to POSIX_FORK_ROOT.

4. Perhaps option to influence environment variables to pass to subprocess?

POSIX_FILE_DESCRIPTOR

1. possible to open exclusively and so?

2. complete support for nonblocking i/o.

POSIX_MEMORY_MAP

1. Cannot change protection.

2. No locking.

POSIX_SEMAPHORE

1. not valid for named semaphore I think.

2. have to add various close/unlink functions.

POSIX_SIGNAL

1. Add synchronous waiting for signals likesigwait.

2. (Re)enable sending Eiffel exception on signal? i.e. set_exception_handler or so.

3. Resend signal as Eiffel exception in signal handler.

MQUEUE

1. Not in the free unices at this moment. Maybe have to get a copy of Solaris x86??

Security

Add base security class that specifies programs intent. Default is to allow anything, but security
can be tightened:

1. Call toopenor creat(used?), use real user id, not effective user id.

2. Assume we’re free from buffer attacks if preconditions are enabled.

3. exec/system call only allowed when effective user is not root, unless otherwise specified. Or
exec only allowed for specific files.



To do 192

4. Protect against writing specific files/directories. Perhaps substitute vulnerable filenames for
other ones.

5. Emulate atomic calls. Or add atomicaccessandopencall. Shouldn’t be done by setting su??

6. When appending/writing to files, check if symbolic link.

7. ABSTRACT_FILE_SYSTEM.force_remove_directoryis potentially unsafe because it follows
links so it can be used to destroy things not under that directory.

8. remove tmpnam function.

9. Make sure the once functions in STDC_BASE are called from within the security initialization,
so they’re allocated and do not generate an out-of-memory exception themselves.

Idea from ‘Remediation of Application Specific Security Vulnerabilities at Runtime’ article in IEEE
Computer sep/oct 2000.

Windows code

1. chmod also available on Windows.

2. Add permissions to status: read/write.

3. set_binary_mode should do something for the posix factory, i.e., when compiling with cygwin.
Perhaps separateCYGWIN_APIor so inPOSIXdir with the window specific stuff.

Currently cygwin uses text mode for file descriptors, the windows variant uses binary.

4. utime can be supported by using SetFileTime.

Other

1. remove ugly const_ prefix from constants. Uppercase should be good enough.

Almost done, only const_EOF remains, not easy to replace perhaps.

2. Compare POSIX_SIGNAL with ISE UNIX_SIGNAL: They have an is_caught function, useful?
Means this signal generates an exception.

Known bugs

• not for everySTDC_BASE.raise_posix_errorthe error code is set probably.

• does STRING_HELPER leak memory in to_external? How is memory used for these conver-
sions being freed? Is memory used there?

• If a child process is signalled (terminated), the functionPOSIX_FORK_ROOT.is_terminated_normally
sometimes returns True.



Bibliography

1 (1996). System Application Program Interface (API) [C Language], volume Part I ofIn-
formation technology – Portable Operating System Interface (POSIX). ANSI/IEEE, 1996
edition.

2 (1991).The Standard C library. Prentice Hall.
3 (1994).POSIX programmer’s guide. O’Reilly & Associates.
4 Stevens, W. R. (1998).Unix network programming. Prentice Hall.
5 Meyer, B. (1997).Object-Oriented Software Construction. Addison Wesley, 2nd edition.
6 Hatton, L. (2001). Exploring the role of diagnosis in software failure.IEEE Software.
7 Whittaker, J. A. (2001). Software’s invisible users.IEEE Software.



Index

/src/library.xace 5
_exit 72

a
abort 71
abort

STDC_CURRENT_PROCESS71
ABSTRACT_FILE_DESCRIPTOR 58
ABSTRACT_CURRENT_PROCESSiii ,

98, 99
ABSTRACT_EXEC_PROCESS iii , 100,

101
ABSTRACT_FILE_DESCRIPTOR iii ,

102, 103, 105
ABSTRACT_FILE_SYSTEM iii , 106, 107
ABSTRACT_PIPE iii , 109
ABSTRACT_STATUS iii , 110
access 71, 192
acquire

POSIX_SEMAPHORE 74
add

POSIX_SIGNAL_SET 74
add_data

EPX_CGI 51
add_to_blocked_signals

POSIX_SIGNAL_SET 74
aio.h 71, 73
aio_cancel 71
aio_error 71
aio_fsync 71
aio_read 71
aio_return 71
aio_suspend 71
aio_write 71
alarm 71
allocate

STDC_BUFFER 73
allocate_and_clear

STDC_BUFFER 44, 71
ANY 4
apply

POSIX_SIGNAL 30

apply_drain
POSIX_TERMIOS 74

apply_flush
POSIX_TERMIOS 74

apply_now
POSIX_TERMIOS 74

apply_owner_and_group
POSIX_PERMISSIONS_PATH 71

asctime 71
assert_key_value_pairs_created

EPX_CGI 54
atexit 71
attempt_acquire

POSIX_SEMAPHORE 74
attempt_lock

POSIX_FILE_DESCRIPTOR 72
attempt_open_read

POSIX_TEXT_FILE 61

b
b_a

EPX_CGI 51
b_form_get

EPX_CGI 52
b_form_post

EPX_CGI 52
b_input

EPX_CGI 52
b_p

EPX_CGI 51
backslash 17
BeOS 6
big endian 44
binary file 16
binary mode 59
binary stdin 60
binary stdout 60
browse_directory

POSIX_FILE_SYSTEM 23, 62

c
c stdio.c 69



195

c stdio.h 69
calloc 71
cancel

POSIX_ASYNC_IO_REQUEST 71
CAPI_STDIO 8, 69
C compiler

Borland 2, 4
lcc 2
Microsoft 2
Microsoft Visual C

+ 4
cfgetispeed 71
cfgetospeed 71
cfsetispeed 71
cfsetospeed 71
cgi 49

enumerating all values55
file upload 51
redirect 55

change_directory
POSIX_FILE_SYSTEM 71

change_mode
POSIX_FILE_SYSTEM 71

chdir 71
chmod 71
chop

POSIX_TEXT_FILE 14
chop_last_string

ABSTRACT_FILE_DESCRIPTOR 60
chown 71
clear_error

STDC_FILE 71
clear_first

STDC_ERRNO 64
clearerr 71
clock 71
clock

STDC_CURRENT_PROCESS71
clock_getres 71
clock_gettime 71
clock_settime 71
close 71
close

POSIX_FILE_DESCRIPTOR 71
STDC_FILE 67, 72

closedir 71
compiler.se 57

configure 1, 5
content_text

EPX_CGI 54
copy_from

STDC_BUFFER 73
creat 71, 191
create_fifo

POSIX_FILE_SYSTEM 57, 73
create_read_write

POSIX_FILE_DESCRIPTOR 71
create_shared

POSIX_UNNAMED_SEMAPHORE 73
create_unshared

POSIX_UNNAMED_SEMAPHORE 73
create_write

POSIX_SHARED_MEMORY 74
ctermid 71
ctime 71
Ctrl

C 30, 47
ctype.h 75
current_directory

POSIX_FILE_SYSTEM 72
cuserid 71
Cygwin 6
cygwin 9
CYGWIN 60
CYGWIN_API 192

d
deallocate

STDC_BUFFER 72
default_format

POSIX_TIME 27
STDC_TIME 71

detach
POSIX_DAEMON 34

difftime 71
directory

browse 23
change 21
create 21
remove 21
test_suite 39

dirent.h 71, 73
dispose

MEMORY 67



Index 196

doctype
EPX_CGI 50

doctype_transitional
EPX_CGI 50

dup 71
dup2 71

e
EEXIST 62
effective_group_id

POSIX_CURRENT_PROCESS72
effective_user_id

POSIX_CURRENT_PROCESS72
eiffel.h 68
elj-win32 2
end--of--line character 14
ENOSYS 57
environment variable 17

CYGWIN 60
EPOSIX 1

Environment variable
expansion 17

environment variable
GOBO_CC 1
GOBO_EIFFEL 2
set 40

eof
POSIX_TEXT_FILE 16
STDC_FILE 72

EPX_CGI iv, vi, 49, 50, 169, 171
EPX_CURRENT_PROCESS47, 58, 60
EPX_DIRECTORY 190
EPX_EXEC_PROCESS58
EPX_FILE_DESCRIPTOR 58
EPX_FILE_SYSTEM iv, 58, 190
EPX_HTTP_10_CLIENT iv, 42, 184, 185
EPX_LOG_HANDLER 186
EPX_PIPE 58
EPX_SOAP_WRITER iv, 172, 173
EPX_URI iv, 42, 174, 175
EPX_XHTML_WRITER iv, 180, 181, 183
EPX_XML_WRITER iv, 176, 177, 179
epxc 9
epxs 9
errno 8
errno

POSIX_FILE_DESCRIPTOR 64

errno.first_value
POSIX_FILE_DESCRIPTOR 64

errno.value
POSIX_FILE_DESCRIPTOR 64

error
STDC_FILE 72

error handling 61
EX_ERROR1 64
execl 71
execle 71
execlp 71
execute

POSIX_DAEMON 34
POSIX_EXEC_PROCESS72
POSIX_FORK_ROOT 32
POSIX_SHELL_COMMAND 25

execv 71
execve 71
execvp 71, 72
exit 72
exit

STDC_CURRENT_PROCESS72
expand_path

POSIX_FILE_SYSTEM 17
extend

EPX_CGI 51

f
fclose 72
fcntl 72
fcntl.h 71, 73
fd_stdin

EPX_CURRENT_PROCESS60
fd_stdout

EPX_CURRENT_PROCESS60
fdatasync 5, 5, 6, 72
fdopen 72
feof 72
ferror 72
fflush 72
fgetc 72
fgetpos 72
fgets 72
file

EPX_KEYVALUE 54
file

read entire 14



197

fileno 72
file pointer 17
fill_with

STDC_BUFFER 73
first_value

POSIX_FILE_DESCRIPTOR 64
STDC_ERRNO 64

flush 29
flush

STDC_FILE 72
flush_input

POSIX_TERMIOS 74
fopen 68, 72
force_remove_directory

ABSTRACT_FILE_SYSTEM 192
fork 72
fork

POSIX_CURRENT_PROCESS32, 72
format

POSIX_TIME 27
STDC_TIME 74

forum.txt v
fpathconf 72
fprintf 72
fputc 72, 73
fputs 72, 73
fread 72
free 72
freopen 72
fseek 72
fsetpos 72
fstat 72
fsync 5, 5, 6, 72
ftell 72
fwrite 72

g
geant 1
get_character

STDC_FILE 72
get_lock

POSIX_FILE_DESCRIPTOR 20, 57, 72
get_position

POSIX_FILE 17
STDC_FILE 72

get_string
STDC_FILE 72

getc 72
getchar 72
getcwd 72
getegid 72
getenv 72
geteuid 72
getgid 72
getgrgid 72
getgrnam 72
getgroups 72
getlogin 71, 72
getpgrp 72
getpid 12, 72
getppid 72
getpwnam 72
getpwuid 72
gets 72
gettimeofday 72
getuid 72
gexace 3
gmtime 72
grp.h 72

h
Halstenbach 5
has

POSIX_SIGNAL_SET 74
HTTP 9

i
input_speed

POSIX_TERMIOS 71
input_text

EPX_CGI 52
is_modifiable

POSIX_FILE_SYSTEM 21
is_accessible

ABSTRACT_FILE_SYSTEM 71
is_attached_to_terminal

POSIX_FILE_DESCRIPTOR 72
is_in_group

POSIX_CURRENT_PROCESS72
is_pending

POSIX_ASYNC_IO_REQUEST 71
is_readable

POSIX_FILE_SYSTEM 23



Index 198

is_terminated_normally
POSIX_FORK_ROOT 192

isatty 72
ISE Eiffel 2

k
kill 72
kill

POSIX_PROCESS 72

l
last_string

POSIX_TEXT_FILE 14
libeposix ise msc.lib 2
libeposix se.a 2, 57
libeposix ve msc.lib 5
library.xace 3
license v
link 72
link

POSIX_FILE_SYSTEM 72
lio_listio 73
little endian 44
local_date_string

POSIX_TIME 27
local_time_string

POSIX_TIME 27
locale.h 73, 74
localeconv 73
localtime 73
lock 19
login_name

POSIX_CURRENT_PROCESS72
lseek 73

m
make

POSIX_PIPE 73
POSIX_TERMIOS 74
STDC_TEMPORARY_FILE 74

make.exe 2
make_as_duplicate

POSIX_FILE_DESCRIPTOR 29, 71
make_directory

POSIX_FILE_SYSTEM 73
make_empty

POSIX_SIGNAL_SET 74

make_from_file
POSIX_FILE_DESCRIPTOR 72

make_from_file_descriptor
POSIX_FILE 72

make_from_gid
POSIX_GROUP 72

make_from_name
POSIX_GROUP 72
POSIX_USER 72

make_from_now
POSIX_TIME 26

make_from_uid
POSIX_USER 72

make_from_unix_time
STDC_TIME 74

make_full
POSIX_SIGNAL_SET 74

make_pending
POSIX_SIGNAL_SET 74

malloc 73
max_filename_length

POSIX_DIRECTORY 73
memchr 73
memcmp 73
memcpy 73
memmove 73
memory_copy

STDC_BUFFER 73
memory_move

STDC_BUFFER 73
memset 73
MIME 9
minicom 36
mkdir 73
mkfifo 5, 6, 57, 73
mktime 73
mlock 73
mlockall 73
mmap 73
modem 36
mprotect 73
mq-receive 73
mq_close 73
mq_getattr 73
mq_notify 73
mq_open 73
mq_send 73



199

mq_setattr 73
mq_unlink 73
MQUEUE iv, 191
mqueue.h 73
msync 73
munlock 73
munlockall 73
munmap 73
my_xml

EPX_CGI 50

n
nanosleep 73

o
open 73, 191, 192
open

POSIX_FILE 8
POSIX_FILE_DESCRIPTOR 73

open_read
POSIX_TEXT_FILE 61
POSIX_FILE 8
POSIX_FILE_DESCRIPTOR 73
POSIX_SHARED_MEMORY 74

open_read_write
POSIX_FILE_DESCRIPTOR 73
POSIX_SHARED_MEMORY 74

open_write
POSIX_FILE_DESCRIPTOR 73

opendir 73
Open Source v
output_speed

POSIX_TERMIOS 71

p
p stdio.c 69
p stdio.h 69
PAPI_UNISTD 8
parent_pid

POSIX_CURRENT_PROCESS72
pathconf 73
path name 17
pause 73
pause

POSIX_CURRENT_PROCESS73
peek_int16

STDC_BUFFER 44

peek_int16_big_endian
STDC_BUFFER 44

peek_int16_little_endian
STDC_BUFFER 44

peek_int32
STDC_BUFFER 44

peek_uint16
STDC_BUFFER 44

permissions
POSIX_FILE_SYSTEM 23

perror 73
pid

POSIX_CURRENT_PROCESS12, 72
pipe 73
poke_int32_big_endian

STDC_BUFFER 44
POSIX_ASYNC_IO_REQUEST 36
POSIX_FILE_DESCRIPTOR 58, 67
POSIX_FILE_SYSTEM 21
POSIX_PERMISSIONS 23
POSIX_ASYNC_IO_REQUEST iii , 111
POSIX_BASE iii , 8, 113
POSIX_BINARY_FILE 13
POSIX_BUFFER 28, 43
POSIX_CHILD_PROCESS iii , 114
POSIX_CONSTANTS iii , 9, 115, 117,

119, 121
POSIX_CURRENT_PROCESSiii , 32, 122
POSIX_DAEMON iii , 34, 123
POSIX_DIRECTORY iii , 23, 24, 71, 73,

124
POSIX_ENV_VAR 28
POSIX_EXEC_PROCESSiii , iv, vi, 25,

125, 127, 190
POSIX_FILE iii , 13, 128
POSIX_FILE_DESCRIPTOR iii , iv, 18,

72, 129, 131, 133, 191, 191
POSIX_FILE_SYSTEM iii , 21, 135, 137
POSIX_FORK_ROOT iii , 12, 32, 138, 139
POSIX_GROUP iii , 140
POSIX_LOCK iii , 141
POSIX_MEMORY_MAP iii , iv, 73, 142,

143, 191
POSIX_PERMISSIONS iii , 23, 144, 145
POSIX_PIPE iii , 147
POSIX_SEMAPHORE iii , iv, 148, 191



Index 200

posix_setsid
PAPI_UNISTD 74

POSIX_SHELL_COMMAND 25
POSIX_SIGNAL iii , iv, 74, 149, 191
POSIX_SIGNAL_HANDLER 30, 31
POSIX_SIGNAL_SET iii , 150, 151
POSIX_STAT 23
POSIX_STATUS iii , iv, 23, 72, 74, 152,

190
POSIX_SYSTEM iii , 74, 153
POSIX_TERMIOS iii , 155
POSIX_TEXT_FILE 13, 18
POSIX_TIMED_COMMAND iii , 71, 157
POSIX_USER iii , 158
POSIX_USER_DATABASE iii , 159
printf 73
process_group_id

POSIX_CURRENT_PROCESS72
prune

POSIX_SIGNAL_SET 74
put_string

STDC_FILE 72
putc 73
putc

STDC_FILE 72
putchar 73
puts 73
puts

EPX_CGI 51
pwd.h 72

q
QNX 6

r
raise 73
raise

STDC_SIGNAL 73, 74
raise_posix_error

STDC_BASE 192
rand 73
random

STDC_CURRENT_PROCESS73
raw_value

EPX_CGI 52
read 73

read
POSIX_ASYNC_IO_REQUEST 36
POSIX_ASYNC_IO_REQUEST 71
POSIX_FILE 15
POSIX_FILE_DESCRIPTOR 73
STDC_FILE 72

read_buffer
POSIX_FILE 15

read_character
STDC_FILE 72

read_string
POSIX_TEXT_FILE 16
STDC_FILE 72

readdir 73
real_group_id

POSIX_CURRENT_PROCESS72
real_user_id

POSIX_CURRENT_PROCESS72
realloc 73
recv 6
redirect standard error29
reestablish

STDC_SIGNAL_HANDLER 31
refresh

POSIX_PERMISSIONS 23
release

POSIX_SEMAPHORE 74
remove 73
remove_directory

POSIX_FILE_SYSTEM 73
remove_file

GENERAL 4
POSIX_FILE_SYSTEM 4, 63, 73

remove_from_blocked_signals
POSIX_SIGNAL_SET 74

rename 73
rename_to

POSIX_FILE_SYSTEM 73
reopen

STDC_FILE 72
resize

STDC_BUFFER 73
restore_group_id

POSIX_CURRENT_PROCESS74
restore_user_id

POSIX_CURRENT_PROCESS74



201

return_status
POSIX_ASYNC_IO_REQUEST 71

rewind 73
rewind

STDC_FILE 73
rewinddir 73
rmdir 73

s
save_uploaded_files

EX_CGI3 54
scanf 73
security.cpu.check_process_time

STDC_FILE 67
security.cpu.set_max_process_time

STDC_FILE 67
security.files.set_max_open_files

STRING 67
security.error_handling.disable_exceptions

STDC_SECURITY_ACCESSOR63
security.error_handling.enable_exceptions

STDC_SECURITY_ACCESSOR63
security.memory.set_max_allocation

STDC_SECURITY_ACCESSOR66
security.memory.set_max_single_allocation

STRING 67
seek 17
seek

POSIX_FILE 17
POSIX_FILE_DESCRIPTOR 73
STDC_FILE 72

seek_from_current
POSIX_FILE_DESCRIPTOR 73
STDC_FILE 72

seek_from_end
POSIX_FILE_DESCRIPTOR 73
STDC_FILE 72

sem_close 73
sem_destroy 73
sem_getvalue 73
sem_init 73
sem_open 73
sem_post 74
sem_trywait 74
sem_unlink 74
sem_wait 74
semaphore.h 73, 74

sendmsg 6
set_allow_anyone_read

POSIX_PERMISSIONS 23
set_allow_group_write

POSIX_PERMISSIONS 23
set_blocked_signals

POSIX_SIGNAL_SET 74
set_buffer

POSIX_ASYNC_IO_REQUEST 36
STDC_FILE 74

set_count
POSIX_ASYNC_IO_REQUEST 36

set_date
STDC_TIME 73

set_date_time
STDC_TIME 73

set_full_buffering
STDC_FILE 74

set_group_id
POSIX_CURRENT_PROCESS74

set_handler
POSIX_SIGNAL 30, 31

set_input_speed
POSIX_TERMIOS 71

set_line_buffering
STDC_FILE 74

set_locale
STDC_CURRENT_PROCESS74

set_lock
POSIX_FILE_DESCRIPTOR 72

set_native_locale
STDC_CURRENT_PROCESS74

set_native_time
STDC_CURRENT_PROCESS74

set_no_buffering
STDC_FILE 74

set_offset
POSIX_ASYNC_IO_REQUEST 36

set_output_speed
POSIX_TERMIOS 71

set_position
POSIX_FILE 17
STDC_FILE 72

set_random_seed
STDC_CURRENT_PROCESS74

set_time
STDC_TIME 73



Index 202

set_user_id
POSIX_CURRENT_PROCESS74

setbuf 74
setgid 74
setjmp.h 75
setlocale 74
setpgid 74
setsid 74
setuid 74
setvbuf 74
shm_open 74
shm_unlink 74
sigaction 74
sigaddset 74
SIGCHLD 31
sigdelset 74
sigemptyset 74
sigfillset 74
sigismember 74
signal 74
signal.h 72, 73, 74
signal handler 30
signalled

POSIX_SIGNAL_HANDLER 30, 31
sigpending 74
sigprocmask 74
sigqueue 74
sigsuspend 74
sigtimedwait 74
sigwait 74, 191
sigwaitinfo 74
slash 17
sleep 74
sleep

EPX_CURRENT_PROCESS47
POSIX_CURRENT_PROCESS74

SmallEiffel vi, 2
sprintf 74
srand 74
src/library.xace 1, 5
sscanf 74, 75
start_tag

EPX_CGI 50
stat 23, 74
status

POSIX_FILE_DESCRIPTOR 23
POSIX_FILE_DESCRIPTOR 72

STC_TEMPORARY_FILE 43
stdarg.h 75
STDC_BASE ii , 8, 76
STDC_BINARY_FILE 43, 60, 85
STDC_BUFFER ii , 43, 43, 44, 67, 77, 79
STDC_CONSTANTS ii , 9, 43, 81
STDC_CURRENT_PROCESSii , 43, 83
STDC_ENV_VAR ii , 43, 44, 84
STDC_ERRNO

POSIX_FILE_DESCRIPTOR 64
STDC_FILE ii , iv, 67, 72, 85, 87, 89, 190
STDC_FILE_SYSTEM ii , 43, 90
STDC_LOCALE_NUMERIC iv, 73, 190
STDC_PATH iv, 190
STDC_SECURITY iii , 91
STDC_SECURITY_ACCESSOR66
STDC_SHELL_COMMAND 43, 74
STDC_SIGNAL iii , 92
STDC_SIGNAL_HANDLER iii , 93
STDC_SYSTEM iii , 43, 94
STDC_TEXT_FILE 43, 60, 85
STDC_TIME iii , iv, 43, 71, 95, 97, 190
stderr 29
stdin

binary 60
stdio.h 69, 69, 71, 72, 73, 74, 75
stdioh 72
stdlib.h 71, 72, 73, 74
stdout 29

binary 60
stream buffer 29
strftime 74
STRING 67
string.h 73
support

commercial v
SUS_BASE 8
SUS_CONSTANTS iii , 160, 161
SUS_ENV_VAR iii , 162
SUS_ENV_VAR

POSIX_ASYNC_IO_REQUEST 40
SUS_FILE_SYSTEM iii , 163
SUS_HOST iii , 164
SUS_SERVICE iii , 165
SUS_SOCKET_ADDRESS iv, 166
SUS_SYSLOG iv, 41, 167
SUS_SYSLOG_ACCESSOR41



203

SUS_TCP_SOCKET iv, 6, 168
SUS_TIME_VALUE 72
suspend

POSIX_SIGNAL_SET 74
synchronize

POSIX_ASYNC_IO_REQUEST 36
POSIX_ASYNC_IO_REQUEST 71
POSIX_FILE_DESCRIPTOR 72

synchronize_data
POSIX_FILE_DESCRIPTOR 72

sys/mman.h 73, 74
sys/stat.h 71, 72, 73, 74
sys/time.h 72
sys/utsname.h 74
sys/wait.h 75
sysconf 74
system 74
system.se 57
system.xace 3, 5

t
tcdrain 74
tcflow 74
tcflush 74
tcgetattr 74
tcgetpgrp 74
tcsendbreak 74
tcsetattr 74
tcsetpgrp 74
tell

POSIX_FILE 17
STDC_FILE 72

temporary_file_name
STDC_FILE_SYSTEM 74

terminal 20
password 20

termios.h 71
text mode 59
time 74
time.h 71, 72, 73, 74
timer_create 74
times 74
times.h 74
tmpfile 74
tmpnam 74
to_local

POSIX_TIME 26

STDC_TIME 73
to_utc

POSIX_TIME 26
STDC_TIME 72

touch
POSIX_FILE_SYSTEM 75

ttyname 74
ttyname

POSIX_FILE_DESCRIPTOR 74
tzset 74

u
ULM_LOGGING iv, 186, 187, 189
umask 74
uname 74
ungetc 74
ungetc

STDC_FILE 74
unistd.h 71, 72, 73, 74, 75
unlink 8, 74
unlink

POSIX_FILE_SYSTEM 74
unlink_shared_memory_object

POSIX_FILE_SYSTEM 74
URI 9, 42
utime 75
utime

POSIX_FILE_SYSTEM 75
utime.h 75

v
value

EPX_CGI 52, 54
STDC_ENV_VAR 72

VE_BIN 5
vfprintf 75
Visual Eiffel vi
VisualEiffel 2, 4
vprintf 75
vsprint 75

w
wait 75
wait

POSIX_CURRENT_PROCESS12, 75
wait_for

POSIX_ASYNC_IO_REQUEST 36



Index 204

POSIX_ASYNC_IO_REQUEST 71
POSIX_CHILD 12
POSIX_EXEC_PROCESS26

wait_pid
POSIX_FORK_ROOT 75

waited_child_pid
POSIX_CURRENT_PROCESS12

waitpid 75
Windows 2000 6

write 75
write

POSIX_ASYNC_IO_REQUEST 36
POSIX_ASYNC_IO_REQUEST 71
POSIX_FILE_DESCRIPTOR 75
STDC_FILE 72

write_string
POSIX_FILE_DESCRIPTOR 63, 64



205


