
e-POSIX
The definitive and complete

Eiffel to Standard C and
POSIX 1003.1 binding

written by Berend de Boer

Contents
1 Design notes 1
1.1 Why an entire reimplementation? 1
1.2 Goals and guidelines 1
1.3 Class structure 2
1.4 Clients of this library 3
1.5 Forking 4

2 Installation 6
2.1 Compiling the C code 6
2.1.1 Compiling on Unix 6
2.1.2 Compiling on Windows 6
2.2 Vendor specific notes 7
2.2.1 ISE Eiffel 7
2.2.2 SmallEiffel 7
2.2.3 Visual Eiffel 8
2.2.4 Halstenbach Eiffel 8

3 Basic Posix examples 9
3.1 Working with files 9
3.2 Working with file descriptors 11
3.3 Working with the file system 14
3.4 Executing a child command 18
3.5 Current time 19
3.6 Accessing environment variables 21
3.7 Allocating memory 21

4 More advanced Posix examples 23
4.1 Locking portions of files 23
4.2 Forking a child process 23
4.3 Creating a daemon 25
4.4 Talking to your modem 26
4.5 Writing CGI programs 28
4.6 Logging messages and errors 30
4.7 More examples 30

5 Standard C examples 31
5.1 Allocating memory 31
5.2 Accessing environment variables 32
5.3 Working with streams 32
5.4 Working with the file system 33

6 Accessing C headers 35
6.1 Making C Headers available to Eiffel 35
6.2 Distinction between Standard C andPOSIXheaders 36
6.3 C translation details 36

ii

A Posix function to Eiffel class mapping list 38

B Short (flat) listing of Standard C classes 43
B.1 STDC_BASE 43
B.2 STDC_CONSTANTS 44
B.3 STDC_CURRENT_PROCESS 45
B.4 STDC_DYNAMIC_MEMORY 46
B.5 STDC_ENV_VAR 49
B.6 STDC_FILE 50
B.7 STDC_FILE_SYSTEM 55
B.8 STDC_SYSTEM 56
B.9 STDC_TIME 57

C Short (flat) listing ofPOSIXclasses 58
C.1 POSIX_ASYNC_IO_REQUEST 58
C.2 POSIX_BASE 61
C.3 POSIX_CGI 62
C.4 POSIX_CHILD_PROCESS 63
C.5 POSIX_CONSTANTS 64
C.6 POSIX_CURRENT_PROCESS 68
C.7 POSIX_DAEMON 69
C.8 POSIX_DIRECTORY 70
C.9 BASE_FILE_DESCRIPTOR 71
C.10 POSIX_EXEC_PROCESS 74
C.11 POSIX_FILE_DESCRIPTOR 76
C.12 POSIX_FILE_SYSTEM 79
C.13 POSIX_FORK_ROOT 82
C.14 POSIX_GROUP 83
C.15 POSIX_LOCK 84
C.16 POSIX_MEMORY_MAP 85
C.17 POSIX_PERMISSIONS 87
C.18 POSIX_SIGNAL 90
C.19 POSIX_STATUS 91
C.20 POSIX_SYSTEM 92
C.21 POSIX_TERMIOS 94
C.22 POSIX_TIMED_COMMAND 96
C.23 POSIX_USER 97
C.24 XML_GENERATOR 98

To do 100
STDC_CURRENT_PROCESS 100
STDC_FILE 100
STDC_LOCALE_NUMERIC 100
STDC_PATH 100
STDC_STATUS 100
STDC_STATUS 100
STDC_TIME 100
POSIX_CURRENT_PROCESS 100

iii

POSIX_EXEC_PROCESS 100
POSIX_FILE_DESCRIPTOR 101
POSIX_MEMORY_MAP 101
POSIX_SEMAPHORE 101
POSIX_PATH 101
MQUEUE 101
DIRECTORY_BROWSER 101
SUS_SYSLOG 101
Other 102
Known bugs 102

Bibliography 103

Index 104

Introduction

It has been a great pleasure for me when I could announce the first public alpha release of this
manual. And as beta time is nearing I’m even more pleased. Writing libraries like this is boring
stuff. Every Eiffel programmer should have had access to all those Standard C andPOSIX routines
long ago. Anyway, now you and me have. Whatever a C programmer can do, you can. And even
more safe as this library protects you of inadvertently calling routines that are not portable (because
they’re simply not there :-)).

I will support this library, so bug reports and wishes are gladly accepted. In the future, I hope to be
able to expand this library to add more stuff from the Open Unix Specification, particularly sockets
and curses. Perhaps the authors of the existing Eiffel implementations for theseAPIs are willing to
create one single unified library.

Have fun using this library and I like to hear about applications!

Licensing

This software is licensed under the Eiffel Forum Freeware License, version 1. This license can be
found in theforum.txt file. Basically this license allows you to do anything with it, i.e. use it
for commercial or Open Source software without restrictions. But don’t sue me if something goes
wrong. And give me some credits.

Also explicitly allowed is copying parts of this library to your own, for example copying certain
Standard C or POSIX header wrappings. I prefer linking, but you don’t have to retype everything
if you don’t want to link.

Support

e-POSIX is a fully supported program. You can send requests for help directly to me. But to
help others profit from the discussion, and perhaps to get feedback when I’m short on time, it is
suggested that support messages are sent toeposix@egroups.com.

Latest versions and announcements are available fromhttp://www.egroups.com/group
/eposix .

Commercial support

I’m available to give companies or organisations a one or two day course usingPOSIXand in partic-
ularly this library. Prices are 1500 EUR a day, excluding VAT, travel and hotel expenses. Contact
me atberend@pobox.com.

Acknowledgements

I like to thank people who, one way or another, have helped me in creating this library. They’re
listed in order they have been involved with this library or manual:

mailto:eposix@egroups.com
http://www.egroups.com/group/eposix
http://www.egroups.com/group/eposix
http://www.egroups.com/group/eposix
http://www.egroups.com/group/eposix
http://www.egroups.com/group/eposix
http://www.egroups.com/group/eposix
http://www.egroups.com/group/eposix
mailto:berend@pobox.com

v

• Eugene Melekhov<eugene_melekhov@object-tools.com>: compiled it with Visual Eiffel.
As Visual Eiffel is the most strict compiler, he found a great many oversights that SmallEiffel
didn’t catch.

• Ida de Boer<ida@gameren.nl>: it was she who provided you with thePOSIX to Eiffel map-
ping table inappendix A.

• Steve Harris <scharris@worldnet.att.net>: suggested improvements, found a CAT call
problem and we had an interesting discussion about forking.

• Jörgen Tegnér <teg@post.netlink.se>reported a problem with an example, and a bug in
POSIX_EXEC_PROCESS.

• Marcio Marchini <mqm@magma.ca> gave very useful advice and patches to compile e-
POSIXbetter on Windows.

Colophon

The text of this manual was entered with GNU Emacs 20.5.1 on RedHat Linux 6.2. It was typeset
with pdfTEX using the ConTEXt macro package, seehttp://www.pragma-ade.com . BON
diagrams were created withMETAPOST.

mailto:eugene_melekhov@object-tools.com
mailto:eugene_melekhov@object-tools.com
mailto:eugene_melekhov@object-tools.com
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:ida@gameren.nl
mailto:scharris@worldnet.att.net
mailto:scharris@worldnet.att.net
mailto:scharris@worldnet.att.net
mailto:teg@post.netlink.se
mailto:teg@post.netlink.se
mailto:teg@post.netlink.se
mailto:mqm@magma.ca
mailto:mqm@magma.ca
mailto:mqm@magma.ca
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com
http://www.pragma-ade.com

1
Design notes

1.1 Why an entire reimplementation?

One might wonder why I reimplemented the entire Standard C andPOSIX library when most ven-
dors also have classes that deal with files, the file system, signals and such. Unfortunately, these
classes are nor complete nor very portable between vendors. For someone who wants to com-
pile against all the major vendors —and there are good reasons to do this— there is currently no
portable solution. That’s why many portable Eiffel programs more or less contain the same code
again and again. There are some attempts to write more portable libraries, for example theUnix
File/Directory Handling Cluster by Friedrich Dominicus, but they also are not complete nor is
the implementation satisfactory.

Another attempt is done by the Gobo cluster: it attempts to provide users with a set of classes that
work accross all Eiffel vendors by using only the native facilities offered by each implementation.
This solutation is also not satisfactory. I found Gobo an excellent library and I use it myself in my
xplain2sql project, but I think its approach to portability has the following flaws:

1. Because it uses inheritance to rename classes to a common name, you might use a feature which
is not available in all implementations.

2. The contract for these classes is probably not specifiable: for which platforms and which as-
sumptions are the contracts valid? Are these contracts the same in all implementations?

3. It is still incomplete, i.e. it doesn’t cover most of thePOSIX routines.

That’s why I started to make the entire Standard C andPOSIX routines available to Eiffel pro-
grammers. All these routines are nicely wrapped in classes. I spend a lot of time designing and
refactoring these, comments and improvements about its structure are very appreciated.

The advantage of makingPOSIX available to Eiffel programmers is that someone doesn’t need to
think about creating a set of portable file and directory classes that work on every known operating
system.POSIX is available on many platforms and for other systems there either is an emulation or
a POSIX mapping available. It’s better to reuse that, instead of reinventing work that took years to
complete.

1.2 Goals and guidelines

The goals and guidelines for this library were:

1. A complete Standard C implementation for those who didn’t have access toPOSIX routines.
2. A completePOSIX implementation.

http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.eiffel-forum.org/archive/dominicu/fdh.htm
http://www.pobox.com/~berend/xplain

2 Class structure

3. Do the job in such a way that it will become the official EiffelPOSIXmapping.
4. All classes should satisfy the demands posed by the query--command separation principle.
5. The native Standard C andPOSIX routines should be available to those who don’t want to go

through a certain class layer.
6. If a command fails, an exception code is raised. This differs from thePOSIXroutines where you

are expected to test for error and query theerrno variable. The only exception isunlink :
when the file does not exist, no exception is raised.

7. POSIXassumptions should be made explicit. For Eiffel this means specifying explicit pre-- and
postconditions.

8. Uuse of constants to influence the way a method should be avoided by providing clearly named
methods. So instead of passing a constants to thePOSIX_FILE.openfunction to open a file
read--only, you can also callopen_read.

9. Attempt to create non-deferred class that refer to an entity that exists in thePOSIX world. Cre-
ation of an object is binding to that entity, or creation of that entity.

10. Names should be clear, and Eiffel--like. They should not differ in just one character.POSIX

names are also made available to ease use of this library for programmers that knowPOSIX

well.

1.3 Class structure

e-POSIX makes available all the Standard C andPOSIX headers in classes likeCAPI_STDIOand
PAPI_UNISTD. You can find more details about the header translation inchapter 6.

However, making the plain C API available is not a very interesting addition to an Eiffel pro-
grammer’s toolkit. Therefore, this library’s second attempt was to make an effective OO--wrapper
mean--time making a careful distinction between what is available in the Standard C and what is
available inPOSIX. This distinction is reflected in e-POSIX’s directory structure, seefigure 1.1.

Figure 1.1 e-POSIXdirectory structure

Design notes 3

The raw Standard C API is available insrc/capi , the OO--wrapper is available insrc/stan-
dardc . The rawPOSIX API is available insrc/papi , the OO--wrapper is available insrc
/posix .

Every Standard C andPOSIXwrapper is derived from a common root, see alsofigure 1.2:

1. Certain classes are unique toPOSIXso they all inherit fromPOSIX_BASE.
2. Certain classes are derived from or build upon facilities available in Standard C. The Standard

C features are made available in classes derived fromSTDC_BASEand they all start with the
prefix STDC_.POSIXclasses just inherit from the Standard C classes or add new features. Such
a class inherits from bothSTDC_BASEandPOSIX_BASE.

3. CertainPOSIXcapabilities are available in nonPOSIXplatforms as well, for example in Microsoft
Windows. A large part of thePOSIX_FILE_SYSTEMandPOSIX_FILE_DESCRIPTORclasses
can be used on Windows too. In such cases the common functionality is abstracted so it can
more easily be reused. The root of these classes is either the abstract class orSTDC_BASE.

POSIX BASE
*

STDC BASE
*

POSIX BASE
*

STDC BASE
*

ABSTRACT
*

POSIX BASE
*

ABSTRACT
*

POSIX BASE
*

Figure 1.2 Inheritance structure

The wrapper classes should be fully command--query separated and use clear names. Often the
POSIXname, if applicable, is also made available as an alias. If this is a good thing, I’m not sure. I
hope it facilitates working with the wrapper classes if you already knowPOSIX.

1.4 Clients of this library
For client classes, two important classes areSTDC_CONSTANTSandPOSIX_CONSTANTS, see
figure 1.3. The wrapper classes tend to avoid having routines whose behavior drastically depends

4 Forking

on passed constants. But if you need to use constants, your client class can just inherit from these
classes and every Standard C andPOSIXconstant is available.

STDC CONSTANTS
+

POSIX CONSTANTS
+

Figure 1.3 Standard C andPOSIXconstants

1.5 Forking

Implementing forking posed some interesting challenges. I started with the basic idea that every
process has a pid:

class PROCESS

feature

pid: INTEGER

end

I wanted to be able to write two kinds of forking. The first one is forking a child as in:

class PARENT

inherit

POSIX_CURRENT_PROCESS

feature

make is
local

child: POSIX_CHILD_PROCESS
do

print ("My pid: ")
print (pid)

Design notes 5

print ("%N")
fork (child)
print ("child’s pid: ")
print (child.pid)
print ("%N")
child.wait_for (True)

end

end

However, I also wanted to fork myself, because that basically is what forking is!

class PARENT

inherit

POSIX_CURRENT_PROCESS

POSIX_CHILD_PROCESS

feature

make is
do

fork (Current)
wait

end

executeis
do

-- forked code
end

end

The above code gives a name clash, becausePOSIX_CURRENT_PROCESS.pidis a call to the
POSIX routinegetpid , while the child’s pid is a variable, which gets a variable after forking. You
can solve this name clash yourself, but it is most easy to inherit fromPOSIX_FORK_ROOT, a
clash which has solved this clash already.

If you fork a child, you must wait for it. For a child process, you can usePOSIX_CHILD.
wait_for, if you fork yourself, you must usePOSIX_CURRENT_PROCESS.wait. The variable
waited_child_pidwill be set with the pid of the child process thatwait waited for.

2
Installation

2.1 Compiling the C code

2.1.1 Compiling on Unix

As the Eiffel to C binding is made available through C code, you have to compile this code into the
object librarylibeposix.a before you can use the e-POSIXclasses.

This can be done with:

make libeposix.a

You need GNU make as this Makefile has several features not supported by the BSD make.

2.1.2 Compiling on Windows

For Windows system, the batch filemakelib.bat can create the e-POSIX library. However,
before you can runmakelib.bat , you probably need to edit the Makefile it uses.

Type:

makelib -msc

to compile the C code with Microsoft’s Visual C compiler. It was tested with version 6. You need
to edit Makefile.msc to set various environment variables and defines to compiler for ISE,
VisualEiffel or SmallEiffel.

Only the Microsoft supplied library did work, i.e. link, with VisualEiffel.

Type:

makelib -bcc

to compile the C code with Borland’s C compiler. It was tested with the free Borland C version 5.5
compiler. You need to editMakefile.bcc to set various environment variables and defines to
compiler for ISE or SmallEiffel.

Type:

makelib -lcc

to compile the C code with elj-win32’s lcc C compiler. You need to editMakefile.lcc to set
the location where SmallEiffel is installed.

Installation 7

As I’ve not been able to successfully melt ISE Eiffel 4.5 with Borland C 5.5, I can’t verify that this
work. However, the Microsoft compiler did work with ISE Eiffel 4.5.

2.2 Vendor specific notes

2.2.1 ISE Eiffel

Due to the fact that I decided to use ELKS2000, in an attempt to make something that finally could
be compiled by more than one compiler, and ISE Eiffel 4.5 is not yet ELKS2000 compliant, e-
POSIX doesn’t work out of the box. However, I’ve compiled and run the Standard C test programs
successfully under the following conditions:

1. I used Microsoft Windows NT 4, Service Pack 6.
2. I used the Microsoft Visual C 6.0 compiler with Service Pack 3.
3. I replaced features likeSTRING.is_emptyby empty, andclear by clear_all and perhaps some

more.

TheAce.ace file I’ve used is provided in thetest suite directory.

2.2.2 SmallEiffel

e-POSIXwas developed using SmallEiffel -0.77 beta1 and beta4 on FreeBSD and Linux.

To successfully compile with SmallEiffel you need:

1. A correctlibeposix.a or libeposix.lib , seesection 2.1. If you have the default elj-
win32 installation, it is as easy as:

makelib -lcc
2. A correctloadpath.se ,
3. Pass either thelibeposix.a library or object files to the compiler.

On Unix, compiling a class which uses e-POSIXcan be done with:

compile MYCLASS make -L/../eposix/ -leposix

Make sure the-L option points to the directory where eposix is located solibeposix.a can be
found.

On Windows, compiling a class which uses e-POSIXcan be done with:

compile -no_style_warning test_all make libeposix.lib

Again, make sure that the last argument includes the directory wherelibeposix.lib resides.
This command--line seems to work for all three supported compilers.

On Unix, a typical SmallEiffelloadpath.se looks like:

/eposix/src/sus/
/eposix/src/posix/
/eposix/src/standardc/
/eposix/src/spec/se/
/eposix/src/sapi/

8 Vendor specific notes

/eposix/src/papi/
/eposix/src/capi/
/eposix/src/support/
/eposix/src/base/

On Windows, where most of thePOSIXAPI is not available,loadpath.se can look like:

p:\src\eposix\src\standardc\
p:\src\eposix\src\capi\
p:\src\eposix\src\support\
p:\src\eposix\src\spec\se\

Because SmallEiffel has a tendency to provide lots of routines in its kernel classes, a bad thing in
my opinion, I had to write a newANY. My ANYrenamesGENERAL.remove_file, so I wouldn’t get
a conflict withPOSIX_FILE_SYSTEM.remove_file.

There is no reason for the presence ofGENERAL.remove_file, I expect this to be removed soon, so
my ANYcan be deleted when this has happened.

2.2.3 Visual Eiffel

e-POSIXcompiles almost out of the box with Visual Eiffel 3.3 beta, which is ELKS2000 compliant.
Earlier versions are not supported. My beta missedcecil.h which was sent to me separately by
ObjectTools. If you miss it, you might want to contact them.

Follow these steps to compile with VisualEiffel:

1. Because VisualEiffel does not yet support thecreatekeyword, use the providedbuild ve.
sh script to replace allcreates by the bang bang syntax.
This is a Unix shell script, you there for need a Unix shell on NT. You can download the Cygnus
tools fromhttp://www.redhat.com .

2. Add a cluster with name eposix, pointing to thesrc directory. The providedsrc/cluster.
es file will give you a correct cluster. The providedcluster.es is specific for Windows.

3. You need to make a one--line change toSTDC_FILE.read_character. Uncomment the com-
mented out line, and comment out the line after it.

4. Create a new project. Set the linker supplier option to Microsoft! This should get you some-
where. However, up to now I’ve not got a stable situation, so some of the code works, and some
doesn’t. I’ll continue my attempt to make VisualEiffel work.

2.2.4 Halstenbach Eiffel

e-POSIXhas not been tested with this compiler.

http://www.redhat.com
http://www.redhat.com
http://www.redhat.com
http://www.redhat.com
http://www.redhat.com

3
Basic Posix examples

Instead of describing every class and every feature, I decided to show short and simple examples
of common ways to use the Posix library features. If you don’t have Posix available, you can try
to replace the POSIX prefix by STDC. Most of the time the POSIX classes are based on the STDC
classes, seechapter 5.

3.1 Working with files

The basic class for working with files, or streams as they are also called, isPOSIX_FILE. There are
two kinds of files:POSIX_TEXT_FILEandPOSIX_BINARY_FILE. Although POSIX systems do
not make a distinction between binary and text files, certain systems you can compile Posix code
on do. On all variants of windows you need this distinction, even if you use the Cygwin libraries.

The first example shows how to open a text file, see also the corresponding BON diagram in
figure 3.1.

class EX_FILE1

creation

make

feature

make is
local

file: POSIX_TEXT_FILE
do

create file.open_read("/etc/group")
from
until

file.eof
loop

file.read_string(256)
print (file.last_string)

end
file.close

end

10 Working with files

STDC FILE
*

STDC TEXT FILE
+

POSIX FILE
*

POSIX TEXT FILE
+

EX FILE1

Figure 3.1 BON diagram of opening a text file.

end

It simply opens a file for reading and prints every line in it. Note that you have to specify the
maximum number of characters you are prepared to read. The minimum characters read are 256,
but perhaps you want to be able to read text files consisting of 1024 characters per line.

Every line that is read includes the end--of--line character if one was present. This is unlike Pascal
for example, but more like Perl. e-POSIX provides the featurePOSIX_TEXT_FILE.chopwhich
removes the last character oflast_stringif and only if it is an end--of--line character. And that is
unlike Perl, which removes any character. With e-POSIX it is not necesary to test for the end--of--
line characters if you just want to remove it in case one is present.

At the end, the file is closed. You don’t need to explicitly close a file as it will be closed when your
object is garbaged collected. But I think it’s a good thing not to rely or depend on this, but to close
your external resources as soon as you’re done using them. For example many systems have easily
reached limits on the number of files a process can have open.

In the second example a binary file is created and a string is written to it.

class EX_FILE2

creation

make

Basic Posix examples 11

feature

make is
local

file: POSIX_BINARY_FILE
do

create file.create_write("$HOME/myfile.tmp")
file.write_string ("hello world.%N")
file.close

end

end

This example also demonstrates a nice feature that pathnames —file and directory names— have:
if they contain one or more environment variables, they are expanded before the name is used. And
depending on the platform you are running a backslash is turned into a slash or vice versa.

3.2 Working with file descriptors

The file descriptors classes are quite equal to the file classes. The following example opens a file
usingPOSIX_FILE_DESCRIPTORand reads the first 64 bytes.

class EX_FD1

creation

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
do

create fd.open_read("/etc/group")
fd.read_string(64)
print (fd.last_string)
fd.close

end

end

Unlike POSIX_TEXT_FILE, there is no easy way to detect end of line and end of file conditions.
However, a file descriptor can easily be turned into a file as the following example demonstrates.

class EX_FD2

creation

12 Working with file descriptors

make

feature

make is
local

fd: POSIX_FILE_DESCRIPTOR
file: POSIX_TEXT_FILE

do
create fd.open_read("/etc/group")
create file.make_from_file_descriptor(fd, "r")
from
until

file.eof
loop

file.read_string(256)
print (file.last_string)

end
file.close
fd.close

end

end

A file descriptor can also be used to lock, unlock or test for locks on a given file as the following
example demonstrates. See also the accompanying BON diagram infigure 3.2.

class EX_FD4

creation

make

feature

make is
local

lock: POSIX_LOCK
fd: POSIX_FILE_DESCRIPTOR

do
create fd.create_read_write("test.tmp")
fd.write_string ("Test")

create lock.make
lock.set_allow_read
lock.set_start(2)
lock.set_length(1)
if fd.get_lock(lock) then

Basic Posix examples 13

print ("There is already a lock?%N")
end

lock.set_allow_none
lock.set_start(0)
lock.set_length(4)
fd.set_lock(lock)

fd.close
end

end

PerhapsPOSIX_FILE_DESCRIPTOR.get_lockis not entirely command--query separated, but I
couldn’t come up with a better solution. You pass aPOSIX_LOCKto get_lockand it returns
True if there is already a lock. The passed parameterPOSIX_LOCKis set to the details of the lock.

POSIX BASE
*

POSIX FILE DESCRIPTOR
+

POSIX LOCK
+

EX FD4

Figure 3.2 BON diagram of locking a portion of a file.

A file descriptor also gives you access to the attached terminal, if any. The following example
demonstrates how to read a password without the password appearing on the screen.

class EX_FD3

inherit

POSIX_CURRENT_PROCESS

creation

make

feature

14 Working with the file system

make is
do

print ("Password: ")
stdout.flush

-- turn off echo
fd_stdin.terminal.set_echo_input(False)
fd_stdin.terminal.apply_flush

-- read password
fd_stdin.read_string(256)

-- turn echo back on
fd_stdin.terminal.set_echo_input(True)
fd_stdin.terminal.apply_now

print ("%NYour password was: ")
print (fd_stdin.last_string)

end

end

3.3 Working with the file system

POSIXdefines many commands to navigate a file system. They’re made available by thePOSIX_FILE_SYSTEM.
The following example navigates to the user’s home directory, create a directory and removes it.

class EX_DIR1

inherit

POSIX_FILE_SYSTEM
rename

make as make_file_system
end

creation

make

feature

make is
do

make_file_system
change_directory("~")
make_directory("qqtest.xyz.tmp")

Basic Posix examples 15

remove_directory("qqtest.xyz.tmp")
end

end

To get access to the file system, inheriting from thePOSIX_FILE_SYSTEMclass is easiest. Don’t
forget to call the creation routine ofPOSIX_FILE_SYSTEMthough.

There are also lots of functions to test for existence, readability or writability of files. Useis_modifiable
to test if a file is readable and writable.

class EX_DIR2

inherit

POSIX_FILE_SYSTEM
rename

make as make_file_system
end

creation

make

feature

make is
local

perm: POSIX_PERMISSIONS
do

make_file_system

print_info (is_existing ("/tmp"), "existing")
print_info (is_executable("/bin/ls"), "executable")
print_info (is_readable("/etc/passwd"), "readable")
print_info (is_writable ("/etc/passwd"), "writable")
print_info (is_modifiable("/etc/passwd"), "readable and writable")

perm := permissions("/etc/passwd")

if perm.allow_group_readthen
print ("Group is allowed to read/etc/passwd.%N")

else
print ("Group is not allowed to read/etc/passwd.%N")

end

if perm.allow_anyone_read_writethen
print ("Anyone is allowed to read file.tmp.%N")

else

16 Working with the file system

print ("Anyone is not allowed to read file.tmp.%N")
end

end

print_info (ok: BOOLEAN; what: STRING) is
do

print ("is_")
print (what)
print (" returned ")
print (ok)
print (".%N")

end

end

Be aware thatPOSIX_FILE_SYSTEM.is_readableuses the real user and group IDs instead of the
effective ones.

As you can seen in the above example you can test for the permissions of a file using thePOSIX_PERMISSIONS
class. A new permissions class is created for everyPOSIX_FILE_SYSTEM.permissionscall, so it
is best to cache this object. If the permissions change on the file system, this class does not reflect
reality anymore, because it caches the permissions. UsePOSIX_PERMISSIONS.refreshto update
the contents. Useset_allow_group_write, set_allow_anyone_readand such to set permissions.

e-POSIXalso gives you access to thestat function using thePOSIX_STATUSclass.

class EX_DIR4

inherit

POSIX_FILE_SYSTEM
rename

make as make_file_system
end

creation

make

feature

make is
local

stat: POSIX_STATUS
do

make_file_system

stat := status ("/etc/passwd")
print ("size: ")

Basic Posix examples 17

print (stat.size.out)
print (".%N")
print ("uid: ")
print (stat.permissions.uid)
print (".%N")

end

end

ThePOSIX_STAT, and through itPOSIX_PERMISSIONS, are also returned byPOSIX_FILE_DESCRIPTOR.
status.

Browsing a directory can be done by allocated aPOSIX_DIRECTORYclass through thePOSIX_FILE_SYSTEM.
browse_directoryfeature:

class EX_DIR3

inherit

POSIX_FILE_SYSTEM
rename

make as make_file_system
end

creation

make

feature

make is
local

dir: POSIX_DIRECTORY
do

make_file_system

from
dir := browse_directory(".")
dir.start

until
dir.exhausted

loop
print (dir.item)
print ("%N")
dir.forth

end
dir.close

end

18 Executing a child command

end

As can be seen,POSIX_DIRECTORYfollows EiffelBase conventions.

3.4 Executing a child command

Any command line can be executed by using thePOSIX_SHELL_COMMANDclass. Just pass a
command line andexecuteit.

class EX_CMD

creation

make

feature

make is
local

command: POSIX_SHELL_COMMAND
do

create command.make("/bin/ls *")
command.execute
print ("Exit code: ")
print (command.exit_code)
print ("%N")

end

end

Of course, unlike filenames and directory names, the passed command line is not subject to en-
vironment variable expansion by Eiffel itself. Any expansion is done by the shell to which the
command is passed.

Often one wants to redirect the output of the program that is being executed. For such cases use
thePOSIX_EXEC_PROCESSclass.

class EX_EXEC1

inherit

POSIX_CURRENT_PROCESS

creation

make

feature

Basic Posix examples 19

make is
local

ls: POSIX_EXEC_PROCESS
do

-- necessary under SmallEiffel
ignore_child_stop_signal

-- list contents of current directory
create ls.make_capture_output("ls", <<"-1", ".">>)
ls.execute
print ("ls pid: ")
print (ls.pid)
print ("%N")
from

ls.stdout.read_string(512)
until

ls.stdout.eof
loop

print (ls.stdout.last_string)
ls.stdout.read_string(512)

end

-- close captured io
ls.stdout.close

-- wait for process
ls.wait_for (True)

end

end

Besides capturing output, you can also capture the standard input and standard error of the executed
process.

3.5 Current time

e-POSIXhas a very complete class to work with times. A time can be set from the current time
by usingPOSIX_TIME.make_from_now. Before a time can be printed, it needs to be convert-
ed to either local time orUTC. Date and times can be printed using features asdefault_format,
local_date_string, local_time_stringor a custom format throughformat.

class EX_TIME1

creation

make

feature

20 Current time

make is
local

time1,
time2: POSIX_TIME

do
create time1.make_from_now
time1.to_local
print_time (time1)
time1.to_utc
print_time (time1)
create time2.make_time(0, 0, 0)
print_time (time2)
create time2.make_date_time(1970, 10, 31, 6, 55, 0)
time2.to_utc
print_time (time2)

if time2 < time1 then
print ("time2 is less than time1 as expected.%N")

else
print ("!! time2 is not less than time1.%N")

end
end

print_time (time: POSIX_TIME) is
do

print ("Date: ")
print (time.year)
print ("-")
print (time.month)
print ("-")
print (time.day)
print (" ")
print (time.hour)
print (":")
print (time.minute)
print (":")
print (time.second)
print ("%N")
print ("Weekday: ")
print (time.weekday)
print ("%N")
print ("default string: ")
print (time.default_format)
print ("%N")

end

end

Basic Posix examples 21

3.6 Accessing environment variables

With the classPOSIX_ENV_VAR, the contents of environment variables can be queried. Unfortu-
nately,POSIXdoes not define a portable function to set environment variables, but perhaps I should
just addputenv as it is in the Single Unix Specification, so probably available on mostPOSIX

platforms.

class EX_ENV1

creation

make

feature

make is
local

env: STDC_ENV_VAR
do

create env.make("HOME")
print (env.value)
print ("%N")

end

end

3.7 Allocating memory

Allocating dynamic memory is very useful, but not portably available for Eiffel programmers. With
POSIX_DYNAMIC_MEMORYmemory can be allocated, read and written to.

class EX_MEM

creation

make

feature

make is
local

mem: POSIX_DYNAMIC_MEMORY
byte: INTEGER

do
create mem.allocate(256)
mem.poke_byte(2, 57)
byte := mem.peek_byte(2)
mem.resize(512)

22 Allocating memory

mem.deallocate
end

end

4
More advanced Posix examples

4.1 Locking portions of files

It looks like locking should work, but I’ve not been able to demonstrate this yet by a correct test
class.

4.2 Forking a child process

Forking is very easy with this EiffelPOSIX implementation. The steps:

1. Write a child by inheriting fromPOSIX_FORK_ROOTand implementing itsexecutemethod.
2. The class that will do the forking, should inherit fromPOSIX_CURRENT_PROCESS.
3. Pass the child to the inherited featurePOSIX_CURRENT_PROCESS.forkand the forking has

begun.

The following class shows the process that forks the child.

class

EX_FORK1

inherit

POSIX_CURRENT_PROCESS

POSIX_FILE_SYSTEM
rename

make as make_file_system
end

creation

make

feature

make is
local

24 Forking a child process

POSIX CURRENT PROCESS POSIX CHILD PROCESS
*

POSIX TEXT FILE
+

POSIX FORK ROOT
*

FORK CHILD
*

EX FORK1

Figure 4.1 BON diagram of forking a child process.

reader: POSIX_TEXT_FILE
stop_sign: BOOLEAN
child: FORK_CHILD

do
make_file_system

-- necessary under SmallEiffel
ignore_child_stop_signal

unlink ("berend.tmp")
make_fifo("berend.tmp", S_IRUSR+ S_IWUSR)
create child
fork (child)

-- we will now block until file is opened for writing
create reader.open_read("berend.tmp")
from

stop_sign:= False
until

stop_sign
loop

reader.read_string(128)

More advanced Posix examples 25

print (reader.last_string)
stop_sign:= equal(reader.last_string,"stop%N")

end
reader.close

-- now wait for the writer to terminate
child.wait_for (True)

unlink ("berend.tmp")
end

end

This class just displays anything that the writer, the child class, writes to theFIFO. When it rec-
ognizes stop, the reader stops after waiting for the child it has spawned. Note that this is very
important! Wait for any child you have spawned else you might get spurious errors if the process
exits and a child has not yet finished.

The following class shows the forked child.

class FORK_CHILD

inherit

POSIX_FORK_ROOT

feature

executeis
local

writer: POSIX_TEXT_FILE
do

create writer.open_append("berend.tmp")
writer.write_string ("first%N")
writer.write_string ("stop%N")
writer.close

-- we give the reader some time to process these messages
sleep (10)

end

end

4.3 Creating a daemon

Creating a simple daemon is easy if you inherit fromPOSIX_DAEMON. Implement theexecute
method, and you’re done. At run--time, calldetachto fork off a child. You can calldetachas many
times as you want to spawn daemons.

26 Talking to your modem

class EX_DAEMON

inherit

POSIX_DAEMON

creation

make

feature -- the parent

make is
do

-- necessary under SmallEiffel
ignore_child_stop_signal

if argument_count= 0 then
print ("Options:%N")
print ("-d start daemon%N")

else
if equal(argument(1), "-d") then

detach
print ("Daemon started.%N")
print ("Its pid: ")
print (last_child_pid)
print ("%N")

end
end

end

feature -- the daemon

executeis
do

-- daemon stays alive for 20 seconds
sleep (20)

end

end

4.4 Talking to your modem

With e-POSIXyou can talk to your modem. The implementation contains not all the details to write
a full--featured program as minicom, but they will be added upon request.

More advanced Posix examples 27

The following example tries to talk to your modem —which is expected to be at/dev/modem —
and queries its manufacturer.

class EX_MODEM

inherit

POSIX_CURRENT_PROCESS

creation

make

feature

make is
local

modem: POSIX_FILE_DESCRIPTOR
term: POSIX_TERMIOS

do
-- assume there is a /dev/modem device
create modem.open_read_write("/dev/modem")
term := modem.terminal
term.flush_input
print ("Input speed: ")
print (term.speed_to_baud_rate(term.input_speed))
print ("%N")
print ("Output speed: ")
print (term.speed_to_baud_rate(term.output_speed))
print ("%N")

term.set_input_speed(B9600)
term.set_output_speed(B9600)
term.set_receive(True)
term.set_echo_input(False)
term.set_echo_new_line(False)
term.set_input_control(True)
term.apply_flush

-- expect modem to echo commands
modem.write_string("AT%N")
modem.read_string(64)
print ("Command: ")
print (modem.last_string)
modem.read_string(64)
print ("Response(expect ok): ")
print (modem.last_string)
modem.write_string("ATI0%N")

28 Writing CGI programs

modem.read_string(64)
print ("Command: ")
print (modem.last_string)
modem.read_string(64)
print ("Response: ")
print (modem.last_string)
modem.close

end

end

POSIX BASE
*

POSIX FILE DESCRIPTOR
+

POSIX TERMIOS
+

EX MODEM

Figure 4.2 BON diagram of talking to a modem.

4.5 Writing CGI programs

Although writing aCGI program doesn’t really belong toPOSIX, they still written often, so I decided
to include a few classes to make this easier. And of course, they build upon the standardPOSIX

classes.

You just inherit fromPOSIX_CGIand start calling its features.

class EX_CGI

inherit

POSIX_CGI
rename

make as make_cgi
end

creation

make

More advanced Posix examples 29

feature

make is
do

make_cgi

content_text

doctype
b_html

b_head
title ("EPosix CGI example.")
e_head

b_body

p ("Hello World.")
add_data ("<p>you can use yourown tags.</p>")
b_p
add_data ("or use any tag by using:")
e_p

start_tag ("table")
set_attribute("border", Void)
set_attribute("cols", "3")
start_tag ("tr")
start_tag ("td")
add_data ("start_tag")
stop_tag
start_tag ("td")
add_data ("stop_tag")
stop_tag
stop_tag
stop_tag

e_body
e_html

end

end

It is important not to mix writing to stdout with the features you inherit fromPOSIX_CGI. POSIX_CGI
does some caching, so after a tag is started byPOSIX_CGI.start_tagit is not yet written to standard
output. If you want to write something to standard output, use thePOSIX_CGI.add_datafeature.

30 Logging messages and errors

4.6 Logging messages and errors

AlthoughPOSIXdoesn’t have logging facilities, the Single Unix Specification does. This specifica-
tion requires the presence of thesyslogd daemon for centralizes logging facilities. The following
example shows you to write messages to this daemon

class EX_SYSLOG

inherit

SUS_SYSLOG
rename

make as make_syslog
end

creation

make

feature

make is
do

make_syslog("test", LOG_ODELAY+ LOG_PID, LOG_USER)

debug_dump("this is a debug message")
info ("this is an informational message")
warning ("this is a warning")
error ("this is an error message")

close
end

end

Make sure there is just a singleSUS_SYSLOGclass in your system. It doesn’t make sense to open
a connection to the logging daemon twice.

4.7 More examples

If you are looking for more examples, you might take a look at the classes in thetest suite
directory. These classes should demonstrate and test almost every feature available in thePOSIX

classes.

5
Standard C examples

If you don’t have access to aPOSIX compatible system, you can use the underlying Standard C
classes. Standard C is quite restricted in certain respects: you cannot change directories for ex-
ample. On the other hand, this library gives you access to all Standard C routines, so you can use
what’s there and write an extremely portable program.

All Standard C classes start withSTDC_. They are:

1. STDC_TEXT_FILE: access text files.
2. STDC_BINARY_FILE: access binary files.
3. STC_TEMPORARY_FILE: create a temporary file, a file that is removed when it is closed or

when the program terminates.
4. STDC_CONSTANTS: access Standard C constants like error codes and such.
5. STDC_DYNAMIC_MEMORY: allocate dynamic memory.
6. STDC_ENV_VAR: access environment variables.
7. STDC_FILE_SYSTEM: delete and rename files.
8. STDC_SHELL_COMMAND: pass an arbitrary command to the native shell.
9. STDC_SYSTEM: access information about the system the program is running on.
10.STDC_CURRENT_PROCESS: access to current process related information like its standard

input, output and error streams.
11.STDC_TIME: access current time. Also can format a given time in various formats.

5.1 Allocating memory

You can dynamically allocate memory withSTDC_DYNAMIC_MEMORYwhich works just like
POSIX_DYNAMIC_MEMORY.

class EX_MEM2

creation

make

feature

make is
local

mem: STDC_DYNAMIC_MEMORY

32 Accessing environment variables

byte: INTEGER
do

create mem.allocate_and_clear(128)
mem.poke_byte(2, 57)
byte := mem.peek_byte(2)
mem.resize(256)
mem.deallocate

end

end

With the featureSTDC_DYNAMIC_MEMORY.allocate_and_clearmemory is allocated and cleared
to all zeros.

5.2 Accessing environment variables

5.3 Working with streams

Working with text files is equal to thePOSIXclasses, only you use theSTCprefix.

class EX_FILE3

creation

make

feature

make is
local

file: STDC_TEXT_FILE
do

create file.open_read("/etc/group")
from
until

file.eof
loop

file.read_string(256)
print (file.last_string)

end
file.close

end

end

Its BON diagram, see figure?? is therefore quite equal to thePOSIXone, see figure?? .

Standard C examples 33

STDC FILE
*

STDC TEXT FILE
+

EX FILE3

Figure 5.1 BON diagram of opening a Standard C text file.

5.4 Working with the file system

Standard C doesn’t offer much for file systems. You can only delete and rename files.

class EX_DIR5

inherit

STDC_FILE_SYSTEM
rename

make as make_file_system
end

creation

make

feature

make is
do

make_file_system
rename_to("qqtest.abc.tmp", "qqtest.xyz.tmp")
remove_file("qqtest.xyz.tmp")

end

end

The BON diagram is shown infigure 5.2.

34 Working with the file system

STDC BASE
*

STDC FILE SYSTEM
+

EX DIR5

Figure 5.2 BON diagram of deleting and
renaming files with Standard C.

6
Accessing C headers

This chapter explains the conventions that e-POSIXuses to access the C--headers.

6.1 Making C Headers available to Eiffel

The most portable and safest header translation comes when a C function is not called verba-
tim, but instead a translation function is used. For example to make the Standard C function
fopen available within Eiffel a new header file is created which lists an Eiffel compatible way to
call this routine:

#include "eiffel.h"
#include <stdio.h>

EIF_POINTER posix_fopen(EIF_POINTER filename, EIF_POINTER mode);

Instead of using C types, we use Eiffel types here, which are made available by includingeiffel.
h.

The corresponding C file contains the following implementation:

#include "my_new_header.h"

EIF_POINTER posix_fopen(EIF_POINTER filename, EIF_POINTER mode)
{

return ((EIF_POINTER) fopen (filename, mode));
}

It simply calls the original function, returning the result. Type conversion between Eiffel and C
types shouldn’t pose problems this way.

To be able to call this function from Eiffel, anexternal feature needs to be written. For example:

class HEADER_STDIO

feature { NONE} -- C binding for stream functions

posix_fopen(path, a_mode: POINTER): POINTER is
-- Opens a stream

require
valid_mode: a_mode/= default_pointer

external "C"
end

36 Distinction between Standard C andPOSIX headers

end

Of course, the Eiffel function can have all Design By Contract features Eiffel programmers are
accustomed too.

To recapitulate: every header that is to be translated, needs:

1. a new header file, and
2. a corresponding C file, and
3. an Eiffel class.

For example to translate<stdio.h> a header file likeeiffel stdio.h and a C fileeiffel
stdio.c is needed. The Eiffel class could be inheader stdio.e .

6.2 Distinction between Standard C andPOSIX headers

However,POSIX sometimes defines extensions to existing Standard C headers. Simply using a
translation header file likeeiffel stdio.h will not work for pure Standard C Eiffel programs,
as it can includePOSIXspecific extensions that might simply not be available on a given platform.

Therefore, e-POSIXdivides the C headers in several groups:

1. The Standard C headers.
2. ThePOSIXheaders.
3. The Single Unix Specification headers.
4. Microsoft Windows headers (as far as they definePOSIXfunctions, this library does not translate

Microsoft Windows specific functions).

Every group gets its own translation header with its own prefix. A translated header has a prefix, an
underscore and next the original header name. The Standard C translation of<stdio.h> is done
in c stdio.h andc stdio.c . ThePOSIX extensions to this header are available inp stdio.
handp stdio.c .

The corresponding Eiffel class follows similar conventions. It has the group’s prefix, next the
string ‘API’, an underscore and next the name of the header. So all<stdio.h> functions are
made available inCAPI_STDIO.

In table 6.1all the groups with there translation header prefix and Eiffel class prefix are listed. See
also the directory structure infigure 6.1.

6.3 C translation details

This translation wants to do as less as possible at the C level. It attempts to just make available the
C constants and C functions and do the actual work in Eiffel.

A few details:

1. Constants, C macro definitions, are exported in the header file with the prefix ‘const_’ and next
the macro name. The Eiffel API class exports these constants with the original, uppercased
name.

2. Struct members are exported with getter and setter functions. The get function has the prefix
‘posix’, an underscore, the struct name, an underscore and as last the member name. The

Accessing C headers 37

set function has the prefix ‘posix’, an underscore, ‘set’, an underscore, the struct name, an
underscore and as last the member name.

Figure 6.1 e-POSIXdirectory structure

Group directory header prefix class prefix

Standard C src/capi c CAPI

POSIX src/[api p PAPI

Single Unix Specification src/sapi s SAPI

Windows src/wapi w WAPI

Table 6.1 hai

A
Posix function to Eiffel class mapping list

The following table defines exactly where a given Posix function is used in a Eiffel class mapping.
The table is sorted in alphabetic order. Note that when a STDC_ class is listed, the feature is also
available in the corresponding POSIX_ class.

Function Header Class Comment

abort <stdlib.h> STDC_CURRENT_PROCESS.abort
access <unistd.h> POSIX_FILE_SYSTEM.is_accessible
alarm <unistd.h> POSIX_TIMED_COMMAND
asctime <time.h> STDC_TIME.default_format
atexit <stdlib.h> probably not applicable.
calloc <stdlib.h> STDC_DYNAMIC_MEMORY.allocate_and_clear
cfgetispeed <termios.h>
cfgetospeed <termios.h>
cfsetispeed <termios.h>
cfsetospeed <termios.h>
chdir <unistd.h> POSIX_FILE_SYSTEM.change_directory
chmod <sys/stat.h> POSIX_FILE_SYSTEM.change_mode
chown <unistd.h> POSIX_PERMISSIONS_PATH.apply_owner_and_group
clearerr <stdio.h> STDC_FILE.clear_error
clock <time.h>
close <unistd.h> POSIX_FILE_DESCRIPTOR.close
closedir <dirent.h> POSIX_DIRECTORY
creat <fcntl.h> POSIX_FILE_DESCRIPTOR.create_read_write
ctermid <unistd.h>
ctime <time.h>
cuserid <stdio.h> seegetlogin
difftime <time.h> STDC_TIME
dup <unistd.h> POSIX_FILE_DESCRIPTOR.make_as_duplicate
dup2 <unistd.h> POSIX_FILE_DESCRIPTOR.make_as_duplicate
execl <unistd.h> Seeexecvp .
execle <unistd.h> Seeexecvp .
execlp <unistd.h> Seeexecvp .
execv <unistd.h> Seeexecvp .
execve <unistd.h> Seeexecvp .
execvp <unistd.h> POSIX_EXEC_PROCESS.execute
exit <stdlib.h> STDC_CURRENT_PROCESS.exit
_exit <unistd.h>
fclose <stdio.h> STDC_FILE.close
fcntl <unistd.h> POSIX_FILE_DESCRIPTOR attempt_lock,get_lock, set_lock

and others.

Posix function to Eiffel class mapping list 39

fdatasync <unistd.h> POSIX_FILE_DESCRIPTOR.synchronize_data
fdopen <stdio.h> POSIX_FILE.make_from_file_descriptor
feof <stdio.h> STDC_FILE.eof
ferror <stdio.h> STDC_FILE.error
fflush <stdio.h> STDC_FILE.flush
fgetc <stdio.h> STDC_FILE.get_character
fgetpos <stdio.h> STDC_FILE.get_position
fgets <stdio.h> STDC_FILE.get_string
fileno <stdio.h> POSIX_FILE_DESCRIPTOR.make_from_file
fopen <stdio.h> STDC_FILE various open creation fea-

tures.
fork <unistd.h> POSIX_CURRENT_PROCESS.fork
fpathconf <unistd.h>
fprintf <stdio.h> not applicable.
fputc <stdio.h> STDC_FILE.putc
fputs <stdio.h> STDC_FILE.put_string
fread <stdio.h> STDC_FILE.read Also read_stringandread_character.
free <stdlib.h> STDC_DYNAMIC_MEMORY.deallocate
freopen <stdio.h> STDC_FILE.reopen
fseek <stdio.h> STDC_FILE.seek Alsoseek_from_current

andseek_from_end.
fsetpos <stdio.h> STDC_FILE.set_position
fstat <sys/stat.h> POSIX_STATUS Returned byPOSIX_FILE_DESCRIPTOR.

status.
fsync <unistd.h> POSIX_FILE_DESCRIPTOR.synchronize
ftell <stdio.h> STDC_FILE.tell
fwrite <stdio.h> STDC_FILE.write
getc <stdioh> Not implemented.
getchar <stdio.h> Not implemented.
getcwd <unistd.h> POSIX_FILE_SYSTEM.current_directory
getegid <unistd.h> POSIX_CURRENT_PROCESS.effective_group_id
getenv <stdlib.h> STDC_ENV_VAR.value
geteuid <unistd.h> POSIX_CURRENT_PROCESS.effective_user_id
getgid <unistd.h> POSIX_CURRENT_PROCESS.real_group_id
getgrgid <grp.h> POSIX_GROUP.make_from_gid
getgrnam <grp.h> POSIX_GROUP.make_from_name
getgroups <unistd.h> POSIX_CURRENT_PROCESS.is_in_group
getlogin <unistd.h> POSIX_CURRENT_PROCESS.login_name
getpgrp <unistd.h> POSIX_CURRENT_PROCESS.process_group_id
getpid <unistd.h> POSIX_CURRENT_PROCESS.pid
getppid <unistd.h> POSIX_CURRENT_PROCESS.parent_pid
getpwnam <pwd.h> POSIX_USER.make_from_name
getpwuid <pwd.h> POSIX_USER.make_from_uid
gets <stdio.h> Not implemented.
getuid <unistd.h> POSIX_CURRENT_PROCESS.real_user_id
gmtime <time.h> STDC_TIME.to_utc
isatty <unistd.h> POSIX_FILE_DESCRIPTOR.is_attached_to_terminal
kill <signal.h> POSIX_PROCESS.kill
link <unistd.h> POSIX_FILE_SYSTEM.link
localeconv <locale.h> STDC_LOCALE_NUMERIC
localtime <time.h> STDC_TIME.to_local

40

lseek <unistd.h> POSIX_FILE_DESCRIPTOR.seek Alsoseek_from_current
andseek_from_end.

malloc <stdlib.h> STDC_DYNAMIC_MEMORY.allocate
mblen <stdlib.h>
mbstowcs <stdlib.h>
mbtowc <stdlib.h>
mkdir <sys/stat.h> POSIX_FILE_SYSTEM.make_directory
mkfifo <sys/staat.h> POSIX_FILE_SYSTEM.make_fifo
mktime <time.h> STDC_TIME.set_date_time Alsoset_dateandset_time.
open <fcntl.h> POSIX_FILE_DESCRIPTOR.open Alsoopen_read, open_read_write

andopen_write
opendir <dirent.h> POSIX_DIRECTORY
pathconf <unistd.h> POSIX_DIRECTORY.max_filename_length
pause <unistd.h> POSIX_CURRENT_PROCESS.pause
perror <stdio.h>
pipe <unistd.h> POSIX_PIPE.make
printf <stdio.h> not applicable.
putc <stdio.h>
putchar <stdio.h>
puts <stdio.h>
raise <signal.h>
rand <stdlib.h>
read <unistd.h> POSIX_FILE_DESCRIPTOR.read
readdir <dirent.h> POSIX_DIRECTORY
realloc <stdlib.h> STDC_DYNAMIC_MEMORY.resize
remove <stdio.h> POSIX_FILE_SYSTEM.remove_file
rename <unistd.h> POSIX_FILE_SYSTEM.rename_to
rewind <stdio.h> STDC_FILE.rewind
rewinddir <dirent.h> POSIX_DIRECTORY
rmdir <unistd.h> POSIX_FILE_SYSTEM.remove_directory
scanf <stdio.h> not applicable.
setbuf <stdio.h> STDC_FILE.set_buffer
setgid <unistd.h> POSIX_CURRENT_PROCESS.set_group_id Also restore_group_id.
setlocale <locale.h> STDC_CURRENT_PROCESS.set_locale Also set_native_locale

andset_native_time.
setpgid <unistd.h> PAPI_UNISTD.posix_setsid
setsid <unistd.h> PAPI_UNISTD.posix_setsid
setuid <unistd.h> POSIX_CURRENT_PROCESS.set_user_id Also restore_user_id.
setvbuf <stdio.h> STDC_FILE.set_no_buffering Also set_full_buffering

andset_line_buffering
sigaction <signal.h> POSIX_SIGNAL
sigaddset <signal.h>
sigdelset <signal.h>
sigemptyset <signal.h>
sigfillset <signal.h>
sigismember <signal.h>
signal <signal.h>
sigpending <signal.h>
sigprocmask <signal.h>
sigsuspend <signal.h>
sleep <unistd.h> POSIX_CURRENT_PROCESS.sleep
sprintf <stdio.h> Not applicable.

Posix function to Eiffel class mapping list 41

srand <stdlib.h> Applicable??
sscanf <stdio.h> Not applicable.
stat <sys/stat.h> POSIX_STATUS
strftime <time.h> STDC_TIME.format
sysconf <unistd.h> POSIX_SYSTEM
system <stdlib.h> STDC_SHELL_COMMAND
tcdrain <unistd.h>
tcflow <unistd.h>
tcflush <unistd.h>
tcgetattr <unistd.h> POSIX_TERMIOS.make
tcgetpgrp <unistd.h>
tcsendbreak <unistd.h>
tcsetattr <unistd.h> POSIX_TERMIOS.apply_now Alsoapply_drainandapply_flush
tcsetpgrp <unistd.h>
time <time.h> STDC_TIME.make_from_unix_time
times <times.h>
tmpfile <stdio.h> STDC_TEMPORARY_FILE.make
tmpnam <stdio.h> STDC_FILE_SYSTEM.temporary_file_name
ttyname <unistd.h> POSIX_FILE_DESCRIPTOR.ttyname
tzset <time.h>
umask <sys/stat.h>
uname <sys/utsname.h> POSIX_SYSTEM Various queries.
ungetc <stdio.h> STDC_FILE.ungetc
unlink <unistd.h> POSIX_FILE_SYSTEM.unlink
utime <utime.h> POSIX_FILE_SYSTEM.utime See also itstouchmethod.
vfprintf <stdio.h> Not applicable.
vprintf <stdio.h> Not applicable.
vsprint <stdio.h> Not applicable.
wait <sys/wait.h> POSIX_CURRENT_PROCESS.wait
waitpid <sys/wait.h> POSIX_FORK_ROOT.wait_pid
wcstombs <stdlib.h>
wctomb <stdlib.h>
write <unistd.h> POSIX_FILE_DESCRIPTOR.write

Above table containsPOSIX 1003.1 functions. Most functions fromPOSIX 1003.1b still have to be
added.

Missing:

• ctime
• fprintf
• fscanf
• pipe
• umask
• vfprintf
• sprintf

stdio: no getchar, printf, putchar, scanf, vprintf (makes sense??)

No function fgetc, but only getc. Problem? Also export fgetc?

Some signal functions also skipped for the moment.

No math/string functions.

42

Not <ctype.h> and<setjmp.h> and<stdarg.h> .

Not type conversion functions.

Not wide character functions.

B
Short (flat) listing of Standard C classes

B.1 STDC_BASE

class interface STDC_BASE
feature(s) from STDC_BASE

-- errno
errno: STDC_ERRNO

feature(s) from STDC_BASE
-- exceptions
raise_posix_error
safe_call (res: INTEGER)

-- raise an exception when value = -1
end of STDC_BASE

44 STDC_CONSTANTS

B.2 STDC_CONSTANTS

class interface STDC_CONSTANTS
feature(s) from STDC_CONSTANTS

-- error codes
EDOM: INTEGER

-- Math argument out of domain of function
ERANGE: INTEGER

-- Math result not representable
feature(s) from STDC_CONSTANTS

-- Signals
SIGABRT: INTEGER
SIGTERM: INTEGER

feature(s) from STDC_CONSTANTS
-- category constants
LC_CTYPE: INTEGER
LC_NUMERIC: INTEGER
LC_TIME: INTEGER
LC_COLLATE: INTEGER
LC_MONETARY: INTEGER
LC_ALL: INTEGER

end of STDC_CONSTANTS

Short (flat) listing of Standard C classes 45

B.3 STDC_CURRENT_PROCESS

class interface STDC_CURRENT_PROCESS
feature(s) from STDC_CURRENT_PROCESS

-- my stdandard input/output/error
stdin: STDC_TEXT_FILE
stdout: STDC_TEXT_FILE
stderr: STDC_TEXT_FILE

feature(s) from STDC_CURRENT_PROCESS
-- global locale
locale: STRING

-- return current locale
numeric_format: STDC_LOCALE_NUMERIC

-- various information for formatting numbers and monetary
-- quantities

set_locale(category: INTEGER; new_locale: STRING)
-- set given locale tonew_locale

set_c_locale
-- set locale to the Standard C locale (the default)

set_native_decimal_point
-- set the decimal point character

set_native_locale
-- set entire locale to the natives setting

set_native_time
-- set time display to the natives setting

end of STDC_CURRENT_PROCESS

46 STDC_DYNAMIC_MEMORY

B.4 STDC_DYNAMIC_MEMORY

class interface STDC_DYNAMIC_MEMORY
creation

allocate (a_size: INTEGER)
-- allocate memory ofa_sizebytes
require

valid_size: a_size> 0;
not_allocated: not is_allocated

ensure
successfull_allocation: is_allocated

allocate_and_clear(a_size: INTEGER)
-- allocate memory ofa_sizebytes, make sure its zeroed out
require

valid_size: a_size> 0;
not_allocated: not is_allocated

ensure
successfull_allocation: is_allocated

feature(s) from STDC_DYNAMIC_MEMORY
-- public features
allocate (a_size: INTEGER)

-- allocate memory ofa_sizebytes
require

valid_size: a_size> 0;
not_allocated: not is_allocated

ensure
successfull_allocation: is_allocated

allocate_and_clear(a_size: INTEGER)
-- allocate memory ofa_sizebytes, make sure its zeroed out
require

valid_size: a_size> 0;
not_allocated: not is_allocated

ensure
successfull_allocation: is_allocated

deallocate
-- free the allocated memory now, dont wait for garbage collector.
require

not_deallocated: is_allocated
ensure

now_deallocated: not is_allocated
resize (new_size: INTEGER)

-- resize memory tonew_sizebytes. Expanded memory is not
-- guaranteed to be zeroed out.
require

valid_size: new_size> 0;
allocated: is_allocated

ensure

Short (flat) listing of Standard C classes 47

successfull_allocation: is_allocated
realloc (new_size: INTEGER)

-- resize memory tonew_sizebytes. Expanded memory is not
-- guaranteed to be zeroed out.
require

valid_size: new_size> 0;
allocated: is_allocated

ensure
successfull_allocation: is_allocated

feature(s) from STDC_DYNAMIC_MEMORY
-- copy data from somewhere
copy_from (source: POINTER; a_size: INTEGER)

-- Copy data fromsource, memory may not overlap
require

data_should_fit: a_size<= size
feature(s) from STDC_DYNAMIC_MEMORY

-- set/get bytes (8-bit data)
peek_byte(index: INTEGER): INTEGER

-- consider memory an array of 8 bit values.
require

valid_index: index >= 0 and index < size
ensure

possible_values: Result >= 0 and Result < 256
poke_byte(index, value: INTEGER)

require
valid_index: index >= 0 and index < size;
valid_value: value >= 0 and value < 256

feature(s) from STDC_DYNAMIC_MEMORY
-- set/get integers (32-bit data)
peek_integer(index: INTEGER): INTEGER

-- consider memory an array of 32 bit values.
require

valid_index: index >= 0 and index < size // 4
feature(s) from STDC_DYNAMIC_MEMORY

-- queries
is_allocated: BOOLEAN

feature(s) from STDC_DYNAMIC_MEMORY
-- state
ptr: POINTER

-- the actual pointer
size: INTEGER

-- in number of bytes
feature(s) from STDC_DYNAMIC_MEMORY

dispose
-- Action to be executed just before garbage collection
-- reclaims an object.

invariant

48 STDC_DYNAMIC_MEMORY

valid_size: size >= 0;
size_and_ptr_relation: (size = 0 implies not is_allocated) and size > 0 implies is_allocated;

end of STDC_DYNAMIC_MEMORY

Short (flat) listing of Standard C classes 49

B.5 STDC_ENV_VAR

class interface STDC_ENV_VAR
creation

make (a_name: STRING)
require

valid_name: a_name/= Void and then not a_name.is_empty -- a_namedoesnt have to be an existing variable
feature(s) from STDC_ENV_VAR

make (a_name: STRING)
require

valid_name: a_name/= Void and then not a_name.is_empty -- a_namedoesnt have to be an existing variable
feature(s) from STDC_ENV_VAR

-- queries
name: STRING
value: STRING

end of STDC_ENV_VAR

50 STDC_FILE

B.6 STDC_FILE

deferred class interface STDC_FILE
feature(s) from STDC_FILE

-- creation
create_read_write(path: STRING)

-- Open file for update (reading and writing). If the file
-- already exists, it is truncated to zero length.
-- So permissions seem to remain.

create_write (path: STRING)
-- create new file for writing. If the file already exists,
-- it is truncated to zero length.
-- So permissions seem to remain.

open (path, a_mode: STRING)
-- open file in given mode

open_append(path: STRING)
-- append to exiting file or create file if it does not exist

open_read(path: STRING)
-- open file for reading

open_read_write(path: STRING)
-- open file for reading and writing

feature(s) from STDC_FILE
-- work with existing streams
attach_to_stream(a_stream: POINTER; a_mode: STRING)

-- attach toa_stream. Will become owner of stream so
-- it will close it when garbage collected.
require

valid_stream: a_stream/= Void;
valid_mode: a_mode/= Void and then a_mode.count> 0 -- a_streamis open

-- a_modeis compatible witha_stream
unattach

-- assume someone else will close this stream
feature(s) from STDC_FILE

-- close
close

ensure
closed: not is_open

feature(s) from STDC_FILE
-- reopen
reopen (path, a_mode: STRING)

-- closes and then opens a stream
require

open: is_open --valid_mode: mode is a valid posix mode
ensure

file_stays_open: is_open
feature(s) from STDC_FILE

-- control over buffering

Short (flat) listing of Standard C classes 51

flush
-- Updates this stream

setbuf (buffer: POINTER)
-- Determines how the stream will be buffered
-- gives you a fully buffered input and output
-- Not sure: buffer should have at least BUFSIZ bytes?

set_buffer(buffer: POINTER)
-- Determines how the stream will be buffered
-- gives you a fully buffered input and output
-- Not sure: buffer should have at least BUFSIZ bytes?

set_full_buffering(buffer: POINTER; size: INTEGER)
-- Determines buffering for a stream
-- give NULL buffer so setvbufwill allocate a buffer

set_line_buffering(buffer: POINTER; size: INTEGER)
-- Determines buffering for a stream
-- give NULL buffer so setvbufwill allocate a buffer

set_no_buffering
-- Turns off buffering

feature(s) from STDC_FILE
-- read, C like
last_byte: INTEGER

-- last read character ofget_character
-- can be negative, so is more a last_shortint or so!

getc
-- Reads a C unsigned char and converts it to an integer,
-- the result is left inlast_byte
-- This function probably can be used to read a single
-- byte
ensure

eof_set: last_byte= const_EOFimplies eof
get_character

-- Reads a C unsigned char and converts it to an integer,
-- the result is left inlast_byte
-- This function probably can be used to read a single
-- byte
ensure

eof_set: last_byte= const_EOFimplies eof
gets (bytes: INTEGER)

-- Reads at most one less thanbytes characters.
-- No additional characters are read after a newline character
-- or after end-of-file. If a newline character is read, it
-- is returned too.
-- Result is placed inlast_string

get_string (bytes: INTEGER)
-- Reads at most one less thanbytes characters.
-- No additional characters are read after a newline character
-- or after end-of-file. If a newline character is read, it

52 STDC_FILE

-- is returned too.
-- Result is placed inlast_string

feature(s) from STDC_FILE
-- read, Eiffel like
last_read: INTEGER

-- last read bytes by some read_XXXX or get_string call
last_character: CHARACTER

-- last character read by getc
last_string: STRING

-- last string read by get_string
read (buf: POINTER; bytes: INTEGER)
read_character

-- read a single character and setlast_character
-- if end-of-file encountered,eof is True

read_string (bytes: INTEGER)
-- Read at mostn characters, a value more expected by
-- programmers not used to strings with a trailing byte.
-- result is placed inlast_string
-- last_string includes the newline character!

feature(s) from STDC_FILE
-- write
last_written: INTEGER

-- last written bytes by some write_XXXX call
put (any: ANY)

-- write class as string
putc (c: INTEGER)

-- write a single character
ensure

need_flush_set: need_flush
puts (s: STRING)

-- write a string
require

valid_string: s /= Void
ensure

need_flush_set: need_flush
put_string (s: STRING)

-- write a string
require

valid_string: s /= Void
ensure

need_flush_set: need_flush
write_string (s: STRING)

-- write a string
require

valid_string: s /= Void
ensure

need_flush_set: need_flush

Short (flat) listing of Standard C classes 53

ungetc (c: INTEGER)
-- pushesc back to the stream
-- note that file positioning functions discard any
-- pushed-back characters

write (buf: POINTER; bytes: INTEGER)
-- write bytes bytes from buf

feature(s) from STDC_FILE
-- file position
getpos: STDC_FILE_POSITION

-- get the current position, useset_positionto return to
-- this saved position

feature(s) from STDC_FILE
-- file position
get_position: STDC_FILE_POSITION

-- get the current position, useset_positionto return to
-- this saved position

rewind
-- Sets the file position to the beginning of the file
ensure

not_eof: not eof;
no_need_to_flush: not need_flush

seek (offset: INTEGER)
-- set file position to given absoluteoffset
require

valid_offset: offset >= 0
ensure

not_eof: not eof;
no_need_to_flush: not need_flush

seek_from_current(offset: INTEGER)
-- set file position relative to current position
ensure

not_eof: not eof;
no_need_to_flush: not need_flush

seek_from_end(offset: INTEGER)
-- set file position relative to end of file
require

valid_offset: offset <= 0
ensure

not_eof: not eof;
no_need_to_flush: not need_flush

setpos(a_position: STDC_FILE_POSITION)
-- set the current position
require

valid_position: a_position /= Void
ensure

not_eof: not eof;
no_need_to_flush: not need_flush

54 STDC_FILE

set_position(a_position: STDC_FILE_POSITION)
-- set the current position
require

valid_position: a_position /= Void
ensure

not_eof: not eof;
no_need_to_flush: not need_flush

tell: INTEGER
-- The current position

feature(s) from STDC_FILE
-- other
clearerr

-- Clears end-of-file and error indicators for a stream
feature(s) from STDC_FILE

-- other
clear_error

-- Clears end-of-file and error indicators for a stream
feature(s) from STDC_FILE

-- queries
eof: BOOLEAN

-- True if eof encountered by getc or,
-- if the end-of-file indicator is set

error: BOOLEAN
-- True if and only if the error indicator is set

filename: STRING
-- the filename of this file

is_open: BOOLEAN
mode: STRING

-- mode in which the file is opened/created
invariant

path_should_exist: portable_path/= Void;
last_string_valid: last_string /= Void;
gets_buf_valid: gets_buf/= Void;

end of deferred STDC_FILE

Short (flat) listing of Standard C classes 55

B.7 STDC_FILE_SYSTEM

class interface STDC_FILE_SYSTEM
creation

make
feature(s) from STDC_FILE_SYSTEM

-- rename files/directories, remove files/directories
remove_file(a_path: STRING)

-- Removes a file from a directory
-- its not an error if this file does not exist
require

valid_path: a_path /= Void and then not a_path.is_empty
require else

a_path /= Void
rename_to(current_path, new_path: STRING)

-- Renames a file or directory
require

valid_current: current_path /= Void and then not current_path.is_empty;
valid_new: new_path/= Void and then not new_path.is_empty

feature(s) from STDC_FILE_SYSTEM
-- accessibility of files
is_modifiable(a_path: STRING): BOOLEAN

-- tests if file is readable and writable by this program
-- does this by attemting to opena_path file read/write
require

valid_path: a_path /= Void and then not a_path.is_empty
is_readable(a_path: STRING): BOOLEAN

-- tests if file is readable by this program
-- does this by attemting to opena_path file read-only
require

valid_path: a_path /= Void and then not a_path.is_empty
feature(s) from STDC_FILE_SYSTEM

-- temporary names
temporary_file_name: STRING

-- Generates a string that is a valid non-existing file name
ensure

valid_name: Result /= Void and then not Result.is_empty
feature(s) from STDC_FILE_SYSTEM

-- temporary names
tmpnam: STRING

-- Generates a string that is a valid non-existing file name
ensure

valid_name: Result /= Void and then not Result.is_empty
invariant

path_should_exist: portable_path/= Void;
end of STDC_FILE_SYSTEM

56 STDC_SYSTEM

B.8 STDC_SYSTEM

class interface STDC_SYSTEM
feature(s) from STDC_SYSTEM

-- run-time determined queries
is_shell_available: BOOLEAN

-- Return True if command interpreter is available
feature(s) from STDC_SYSTEM

-- compile time determined queries
clocks_per_second: INTEGER

-- number per second of the value returned by theclock function
end of STDC_SYSTEM

Short (flat) listing of Standard C classes 57

B.9 STDC_TIME

[file stc_time.tex does not exist]

C
Short (flat) listing of POSIX classes

C.1 POSIX_ASYNC_IO_REQUEST

class interface POSIX_ASYNC_IO_REQUEST
creation

make (a_fd: POSIX_FILE_DESCRIPTOR)
require

valid_fd: a_fd /= Void and then a_fd.is_open
feature(s) from POSIX_ASYNC_IO_REQUEST

-- creation
make (a_fd: POSIX_FILE_DESCRIPTOR)

require
valid_fd: a_fd /= Void and then a_fd.is_open

feature(s) from POSIX_ASYNC_IO_REQUEST
-- request properties
buffer: POINTER

-- Location for read or written data
count: INTEGER

-- number of bytes to read/write
offset: INTEGER

-- file offset
feature(s) from POSIX_ASYNC_IO_REQUEST

-- set request properties
set_buffer(a_buffer: POINTER)

-- set buffer to read/write from
require

nothing_pending: not is_pending
set_count(a_count: INTEGER)

-- set number of bytes to read/write
require

nothing_pending: not is_pending
set_offset(a_offset: INTEGER)

require
nothing_pending: not is_pending

feature(s) from POSIX_ASYNC_IO_REQUEST
-- basic read/write requests
read

Short (flat) listing of POSIX classes 59

-- execute async read request
require

is_open: fd.is_open;
nothing_pending: not is_pending

write
-- execute async write request
require

is_open: fd.is_open;
nothing_pending: not is_pending

feature(s) from POSIX_ASYNC_IO_REQUEST
-- Eiffel friendly reads and writes
last_string: STRING

-- attempt to return buffer as an Eiffel string
-- buffer should have a terminating byte!

read_string
require

is_open: fd.is_open;
nothing_pending: not is_pending

write_string (text: STRING)
require

is_open: fd.is_open;
nothing_pending: not is_pending

feature(s) from POSIX_ASYNC_IO_REQUEST
-- other operations
cancel_failed: BOOLEAN

-- set by cancel, True if cancel request failed, probably
-- because operation was already performed

cancel
-- cancel request

synchronize
-- force all i/o operations queued for the file descriptor
-- associated with this request to the synchronous state.
-- Function returns when the request has been initiated or
-- queued to the file or device (even when the data cannot be
-- synchronized immediately)

synchronize_data
-- force all i/o operations queued for the file descriptor
-- associated with this request to the synchronous state.
-- Function returns when the request has been initiated or
-- queued to the file or device (even when the data cannot be
-- synchronized immediately)

wait_for
-- suspend process, until request completed

feature(s) from POSIX_ASYNC_IO_REQUEST
-- state
fd: POSIX_FILE_DESCRIPTOR
is_pending: BOOLEAN

60 POSIX_ASYNC_IO_REQUEST

-- True if io request is still pending
return_status: INTEGER

-- return status of asynchronous i/o operation, equal to what
-- the synchronous read, write of fsync would have returned
require

nothing_pending: not is_pending
invariant

valid_aiocb: aiocb /= Void;
end of POSIX_ASYNC_IO_REQUEST

Short (flat) listing of POSIX classes 61

C.2 POSIX_BASE

class interface POSIX_BASE
end of POSIX_BASE

62 POSIX_CGI

C.3 POSIX_CGI

class interface POSIX_CGI
feature(s) from POSIX_CGI

-- overrule some xml stuff
extend (stuff: STRING)

-- add anything to the currentxml string, youre on your own here!
feature(s) from POSIX_CGI

-- cgi header
content_text
doctype

feature(s) from POSIX_CGI
-- page
b_html

-- start html page
e_html

require
valid_stop: is_started("html")

feature(s) from POSIX_CGI
-- header
b_head
e_head

require
valid_stop: is_started("head")

title (a_text: STRING)
feature(s) from POSIX_CGI

-- body
b_body
e_body

require
valid_stop: is_started("body")

b_p
e_p

require
valid_stop: is_started("p")

p (par: STRING)
invariant

-- dont attempt to check this invariant
-- valid_pid: pid >= 0
same_size: attributes.count= values.count;

end of POSIX_CGI

Short (flat) listing of POSIX classes 63

C.4 POSIX_CHILD_PROCESS

deferred class interface POSIX_CHILD_PROCESS
feature(s) from POSIX_CHILD_PROCESS

-- childs pid
pid: INTEGER

-- the process identifier
require

valid_pid: is_pid_valid
ensure

valid_pid: Result > 0
is_pid_valid: BOOLEAN

-- return True if this object refers to a child process, so
-- it has an id

feature(s) from POSIX_CHILD_PROCESS
-- actions that parent may execute
wait_for (suspend: BOOLEAN)

-- wait for this process to terminate. Ifsuspendthen we
-- wait until the information about this process is available,
-- else we return immediately. Check the terminated property
-- to see if this child is really terminated.
require

pid_refers_to_child: is_pid_valid;
not_terminated: not is_terminated

end of deferred POSIX_CHILD_PROCESS

64 POSIX_CONSTANTS

C.5 POSIX_CONSTANTS

class interface POSIX_CONSTANTS
feature(s) from POSIX_CONSTANTS

-- error codes
EAGAIN: INTEGER
EBADF: INTEGER
EINPROGRESS: INTEGER
EINTR: INTEGER
ENOSYS: INTEGER

feature(s) from POSIX_CONSTANTS
-- standard file numbers
STDERR_FILENO: INTEGER
STDIN_FILENO: INTEGER
STDOUT_FILENO: INTEGER

feature(s) from POSIX_CONSTANTS
-- posix permission symbolic constants
S_IRUSR: INTEGER

feature(s) from POSIX_CONSTANTS
-- posix permission symbolic constants
S_IREAD: INTEGER
S_IWUSR: INTEGER
S_IWRITE: INTEGER
S_IXUSR: INTEGER
S_IEXEC: INTEGER
S_IRGRP: INTEGER
S_IWGRP: INTEGER
S_IXGRP: INTEGER
S_IROTH: INTEGER
S_IWOTH: INTEGER
S_IXOTH: INTEGER
S_ISUID: INTEGER
S_ISGID: INTEGER

feature(s) from POSIX_CONSTANTS
-- Posix signal constants
SA_NOCLDSTOP: INTEGER
SIGHUP: INTEGER

-- hangup detected on controlling terminal or death of
-- controlling process

SIGNAL_HANGUP: INTEGER
-- hangup detected on controlling terminal or death of
-- controlling process

SIGALRM: INTEGER
-- Timeout signal, such as initiated by the alarm() function
-- or see POSIX_TIMED_COMMAND

SIGNAL_ALARM: INTEGER
-- Timeout signal, such as initiated by the alarm() function

Short (flat) listing of POSIX classes 65

-- or see POSIX_TIMED_COMMAND
SIGCHLD: INTEGER

-- Child process terminated or stopped
SIGNAL_CHILD: INTEGER

-- Child process terminated or stopped
SIGKILL: INTEGER

-- Termination signal (cannot be caught or ignored)
SIGNAL_KILL: INTEGER

-- Termination signal (cannot be caught or ignored)
SIGPIPE: INTEGER

-- Write on a pipe with no readers
SIGNAL_PIPE: INTEGER

-- Write on a pipe with no readers
SIGQUIT: INTEGER

-- Interactive termination signal
SIGNAL_QUIT: INTEGER

-- Interactive termination signal
SIGCONT: INTEGER

-- Continue if stopped
SIGNAL_CONTINUE: INTEGER

-- Continue if stopped
SIGSTOP: INTEGER

-- Stop signal, cannot be caught or ignored
SIGNAL_STOP: INTEGER

-- Stop signal, cannot be caught or ignored
SIGTSTP: INTEGER

-- Interactive stop signal
SIGNAL_INTERACTIVE_STOP: INTEGER

-- Interactive stop signal
SIGTTIN: INTEGER

-- Read from control terminal attempted by a member of a
-- background process group

SIGNAL_TERMINAL_IN: INTEGER
-- Read from control terminal attempted by a member of a
-- background process group

SIGTTOU: INTEGER
-- Write to control terminal attempted by a member of a
-- background process group

SIGNAL_TERMINAL_OUT: INTEGER
-- Write to control terminal attempted by a member of a
-- background process group

feature(s) from POSIX_CONSTANTS
-- terminal i/o local mode flags
ISIG: INTEGER
ICANON: INTEGER
ECHO: INTEGER

-- If set, input characters are echoed back to the terminal

66 POSIX_CONSTANTS

ECHOE: INTEGER
ECHOK: INTEGER
ECHONL: INTEGER
NOFLSH: INTEGER
TOSTOP: INTEGER
IEXTEN: INTEGER

feature(s) from POSIX_CONSTANTS
-- set terminal settings options
Tcsanow: INTEGER
Tcsadrain: INTEGER
Tcsaflush: INTEGER

feature(s) from POSIX_CONSTANTS
-- semaphore constants
SEM_VALUE_MAX: INTEGER

-- Valid Maximum initial value for a semaphore
feature(s) from POSIX_CONSTANTS

-- terminal baud rates
B0: INTEGER
B50: INTEGER
B75: INTEGER
B110: INTEGER
B134: INTEGER
B150: INTEGER
B200: INTEGER
B300: INTEGER
B600: INTEGER
B1200: INTEGER
B1800: INTEGER
B2400: INTEGER
B4800: INTEGER
B9600: INTEGER
B19200: INTEGER
B38400: INTEGER
B57600: INTEGER
B115200: INTEGER
B230400: INTEGER
B460800: INTEGER
B500000: INTEGER
B576000: INTEGER
B921600: INTEGER
B1000000: INTEGER
B1152000: INTEGER
B1500000: INTEGER
B2000000: INTEGER
B2500000: INTEGER
B3000000: INTEGER
B3500000: INTEGER

Short (flat) listing of POSIX classes 67

B4000000: INTEGER
feature(s) from POSIX_CONSTANTS

-- terminal i/o control mode constants
CSIZE: INTEGER
CS5: INTEGER
CS6: INTEGER
CS7: INTEGER
CS8: INTEGER
CSTOPB: INTEGER
CREAD: INTEGER
PARENB: INTEGER
PARODD: INTEGER
HUPCL: INTEGER
CLOCAL: INTEGER

feature(s) from POSIX_CONSTANTS
-- terminal i/o input control flags
IGNBRK: INTEGER
BRKINT: INTEGER
IGNPAR: INTEGER
PARMRK: INTEGER
INPCK: INTEGER
ISTRIP: INTEGER
INLCR: INTEGER
IGNCR: INTEGER
ICRNL: INTEGER
IXON: INTEGER
IXOFF: INTEGER

feature(s) from POSIX_CONSTANTS
-- category constants
LC_MESSAGES: INTEGER

end of POSIX_CONSTANTS

68 POSIX_CURRENT_PROCESS

C.6 POSIX_CURRENT_PROCESS

class interface POSIX_CURRENT_PROCESS
feature(s) from POSIX_CURRENT_PROCESS

-- my stdandard input/output/error
stdin: POSIX_TEXT_FILE
stdout: POSIX_TEXT_FILE
stderr: POSIX_TEXT_FILE

feature(s) from POSIX_CURRENT_PROCESS
-- every process also has standard file descriptors
fd_stdin: POSIX_FILE_DESCRIPTOR
fd_stdout: POSIX_FILE_DESCRIPTOR
fd_stderr: POSIX_FILE_DESCRIPTOR

feature(s) from POSIX_CURRENT_PROCESS
-- POSIX locale specifics
set_native_messages

-- Select native language as the language in which messages
-- are displayed

end of POSIX_CURRENT_PROCESS

Short (flat) listing of POSIX classes 69

C.7 POSIX_DAEMON

deferred class interface POSIX_DAEMON
feature(s) from POSIX_DAEMON

-- daemon specific actions
detach

-- detach from command-line, not very useful if you want to
-- spawn multiple daemons, but you can always pass daemons to
-- the fork routine yourself

end of deferred POSIX_DAEMON

70 POSIX_DIRECTORY

C.8 POSIX_DIRECTORY

class interface POSIX_DIRECTORY
creation

make (a_directory_name: STRING)
feature(s) from POSIX_DIRECTORY

-- creation
make (a_directory_name: STRING)

feature(s) from POSIX_DIRECTORY
-- access
close

-- close directory entry (save resources now, dont wait for
-- garbage collection). If you call start it will automatically
-- reopen
require

not_closed: is_open
ensure

closed: not is_open
start

-- start directory traversal
forth

-- go to next entry
require

opened: is_open;
not_exhausted: not exhausted

item: STRING
-- the current entry

feature(s) from POSIX_DIRECTORY
-- status report
exhausted: BOOLEAN

-- no more entries in this directory
is_empty: BOOLEAN
is_first: BOOLEAN

-- current item is first entry
is_open: BOOLEAN

-- True if directory is ready for traversal
feature(s) from POSIX_DIRECTORY

max_filename_length: INTEGER
feature(s) from POSIX_DIRECTORY

dispose
-- Action to be executed just before garbage collection
-- reclaims an object.

invariant
valid_directory_name: directory_name/= Void;

end of POSIX_DIRECTORY

Short (flat) listing of POSIX classes 71

C.9 BASE_FILE_DESCRIPTOR

ClassBASE_FILE_DESCRIPTORis the parent class forPOSIX_FILE_DESCRIPTOR.

class interface BASE_FILE_DESCRIPTOR
feature(s) from BASE_FILE_DESCRIPTOR

-- creation
open (a_path: STRING; flags: INTEGER)

-- open given file with access given byflags
require

closed: is_closed
open_read(a_path: STRING)

-- open given file with read-only access
require

closed: is_closed
open_write (a_path: STRING)

require
closed: is_closed

open_read_write(a_path: STRING)
require

closed: is_closed
open_truncate(a_path: STRING)

require
closed: is_closed

create_read_write(a_path: STRING)
-- always create a file, existing or not
-- give read/write permissions to user only
require

closed: is_closed
create_with_mode(a_path: STRING; flags, mode: INTEGER)

-- create a file according toflags and with mode access
-- permissions
require

closed: is_closed
feature(s) from BASE_FILE_DESCRIPTOR

-- special creation
attach_to_fd(a_fd: INTEGER)

-- Create file descriptor with valuea_fd
require

closed: is_closed;
valid_fd: a_fd >= 0 -- a_fd is open

ensure
opened: is_open

make_from_file(file: STDC_FILE)
-- Create file descriptor from given stream
-- The stream is leading, so this file descriptor will
-- never automatically close when garbage collected, but
-- it will close when close is called.

72 BASE_FILE_DESCRIPTOR

-- In that case the stream is no longer valid of course,
-- but thats up to you to detect.
require

closed: is_closed;
valid_file: file /= Void and then file.is_open

ensure
open: is_open

make_as_duplicate(another: BASE_FILE_DESCRIPTOR)
-- On creation, create a duplicate from another file descriptor
-- As normal call, closes its own descriptor first (if open) and
-- duplicates next.
ensure

open: is_open
feature(s) from BASE_FILE_DESCRIPTOR

-- close
close

-- we always describe an existing object, however user probably wants
-- to have control about closing a file. And because of garbage
-- collection we cant free the file_descriptor itself.
require

opened: is_open
ensure

closed: is_closed
unattach

-- unbind from the current file descriptor
ensure

closed: not is_open
feature(s) from BASE_FILE_DESCRIPTOR

-- raw read and write
last_read: INTEGER

-- last bytes read by read
read (buf: POINTER; size: INTEGER)

-- read data intobuf for size bytes
require

valid_buf: buf /= default_pointer;
valid_size: size >= 0

write (buf: POINTER; size: INTEGER)
-- write given data
require

valid_buf: buf /= default_pointer;
valid_size: size >= 0

feature(s) from BASE_FILE_DESCRIPTOR
-- Eiffel like read/write
last_string: STRING

-- last read string (includes %N), see POSIX_TEXT_FILE.chop
read_string (a_size: INTEGER)
write_string (s: STRING)

Short (flat) listing of POSIX classes 73

feature(s) from BASE_FILE_DESCRIPTOR
-- file position
seek (offset: INTEGER)

-- set file position to given absoluteoffset
require

valid_offset: offset >= 0
seek_from_current(offset: INTEGER)

-- set file position relative to current position
seek_from_end(offset: INTEGER)

-- set file position relative to end of file
require

valid_offset: offset <= 0
feature(s) from BASE_FILE_DESCRIPTOR

-- queries
isatty: BOOLEAN

-- return true if handle associated with character device
feature(s) from BASE_FILE_DESCRIPTOR

-- queries
is_attached_to_terminal: BOOLEAN

-- return true if handle associated with character device
is_closed: BOOLEAN

-- file descriptor is closed?
ensure

in_balance: Result implies not is_open
is_open: BOOLEAN

-- still describes a file descriptor?
ensure

in_balance: Result implies not is_closed
status: POSIX_STATUS
value: INTEGER

-- return the value of the file descriptor
require

valid_file_descriptor: is_open
feature(s) from BASE_FILE_DESCRIPTOR

-- accessible state
path: STRING

invariant
path_should_exist: portable_path/= Void;
valid_internal_file_descriptor: fd >= - 1;

end of BASE_FILE_DESCRIPTOR

74 POSIX_EXEC_PROCESS

C.10 POSIX_EXEC_PROCESS

class interface POSIX_EXEC_PROCESS
creation

make (a_program: STRING; a_arguments: ARRAY[STRING])
make_capture_input(a_program: STRING; a_arguments: ARRAY[STRING])
make_capture_output(a_program: STRING; a_arguments: ARRAY[STRING])
make_capture_io(a_program: STRING; a_arguments: ARRAY[STRING])

feature(s) from POSIX_EXEC_PROCESS
-- creation
make (a_program: STRING; a_arguments: ARRAY[STRING])
make_capture_input(a_program: STRING; a_arguments: ARRAY[STRING])
make_capture_output(a_program: STRING; a_arguments: ARRAY[STRING])
make_capture_io(a_program: STRING; a_arguments: ARRAY[STRING])

feature(s) from POSIX_EXEC_PROCESS
-- (re)set arguments
set_arguments(a_arguments: ARRAY[STRING])

feature(s) from POSIX_EXEC_PROCESS
-- i/o capturing
capture_input: BOOLEAN

-- is input captured on execute?
capture_output: BOOLEAN

-- is output captured on execute?
capture_error: BOOLEAN

-- is error captured on execute?
set_capture_input(on: BOOLEAN)
set_capture_output(on: BOOLEAN)
set_capture_error(on: BOOLEAN)
stdin: POSIX_TEXT_FILE
stdout: POSIX_TEXT_FILE
stderr: POSIX_TEXT_FILE
fd_stdin: POSIX_FILE_DESCRIPTOR
fd_stdout: POSIX_FILE_DESCRIPTOR
fd_stderr: POSIX_FILE_DESCRIPTOR

feature(s) from POSIX_EXEC_PROCESS
-- execute
exec

-- Executesprogram_name
-- dont forget towait for this process to terminate

feature(s) from POSIX_EXEC_PROCESS
-- execute
execute

-- Executesprogram_name
-- dont forget towait for this process to terminate

feature(s) from POSIX_EXEC_PROCESS
-- accessible state
program_name: POSIX_PATH

Short (flat) listing of POSIX classes 75

-- program to execute
arguments: ARRAY[STRING]

-- arguments to pass to program
end of POSIX_EXEC_PROCESS

76 POSIX_FILE_DESCRIPTOR

C.11 POSIX_FILE_DESCRIPTOR

class interface POSIX_FILE_DESCRIPTOR
creation

open (a_path: STRING; flags: INTEGER)
-- open given file with access given byflags
require

closed: is_closed
open_read(a_path: STRING)

-- open given file with read-only access
require

closed: is_closed
open_write (a_path: STRING)

require
closed: is_closed

open_read_write(a_path: STRING)
require

closed: is_closed
open_truncate(a_path: STRING)

require
closed: is_closed

create_read_write(a_path: STRING)
-- always create a file, existing or not
-- give read/write permissions to user only
require

closed: is_closed
create_with_mode(a_path: STRING; flags, mode: INTEGER)

-- create a file according toflags and with mode access
-- permissions
require

closed: is_closed
make_as_duplicate(another: BASE_FILE_DESCRIPTOR)

-- On creation, create a duplicate from another file descriptor
-- As normal call, closes its own descriptor first (if open) and
-- duplicates next.
ensure

open: is_open
make_from_file(file: STDC_FILE)

-- Create file descriptor from given stream
-- The stream is leading, so this file descriptor will
-- never automatically close when garbage collected, but
-- it will close when close is called.
-- In that case the stream is no longer valid of course,
-- but thats up to you to detect.
require

closed: is_closed;
valid_file: file /= Void and then file.is_open

Short (flat) listing of POSIX classes 77

ensure
open: is_open

attach_to_fd(a_fd: INTEGER)
-- Create file descriptor with valuea_fd
require

closed: is_closed;
valid_fd: a_fd >= 0 -- a_fd is open

ensure
opened: is_open

feature(s) from POSIX_FILE_DESCRIPTOR
-- close
close

-- we always describe an existing object, however user probably wants
-- to have control about closing a file. And because of garbage
-- collection we cant free the file_descriptor itself.
require

opened: is_open
ensure

closed: is_closed
close_on_execute

-- close this descriptor when forking
feature(s) from POSIX_FILE_DESCRIPTOR

-- synchronisation
synchronize

-- synchronize the state of a file (includes synchronize_data)
require

synchronize_valid: supports_file_synchronization
feature(s) from POSIX_FILE_DESCRIPTOR

-- synchronisation
fsync

-- synchronize the state of a file (includes synchronize_data)
require

synchronize_valid: supports_file_synchronization
synchronize_data

-- synchronize the data of a file
require

synchronize_valid: supports_synchronized_io
fdatasync

-- synchronize the data of a file
require

synchronize_valid: supports_synchronized_io
feature(s) from POSIX_FILE_DESCRIPTOR

-- locking
get_lock (a_lock: POSIX_LOCK): BOOLEAN

-- gets lock information, returns True if a lock is set on
-- the region in a_lock. a_lock is overwritten with that lock

set_lock_failed: BOOLEAN

78 POSIX_FILE_DESCRIPTOR

-- Test after set_lock if lock did success
attempt_lock(a_lock: POSIX_LOCK)

-- attempt to set lock, if not possible, set
-- set_lock_failed

set_lock (a_lock: POSIX_LOCK)
-- attempt to set lock, wait if necessary

feature(s) from POSIX_FILE_DESCRIPTOR
-- queries
terminal: POSIX_TERMIOS

-- terminal settings
require

valid_file_descriptor: is_attached_to_terminal
ensure

valid_result: Result /= Void
ttyname: STRING

-- Terminal path name, or empty if this file descriptor does
-- not refer to a terminal

invariant
path_should_exist: portable_path/= Void;
valid_internal_file_descriptor: fd >= - 1;

end of POSIX_FILE_DESCRIPTOR

Short (flat) listing of POSIX classes 79

C.12 POSIX_FILE_SYSTEM

class interface POSIX_FILE_SYSTEM
creation

make
feature(s) from POSIX_FILE_SYSTEM

-- directory access
change_directory(a_directory: STRING)

-- Changes the current working directory
feature(s) from POSIX_FILE_SYSTEM

-- directory access
chdir (a_directory: STRING)

-- Changes the current working directory
current_directory: STRING

-- The current directory
getcwd: STRING

-- The current directory
pwd: STRING

-- The current directory
make_directory(a_directory: STRING)

-- Makes a directory, only accessible by owner
mkdir (a_directory: STRING)

-- Makes a directory, only accessible by owner
remove_directory(a_directory: STRING)

-- Removes a directory
rmdir (a_directory: STRING)

-- Removes a directory
feature(s) from POSIX_FILE_SYSTEM

-- read/write permissions
chmod (a_path: STRING; a_mode: INTEGER)

-- Changes file mode
require

valid_path: a_path /= Void and then not a_path.is_empty
feature(s) from POSIX_FILE_SYSTEM

-- read/write permissions
change_mode(a_path: STRING; a_mode: INTEGER)

-- Changes file mode
require

valid_path: a_path /= Void and then not a_path.is_empty
permissions(a_path: STRING): POSIX_PERMISSIONS

-- return the permissions object (a new one every time!) for
-- the given file
require

valid_path: a_path /= Void and then not a_path.is_empty
set_read_only(a_path: STRING)

-- Make given file read_only
require

80 POSIX_FILE_SYSTEM

valid_path: a_path /= Void and then not a_path.is_empty
feature(s) from POSIX_FILE_SYSTEM

-- file statistics
status (a_path: STRING): POSIX_STATUS

-- Gets information about a file
require

valid_path: a_path /= Void and then not a_path.is_empty
touch (a_path: STRING)

-- Sets the modification and access times ofa_path to the
-- current time of day.

utime (a_path: STRING; access_time, modification_time: POSIX_TIME)
-- Sets file access and modification times

feature(s) from POSIX_FILE_SYSTEM
-- accessibility of files
last_access_result: INTEGER

-- value of last access test
is_accessible(a_path: STRING; a_mode: INTEGER): BOOLEAN

-- Tests for file accessibility
access(a_path: STRING; a_mode: INTEGER): BOOLEAN

-- Tests for file accessibility
is_existing (a_path: STRING): BOOLEAN

-- tests if file does exist, not if it is readable or writable by
-- this program!
-- uses real user ID and real group ID instead of effective ones

is_empty(a_path: STRING): BOOLEAN
-- True if file exists and has a size equal to zero.
require

exists: is_existing(a_path)
is_executable(a_path: STRING): BOOLEAN

-- tests if file is executable by this program
is_modifiable(a_path: STRING): BOOLEAN

-- tests if file is readable and writable by this program
-- uses real user ID and real group ID instead of effective ones
require

valid_path: a_path /= Void and then not a_path.is_empty
is_readable(a_path: STRING): BOOLEAN

-- tests if file is readable by this program
-- uses real user ID and real group ID instead of effective ones
require

valid_path: a_path /= Void and then not a_path.is_empty
is_writable (a_path: STRING): BOOLEAN

-- tests if file is writable by this program
-- uses real user ID and real group ID instead of effective ones

feature(s) from POSIX_FILE_SYSTEM
-- further directory access
link (existing, new: STRING)

-- Creates a hard link to a file

Short (flat) listing of POSIX classes 81

require
different_names: not existing.is_equal(new)

unlink (a_path: STRING)
-- Removes a directory entry (equal to remove)
-- its not an error if path does not exist
require

valid_path: a_path /= Void and then not a_path.is_empty
feature(s) from POSIX_FILE_SYSTEM

-- directory browsing
browse_directory(a_directory: STRING): POSIX_DIRECTORY

require
valid_dir: a_directory /= Void and then not a_directory.is_empty

feature(s) from POSIX_FILE_SYSTEM
-- mkfifo
make_fifo(a_path: STRING; a_mode: INTEGER)

-- Makes a FIFO special file
require

valid_path: a_path /= Void and then not a_path.is_empty
feature(s) from POSIX_FILE_SYSTEM

-- mkfifo
mkfifo (a_path: STRING; a_mode: INTEGER)

-- Makes a FIFO special file
require

valid_path: a_path /= Void and then not a_path.is_empty
invariant

path_should_exist: portable_path/= Void;
end of POSIX_FILE_SYSTEM

82 POSIX_FORK_ROOT

C.13 POSIX_FORK_ROOT

deferred class interface POSIX_FORK_ROOT
feature(s) from POSIX_FORK_ROOT

-- process properties
pid: INTEGER

-- either the current process identifier or the childs
require

valid_pid: is_pid_valid
ensure

valid_pid: Result > 0
is_valid_child_process: BOOLEAN

-- returns True if this object seems to refer to a valid child process
-- the real child process might have stopped though

feature(s) from POSIX_FORK_ROOT
-- deferred routines
execute

-- start if child process
feature(s) from POSIX_FORK_ROOT

-- termination info
is_terminated_normally: BOOLEAN

-- has this process been terminated normally
require

valid_status_info: is_terminated
feature(s) from POSIX_FORK_ROOT

-- termination info
is_exited: BOOLEAN

-- has this process been terminated normally
require

valid_status_info: is_terminated
exit_code: INTEGER

-- low-order 8 bits of call to _exit or exit for this process
require

terminated_normally: is_terminated_normally
require else

valid_status_info: is_terminated
is_signaled: BOOLEAN

-- child process was terminated due to receipt of a signal
-- that was not caught
require

valid_status_info: is_terminated
signal_code: INTEGER

-- signal of process terminated abnormally or was stopped
require

valid_status_info: is_terminated;
terminated_by_signal: is_signaled

end of deferred POSIX_FORK_ROOT

Short (flat) listing of POSIX classes 83

C.14 POSIX_GROUP

class interface POSIX_GROUP
creation

make_from_name(a_name: STRING)
make_from_gid(a_gid: INTEGER)

feature(s) from POSIX_GROUP
-- creation
make_from_name(a_name: STRING)
make_from_gid(a_gid: INTEGER)

feature(s) from POSIX_GROUP
-- refresh cache
refresh

-- refresh cache with latest info from user database
feature(s) from POSIX_GROUP

-- queries
name: STRING

-- group name
gid: INTEGER

-- ID number
invariant

valid_group: group /= default_pointer;
end of POSIX_GROUP

84 POSIX_LOCK

C.15 POSIX_LOCK

class interface POSIX_LOCK
creation

make
feature(s) from POSIX_LOCK

-- creation
make

feature(s) from POSIX_LOCK
-- members
allow_read: BOOLEAN

-- This is a read lock
allow_all: BOOLEAN

-- No lock or used to remove a lock
allow_none: BOOLEAN

-- This is a write lock
start: INTEGER
length: INTEGER
pid: INTEGER

feature(s) from POSIX_LOCK
-- settable members
set_allow_read

-- this is a read or shared lock
set_allow_all

-- to remove a lock
set_allow_none

-- this is a write or exclusive lock
set_seek_start

-- start is measured from the beginning of the file
set_seek_current

-- start is measured from the current position
set_seek_end

-- start is measured from the end of the file
set_start (a_start: INTEGER)

-- set relative offset in bytes
set_length(a_length: INTEGER)

-- number of bytes to lock
invariant

valid_buf: buf /= Void;
lock_type_known: allow_all or else allow_noneor else allow_read;

end of POSIX_LOCK

Short (flat) listing of POSIX classes 85

C.16 POSIX_MEMORY_MAP

class interface POSIX_MEMORY_MAP
creation

make (a_fd: POSIX_FILE_DESCRIPTOR; a_offset, a_size: INTEGER; a_base: POINTER; a_prot, a_flags: INTEGER)
-- raw interface to mmap

make_private(a_fd: POSIX_FILE_DESCRIPTOR; a_offset, a_size: INTEGER)
-- make a mapping where changes are private
-- this function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE

make_shared(a_fd: POSIX_FILE_DESCRIPTOR; a_offset, a_size: INTEGER)
-- make a mapping where changes are shared, i.e. the
-- underlying object is also changed.
-- this function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE

feature(s) from POSIX_MEMORY_MAP
-- creation
make (a_fd: POSIX_FILE_DESCRIPTOR; a_offset, a_size: INTEGER; a_base: POINTER; a_prot, a_flags: INTEGER)

-- raw interface to mmap
make_private(a_fd: POSIX_FILE_DESCRIPTOR; a_offset, a_size: INTEGER)

-- make a mapping where changes are private
-- this function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE

make_shared(a_fd: POSIX_FILE_DESCRIPTOR; a_offset, a_size: INTEGER)
-- make a mapping where changes are shared, i.e. the
-- underlying object is also changed.
-- this function can fail on certain system (Linux for
-- example) if a_offset is not a multiple of PAGE_SIZE

feature(s) from POSIX_MEMORY_MAP
-- unmap
close

-- remove the mapping
feature(s) from POSIX_MEMORY_MAP

-- reading from the map
peek_byte(index: INTEGER): INTEGER

-- consider memory an array of 8 bit values.
require

valid_index: index >= 0 and index < size
ensure

possible_values: Result >= 0 and Result < 256
feature(s) from POSIX_MEMORY_MAP

-- state
base: POINTER

-- base address
offset: INTEGER

-- offset from file
size: INTEGER

86 POSIX_MEMORY_MAP

-- number of bytes mapping
fd: POSIX_FILE_DESCRIPTOR

end of POSIX_MEMORY_MAP

Short (flat) listing of POSIX classes 87

C.17 POSIX_PERMISSIONS

deferred class interface POSIX_PERMISSIONS
feature(s) from POSIX_PERMISSIONS

apply
-- make permissions changes (if any) permanent

refresh
-- synchronize with permission changes possibly made on disk

feature(s) from POSIX_PERMISSIONS
-- query mode
allow_anyone_execute: BOOLEAN

-- anyone allowed to execute the file?
allow_anyone_read: BOOLEAN

-- anyone allowed to read the file?
allow_anyone_read_write: BOOLEAN

-- anyone allowed to read and write the file?
allow_anyone_write: BOOLEAN

-- anyone allowed to write the file?
allow_group_execute: BOOLEAN

-- process with a group ID that matches the files group
-- allowed to execute the file?

allow_group_read: BOOLEAN
-- process with a group ID that matches the files group
-- allowed to read the file?

allow_group_read_write: BOOLEAN
-- process with a group ID that matches the files group
-- allowed to read the file?

allow_group_write: BOOLEAN
-- process with a group ID that matches the files group
-- allowed to write the file?

allow_owner_execute: BOOLEAN
-- owner allowed to execute the file

allow_read: BOOLEAN
allow_owner_read: BOOLEAN
allow_read_write: BOOLEAN
allow_owner_read_write: BOOLEAN
allow_write: BOOLEAN
allow_owner_write: BOOLEAN
is_set_group_id: BOOLEAN

-- group ID set on execution?
is_set_gid: BOOLEAN

-- group ID set on execution?
is_set_user_id: BOOLEAN

-- user ID set on execution?
is_set_uid: BOOLEAN

-- user ID set on execution?
feature(s) from POSIX_PERMISSIONS

88 POSIX_PERMISSIONS

-- set permissions
set_allow_anyone_execute(allow: BOOLEAN)

-- give anyone execute permission
ensure

executability: not allow or allow_anyone_execute
set_allow_anyone_read(allow: BOOLEAN)

-- give anyone read permission
ensure

readability: not allow or allow_anyone_read
set_allow_anyone_read_write(allow: BOOLEAN)

-- give anyone read and write permissions
ensure

writability: not allow or allow_anyone_read_write
set_allow_anyone_write(allow: BOOLEAN)

-- give anyone write permission
ensure

writability: not allow or allow_anyone_write
set_allow_group_execute(allow: BOOLEAN)

-- give group execute permission
ensure

executability: not allow or allow_group_execute
set_allow_group_read(allow: BOOLEAN)

-- give group read permission
ensure

readability: not allow or allow_group_read
set_allow_group_read_write(allow: BOOLEAN)

-- give group read and write permission
ensure

writability: not allow or allow_group_read_write
set_allow_group_write(allow: BOOLEAN)

-- give group write permission
ensure

writability: not allow or allow_group_write
set_allow_owner_execute(allow: BOOLEAN)

-- give owner execute permission
ensure

executability: not allow or allow_owner_execute
set_allow_read(allow: BOOLEAN)

-- give read permission
ensure

readability: not allow or allow_owner_read
set_allow_owner_read(allow: BOOLEAN)

-- give read permission
ensure

readability: not allow or allow_owner_read
set_allow_read_write(allow: BOOLEAN)

-- give read/write permission

Short (flat) listing of POSIX classes 89

ensure
writability: not allow or allow_owner_read_write

set_allow_owner_write(allow: BOOLEAN)
-- give read/write permission
ensure

writability: not allow or allow_owner_read_write
set_allow_write(allow: BOOLEAN)

-- give write permission
ensure

writability: not allow or allow_owner_write
feature(s) from POSIX_PERMISSIONS

-- direct access to Unix fields
uid: INTEGER

-- id of object owner, always 0 on NT
feature(s) from POSIX_PERMISSIONS

-- direct access to Unix fields
owner_id: INTEGER

-- id of object owner, always 0 on NT
gid: INTEGER

-- id of group, always 0 on NT
group_id: INTEGER

-- id of group, always 0 on NT
mode: INTEGER

-- the bit coded Unix mode field
feature(s) from POSIX_PERMISSIONS

-- set owner and group
set_owner_id(a_owner_id: INTEGER)

-- change the owner
set_group_id(a_group_id: INTEGER)

-- change the group
end of deferred POSIX_PERMISSIONS

90 POSIX_SIGNAL

C.18 POSIX_SIGNAL

class interface POSIX_SIGNAL
creation

make (a_value: INTEGER)
feature(s) from POSIX_SIGNAL

-- creation
make (a_value: INTEGER)

feature(s) from POSIX_SIGNAL
-- set signal properties, make effective with apply
apply

-- make changes effective
set_child_stop(stop: BOOLEAN)

-- generate SIGCHLD when children stop
set_default_action

-- install signal-specific default action
set_ignore_action

-- ignore signal
require

not_sig_child: value /= SIGCHLD
set_mask(a_mask: POSIX_SIGNAL_SET)

feature(s) from POSIX_SIGNAL
-- signal state
child_stop: BOOLEAN

-- generate SIGCHLD when children stop
is_defaulted: BOOLEAN

-- signal is handled by its specific default action
handler: POINTER

-- pointer to function which catches this signal
is_ignored: BOOLEAN

-- signal is ignored
mask: POSIX_SIGNAL_SET
value: INTEGER

-- the signal
refresh

-- get latest state for this signal
invariant

has_memory: sigaction /= Void;
end of POSIX_SIGNAL

Short (flat) listing of POSIX classes 91

C.19 POSIX_STATUS

deferred class interface POSIX_STATUS
feature(s) from POSIX_STATUS

refresh
-- refresh the cached information

feature(s) from POSIX_STATUS
-- stat members
ino: INTEGER

feature(s) from POSIX_STATUS
-- stat members
inode: INTEGER
mtime: INTEGER

-- Unix time
modification_time: INTEGER

-- Unix time
change_date: INTEGER

-- Unix time
permissions: POSIX_PERMISSIONS

-- file permissions
ensure

valid_result: Result /= Void
size: INTEGER

-- size of file in bytes
feature(s) from POSIX_STATUS

-- direct access to the unix fields, not recommended
unix_gid: INTEGER
unix_mode: INTEGER
unix_uid: INTEGER

invariant
valid_stat: stat /= Void;

end of deferred POSIX_STATUS

92 POSIX_SYSTEM

C.20 POSIX_SYSTEM

class interface POSIX_SYSTEM
feature(s) from POSIX_SYSTEM

-- sysconf queries, run-time determined
arg_max: INTEGER

-- The lenght of arguments for the exec() function
child_max: INTEGER

-- The number of simultaneous processes per real user ID
clock_ticks: INTEGER

-- The number of clock ticks per second
ngroups_max: INTEGER

-- The number of simultaneous supplementary group IDs
stream_max: INTEGER

-- The maximum number of streams that one process can have
-- open at one time.

tzname_max: INTEGER
-- The maximum number of bytes in a timezone name.

open_max: INTEGER
-- The maximum number of files that one process can have
-- open at one time.

page_size: INTEGER
-- granularity in bytes of memory mapping and process memory locking

has_job_control: BOOLEAN
-- Job control functions are supported.

has_saved_ids: BOOLEAN
-- Each process has a saved set-user-ID and a saved set-group-ID

posix_version: INTEGER
-- Indicates the 4-digit year and 2-digit month that the
-- standard was approved

feature(s) from POSIX_SYSTEM
-- compile-time determined queries
supports_asynchronous_io: BOOLEAN

-- True if the message passing API is supported
supports_file_synchronization: BOOLEAN

-- True if file synchronization is supported
supports_memory_mapped_files: BOOLEAN

-- True if memory mapped files are supported
supports_memory_locking: BOOLEAN

-- True if memory locking is supported
supports_memlock_range: BOOLEAN

-- True if memory range locking is supported
supports_memory_protection: BOOLEAN

-- True if memory protection is supported
supports_message_passing: BOOLEAN

-- True if the message passing API is supported
supports_priority_scheduling: BOOLEAN

Short (flat) listing of POSIX classes 93

-- True if priority scheduling is supported
supports_semaphores: BOOLEAN

-- True if semaphores are supported
supports_shared_memory_objects: BOOLEAN

-- True if shared memory objects are supported
supports_synchronized_io: BOOLEAN

-- True if synchronized io is supported
supports_timers: BOOLEAN

-- True if timers are supported
supports_threads: BOOLEAN

-- True if thread are supported
feature(s) from POSIX_SYSTEM

-- uname queries
system_name: STRING
node_name: STRING
release: STRING
version: STRING
machine: STRING

end of POSIX_SYSTEM

94 POSIX_TERMIOS

C.21 POSIX_TERMIOS

class interface POSIX_TERMIOS
creation

make (a_fd: POSIX_FILE_DESCRIPTOR)
require

valid_file_descriptor: a_fd.is_attached_to_terminal
feature(s) from POSIX_TERMIOS

-- creation
make (a_fd: POSIX_FILE_DESCRIPTOR)

require
valid_file_descriptor: a_fd.is_attached_to_terminal

feature(s) from POSIX_TERMIOS
-- raw individual fields
iflag: INTEGER

-- input mode flags
oflag: INTEGER

-- output mode flags
cflag: INTEGER

-- control mode flags
lflag: INTEGER

-- local mode flags
feature(s) from POSIX_TERMIOS

-- more friendly settings
is_input_echoed: BOOLEAN

-- are input characters echoed back to the terminal?
is_receiving: BOOLEAN

-- If false, no characters are received
set_echo_input(enable: BOOLEAN)
set_echo_new_line(enable: BOOLEAN)
set_input_control(enable: BOOLEAN)

-- enable start/stop input control
set_receive(enable: BOOLEAN)

feature(s) from POSIX_TERMIOS
-- line control functions
flush_input

-- discards all data that has been received but not read
drain

-- wait for all output to be transmitted to the terminal
send_break

-- sends a break to the terminal
feature(s) from POSIX_TERMIOS

-- get/set baudrates as symbols
input_speed: INTEGER

-- returns terminal input baud rate as symbolic value
output_speed: INTEGER

-- returns terminal output baud rate as symbolic value

Short (flat) listing of POSIX classes 95

set_input_speed(new_rate: INTEGER)
-- sets terminal input baud rate,new_rate is one of the
-- BXXXX constants

set_output_speed(new_rate: INTEGER)
-- sets terminal output baud rate,new_rate is one of the
-- BXXXX constants

feature(s) from POSIX_TERMIOS
-- symbol to baud rate conversions
speed_to_baud_rate(symbol: INTEGER): INTEGER

-- given a baud rate symbol, the real baud rate is returned.
feature(s) from POSIX_TERMIOS

-- apply/refresh state
apply_now

-- change occurs immediately
apply_drain

-- change occurs after all output written tofd has been
-- transmitted. This function should be used when changing
-- parameters that affect output.

apply_flush
-- change occurs after all output written tofd has been
-- transmitted. All input that has been received but not
-- read, is discarded before the change is made.

refresh
-- get terminal settings currently in effect

feature(s) from POSIX_TERMIOS
-- state
fd: POSIX_FILE_DESCRIPTOR

-- the file descriptor for these terminal settings
invariant

valid_attr: attr /= Void and then attr.size = posix_termios_size;
valid_fd: fd /= Void;

end of POSIX_TERMIOS

96 POSIX_TIMED_COMMAND

C.22 POSIX_TIMED_COMMAND

deferred class interface POSIX_TIMED_COMMAND
feature(s) from POSIX_TIMED_COMMAND

-- creation
make (a_seconds: INTEGER)

require
valid_seconds: a_seconds>= 1 and a_seconds<= 65535

feature(s) from POSIX_TIMED_COMMAND
-- execution
execute: BOOLEAN

-- Return true if do_executecompleted within the time it
-- should execute.

feature(s) from POSIX_TIMED_COMMAND
-- state
seconds: INTEGER

-- the number of seconds available to execute the command
set_seconds(a_seconds: INTEGER)

invariant
valid_seconds: seconds>= 1;

end of deferred POSIX_TIMED_COMMAND

Short (flat) listing of POSIX classes 97

C.23 POSIX_USER

class interface POSIX_USER
creation

make_from_name(a_name: STRING)
require

valid_name: a_name/= Void and then not a_name.is_empty
make_from_uid(a_uid: INTEGER)

require
valid_uid: a_uid >= 0

feature(s) from POSIX_USER
-- creation
make_from_name(a_name: STRING)

require
valid_name: a_name/= Void and then not a_name.is_empty

make_from_uid(a_uid: INTEGER)
require

valid_uid: a_uid >= 0
feature(s) from POSIX_USER

-- refresh cache
refresh

-- refresh cache with latest info from user database
feature(s) from POSIX_USER

-- queries
name: STRING

-- login name
uid: INTEGER

-- ID number
gid: INTEGER

-- group ID number
home_directory: STRING

-- initial working directory
shell: STRING

-- initial user program
invariant

valid_passwd: passwd/= default_pointer;
end of POSIX_USER

98 XML_GENERATOR

C.24 XML_GENERATOR

class interface XML_GENERATOR
creation

make
feature(s) from XML_GENERATOR

-- creation
make

feature(s) from XML_GENERATOR
-- constants from the XML specification, should be Unicode...
ValidFirstChars: STRING

-- which characters are valid as the first character
ValidOtherChars: STRING

-- which characters are valid as second etc characters
feature(s) from XML_GENERATOR

-- queries
is_header_written: BOOLEAN
is_started (tag: STRING): BOOLEAN
is_tag_started: BOOLEAN
is_valid_attribute_name(attribute: STRING): BOOLEAN

-- Return True if this is a valid attribute name
xml: STRING

-- the result
feature(s) from XML_GENERATOR

-- influence state
clear

-- start fresh
ensure

no_tags: is_empty
feature(s) from XML_GENERATOR

-- commands that expandxml
add_header

require
valid_point_for_header: not is_header_written

add_data (data: STRING)
-- write data in the current tag
require

valid_point_for_data: is_tag_started
add_tag (tag, data: STRING)

-- shortcut for add_tag, add_dataand stop_tag
require

have_header: is_header_written
extend (stuff: STRING)

-- add anything to the currentxml string, youre on your own here!
new_line
set_attribute(attribute, value: STRING)

-- set an attribute of the current tag

Short (flat) listing of POSIX classes 99

require
valid_attribute: is_valid_attribute_name(attribute)

start_tag (tag: STRING)
-- start a new tag

stop_tag
-- stop last started tag
require

tag_is_started: is_tag_started
invariant

same_size: attributes.count= values.count;
end of XML_GENERATOR

To do

STDC_CURRENT_PROCESS

1. Addclock .

STDC_FILE

1. add read_integer, read_double, read_boolean, etc.

STDC_LOCALE_NUMERIC

1. Complete the list of properties

STDC_PATH

1. assumes there is an access routine, not in Standard C.

STDC_STATUS

Create this class?

STDC_STATUS

1. return STDC_TIME instead of unix time

STDC_TIME

1. Add elapsed seconds

POSIX_CURRENT_PROCESS

1. Addpause .

POSIX_EXEC_PROCESS

1. turn off Eiffel exception handling after the final execvp, else you get back signals not captured
by child process as your signals, or so it seems (or perhaps you’re killing the Eiffel process, but
not the subprocess it generated??)

To do 101

Killing subprocesses works sometimes, but not always.
Remove exception handling just before execvp?

2. how about capture to /dev/null?
3. can we capture i/o for every forked process? If so, move this code to POSIX_FORK_ROOT.

POSIX_FILE_DESCRIPTOR

1. possible to open exclusively and so?
2. add nonblocking io
3. Asynchronous I/O: create separate class, as locking, a request to do something and pass this to

the file descriptor.

POSIX_MEMORY_MAP

1. More read functions.
2. No write functions yet.
3. Cannot change protection.
4. No locking.

POSIX_SEMAPHORE

1. not valid for named semaphore I think.
2. have to add various close/unlink functions.

POSIX_PATH

1. Implement is_portable

MQUEUE

1. Not in the free unices at this moment. Maybe have to get a copy of Solaris x86??

DIRECTORY_BROWSER

1. recursive browsing
2. add filter properties

SUS_SYSLOG

1. Really is a singleton, make creation and close routines once routines? Factory?

102 Other

Other

1. remove ugly const_ prefix from constants. Uppercase should be good enough.
Almost done, only const_EOF remains, not easy to replace perhaps.

2. Compare POSIX_SIGNAL with ISE UNIX_SIGNAL: perhaps name routines is_ignored, is_defaulted?
They have an is_caught function, useful? Means this signal generates an exception. Also they
can ask if it is caught.

Known bugs

• not for every raise_posix_error the error code is set probably.
• does STRING_HELPER leak memory in to_external? How is memory used for these conver-

sions being freed? Is memory used there?
• If a child process is signalled (terminated), the functionPOSIX_FORK_ROOT.is_terminated_normally

sometimes returns True.

Bibliography

Index

_exit 38

a
abort 38
abort

STDC_CURRENT_PROCESS38
access 38
Ace.ace 7
add_data

POSIX_CGI 29
alarm 38
allocate

STDC_DYNAMIC_MEMORY 40
allocate_and_clear

STDC_DYNAMIC_MEMORY 32, 38
ANY 8
apply_drain

POSIX_FORK_ROOT 41
apply_flush

POSIX_FORK_ROOT 41
apply_now

POSIX_TERMIOS 41
apply_owner_and_group

POSIX_PERMISSIONS_PATH 38
asctime 38
atexit 38
attempt_lock

POSIX_FORK_ROOT 38

b
backslash 11
BASE_FILE_DESCRIPTOR ii , 71, 72
Borland C compiler 6
browse

directory 17
browse_directory

POSIX_FILE_SYSTEM 17
build ve.sh 8

c
c stdio.c 36
c stdio.h 36

calloc 38
CAPI_STDIO 2, 36
cecil.h 8
cfgetispeed 38
cfgetospeed 38
cfsetispeed 38
cfsetospeed 38
cgi 28
change

directory 14
change_directory

POSIX_FILE_SYSTEM 38
change_mode

POSIX_FILE_SYSTEM 38
chdir 38
chmod 38
chop

POSIX_TEXT_FILE 10
chown 38
clear

POSIX_FORK_ROOT 7
clear_all

POSIX_FORK_ROOT 7
clear_error

STDC_FILE 38
clearerr 38
clock 38, 100
close 38
close

POSIX_FILE_DESCRIPTOR 38
STDC_FILE 38

closedir 38
creat 38
create

directory 14
create_read_write

POSIX_FILE_DESCRIPTOR 38
ctermid 38
ctime 38
<ctype.h> 42
current_directory

POSIX_FILE_SYSTEM 39

Index 105

cuserid 38

d
deallocate

STDC_DYNAMIC_MEMORY 39
default_format

POSIX_FORK_ROOT 19
STDC_TIME 38

detach
POSIX_FORK_ROOT 25

difftime 38
directory

test_suite 30
DIRECTORY_BROWSER iii , 101
<dirent.h> 38, 40
dup 38
dup2 38

e
effective_group_id

POSIX_CURRENT_PROCESS39
effective_user_id

POSIX_CURRENT_PROCESS39
eiffel.h 35
elj-win32 7
empty

POSIX_FORK_ROOT 7
end--of--line character 10
eof

STDC_FILE 39
errno 2
error

STDC_FILE 39
execl 38
execle 38
execlp 38
execute

POSIX_FORK_ROOT 18, 23, 25
POSIX_EXEC_PROCESS38

execv 38
execve 38
execvp 38
exit 38
exit

STDC_CURRENT_PROCESS38

f
fclose 38
fcntl 38
<fcntl.h> 38, 40
fdatasync 39
fdopen 39
feof 39
ferror 39
fflush 39
fgetc 39
fgetpos 39
fgets 39
fileno 39
flush

STDC_FILE 39
fopen 35, 39
fork 39
fork

POSIX_CURRENT_PROCESS23, 39
format

POSIX_FORK_ROOT 19
STDC_TIME 41

forum.txt iv
fpathconf 39
fprintf 39
fputc 39
fputs 39
fread 39
free 39
freopen 39
fseek 39
fsetpos 39
fstat 39
fsync 39
ftell 39
fwrite 39

g
get_character

STDC_FILE 39
get_lock

POSIX_FORK_ROOT 13, 38
POSIX_FILE_DESCRIPTOR 13

get_position
STDC_FILE 39

get_string
STDC_FILE 39

106

getc 39
getchar 39
getcwd 39
getegid 39
getenv 39
geteuid 39
getgid 39
getgrgid 39
getgrnam 39
getgroups 39
getlogin 38, 39
getpgrp 39
getpid 5, 39
getppid 39
getpwnam 39
getpwuid 39
gets 39
getuid 39
gmtime 39
<grp.h> 39

i
is_accessible

POSIX_FILE_SYSTEM 38
is_attached_to_terminal

POSIX_FILE_DESCRIPTOR 39
is_empty

STRING 7
is_in_group

POSIX_CURRENT_PROCESS39
is_modifiable

POSIX_FORK_ROOT 15
is_readable

POSIX_FILE_SYSTEM 16
is_terminated_normally

POSIX_FORK_ROOT 102
isatty 39

k
kill 39
kill

POSIX_PROCESS 39

l
last_string

POSIX_FORK_ROOT 10
lcc 6

libeposix.a 6, 7
libeposix.lib 7
license iv
link 39
link

POSIX_FILE_SYSTEM 39
loadpath.se 7, 8
local_date_string

POSIX_FORK_ROOT 19
local_time_string

POSIX_FORK_ROOT 19
<locale.h> 39, 40
localeconv 39
localtime 39
login_name

POSIX_CURRENT_PROCESS39
lseek 40

m
make

POSIX_PIPE 40
POSIX_TERMIOS 41
STDC_TEMPORARY_FILE 41

make_as_duplicate
POSIX_FILE_DESCRIPTOR 38

make_directory
POSIX_FILE_SYSTEM 40

make_fifo
POSIX_FILE_SYSTEM 40

make_from_file
POSIX_FILE_DESCRIPTOR 39

make_from_file_descriptor
POSIX_FILE 39

make_from_gid
POSIX_GROUP 39

make_from_name
POSIX_GROUP 39
POSIX_USER 39

make_from_now
POSIX_TIME 19

make_from_uid
POSIX_USER 39

make_from_unix_time
STDC_TIME 41

Makefile.bcc 6
Makefile.lcc 6
Makefile.msc 6

Index 107

makelib.bat 6
malloc 40
max_filename_length

POSIX_DIRECTORY 40
mblen 40
mbstowcs 40
mbtowc 40
Microsoft C compiler 6
minicom 26
mkdir 40
mkfifo 40
mktime 40
modem 26
MQUEUE iii , 101

o
open 40
open

POSIX_FILE 2
POSIX_FILE_DESCRIPTOR 40

open_read
POSIX_FORK_ROOT 2, 40

open_read_write
POSIX_FORK_ROOT 40

open_write
POSIX_FORK_ROOT 40

opendir 40
Open Source iv

p
p stdio.c 36
p stdio.h 36
PAPI_UNISTD 2
parent_pid

POSIX_CURRENT_PROCESS39
pathconf 40
pause 40, 100
pause

POSIX_CURRENT_PROCESS40
permissions

POSIX_FILE_SYSTEM 16
perror 40
pid

POSIX_CURRENT_PROCESS5, 39
pipe 40
POSIX_ASYNC_IO_REQUEST ii , 58, 60
POSIX_BASE ii , 3, 61

POSIX_BINARY_FILE 9
POSIX_CGI ii , 28, 29, 62
POSIX_CHILD_PROCESS ii , 63
POSIX_CONSTANTS ii , 3, 64, 66
POSIX_CURRENT_PROCESSii , 23, 68,

100
POSIX_DAEMON ii , 25, 69
POSIX_DIRECTORY ii , 17, 18, 38, 40, 70
POSIX_DYNAMIC_MEMORY 21, 31
POSIX_ENV_VAR 21
POSIX_EXEC_PROCESSii , iii , 18, 74,

100
POSIX_FILE 9
POSIX_FILE_DESCRIPTOR ii , iii , 3, 11,

38, 71, 76, 78, 101
POSIX_FILE_SYSTEM ii , 3, 14, 15, 79,

80
POSIX_FORK_ROOT ii , 5, 23, 82
POSIX_GROUP ii , 83
POSIX_LOCK ii , 13, 84
POSIX_MEMORY_MAP ii , iii , 85, 86, 101
POSIX_PATH iii , 101
POSIX_PERMISSIONS ii , 16, 17, 87, 88
POSIX_SEMAPHORE iii , 101
posix_setsid

PAPI_UNISTD 40
POSIX_SHELL_COMMAND 18
POSIX_SIGNAL ii , 40, 90
POSIX_STAT 17
POSIX_STATUS ii , 16, 39, 41, 91
POSIX_SYSTEM ii , 41, 92
POSIX_TERMIOS ii , 94
POSIX_TEXT_FILE 9, 11
POSIX_TIMED_COMMAND ii , 38, 96
POSIX_USER ii , 97
printf 40
process_group_id

POSIX_CURRENT_PROCESS39
put_string

STDC_FILE 39
putc 40
putc

STDC_FILE 39
putchar 40
putenv 21
puts 40
<pwd.h> 39

108

r
raise 40
rand 40
read 40
read

POSIX_FILE_DESCRIPTOR 40
STDC_FILE 39

read_character
POSIX_FORK_ROOT 39
STDC_FILE 8

read_string
POSIX_FORK_ROOT 39

readdir 40
real_group_id

POSIX_CURRENT_PROCESS39
real_user_id

POSIX_CURRENT_PROCESS39
realloc 40
refresh

POSIX_PERMISSIONS 16
remove 40
remove

directory 14
remove_directory

POSIX_FILE_SYSTEM 40
remove_file

GENERAL 8
POSIX_FILE_SYSTEM 8, 40

rename 40
rename_to

POSIX_FILE_SYSTEM 40
reopen

STDC_FILE 39
resize

STDC_DYNAMIC_MEMORY 40
restore_group_id

POSIX_FORK_ROOT 40
restore_user_id

POSIX_FORK_ROOT 40
rewind 40
rewind

STDC_FILE 40
rewinddir 40
rmdir 40

s
scanf 40

seek
POSIX_FILE_DESCRIPTOR 40
STDC_FILE 39

seek_from_current
POSIX_FORK_ROOT 39, 40

seek_from_end
POSIX_FORK_ROOT 39, 40

set_allow_anyone_read
POSIX_FORK_ROOT 16

set_allow_group_write
POSIX_FORK_ROOT 16

set_buffer
STDC_FILE 40

set_date
POSIX_FORK_ROOT 40

set_date_time
STDC_TIME 40

set_full_buffering
POSIX_FORK_ROOT 40

set_group_id
POSIX_CURRENT_PROCESS40

set_line_buffering
POSIX_FORK_ROOT 40

set_locale
STDC_CURRENT_PROCESS40

set_lock
POSIX_FORK_ROOT 38

set_native_locale
POSIX_FORK_ROOT 40

set_native_time
POSIX_FORK_ROOT 40

set_no_buffering
STDC_FILE 40

set_position
STDC_FILE 39

set_time
POSIX_FORK_ROOT 40

set_user_id
POSIX_CURRENT_PROCESS40

setbuf 40
setgid 40
<setjmp.h> 42
setlocale 40
setpgid 40
setsid 40
setuid 40
setvbuf 40

Index 109

sigaction 40
sigaddset 40
sigdelset 40
sigemptyset 40
sigfillset 40
sigismember 40
signal 40
<signal.h> 39, 40
sigpending 40
sigprocmask 40
sigsuspend 40
slash 11
sleep 40
sleep

POSIX_CURRENT_PROCESS40
sprintf 40
srand 41
sscanf 41
start_tag

POSIX_CGI 29
stat 16, 41
status

POSIX_FILE_DESCRIPTOR 17, 39
STC_TEMPORARY_FILE 31
<stdarg.h> 42
STDC_BASE ii , 3, 43
STDC_BINARY_FILE 31
STDC_CONSTANTS ii , 3, 31, 44
STDC_CURRENT_PROCESSii , 31, 45,

100
STDC_DYNAMIC_MEMORY ii , 31, 31,

46, 48
STDC_ENV_VAR ii , 31, 49
STDC_FILE ii , 39, 50, 52, 54, 100
STDC_FILE_SYSTEM ii , 31, 55
STDC_LOCALE_NUMERIC ii , 39, 100
STDC_PATH ii , 100
STDC_SHELL_COMMAND 31, 41
STDC_STATUS ii , 100, 100
STDC_SYSTEM ii , 31, 56
STDC_TEXT_FILE 31
STDC_TIME ii , 31, 38, 57, 100
<stdio.h> 36, 36, 38, 39, 40, 41
<stdioh> 39
<stdlib.h> 38, 39, 40, 41
strftime 41

support
commercial iv

SUS_SYSLOG iii , 30, 101
synchronize

POSIX_FILE_DESCRIPTOR 39
synchronize_data

POSIX_FILE_DESCRIPTOR 39
<sys/staat.h> 40
<sys/stat.h> 38, 39, 40, 41
<sys/utsname.h> 41
<sys/wait.h> 41
sysconf 41
system 41

t
tcdrain 41
tcflow 41
tcflush 41
tcgetattr 41
tcgetpgrp 41
tcsendbreak 41
tcsetattr 41
tcsetpgrp 41
tell

STDC_FILE 39
temporary_file_name

STDC_FILE_SYSTEM 41
terminal 13
<termios.h> 38
time 41
<time.h> 38, 39, 40, 41
times 41
<times.h> 41
tmpfile 41
tmpnam 41
to_local

STDC_TIME 39
to_utc

STDC_TIME 39
touch

POSIX_FORK_ROOT 41
ttyname 41
ttyname

POSIX_FILE_DESCRIPTOR 41
tzset 41

110

u
umask 41
uname 41
ungetc 41
ungetc

STDC_FILE 41
<unistd.h> 38, 39, 40, 41
unlink 2, 41
unlink

POSIX_FILE_SYSTEM 41
utime 41
utime

POSIX_FILE_SYSTEM 41
<utime.h> 41

v
value

STDC_ENV_VAR 39
vfprintf 41
vprintf 41
vsprint 41

w
wait 41
wait

POSIX_FORK_ROOT 5
POSIX_CURRENT_PROCESS5, 41

wait_for
POSIX_CHILD 5

wait_pid
POSIX_FORK_ROOT 41

waited_child_pid
POSIX_FORK_ROOT 5

waitpid 41
wcstombs 41
wctomb 41
Windows 7, 8
write 41
write

POSIX_FILE_DESCRIPTOR 41
STDC_FILE 39

x
XML_GENERATOR ii , 98

