
Eiffel:
An Advanced
Introduction

Alan A. Snyder
Brian N. Vetter

Table of Contents

Introduction - Welcome To Eiffel

1 - Basic Concepts and Syntax
1.0 Classes and Objects

1.1 References
1.2.1 Declaring Expanded Objects

1.2 Expanded Types
1.3 Features

1.3.1 Attributes - Variables and Constants
1.3.1.1 Unique Attributes
1.3.1.2 Constants

1.3.2 Routines - Procedures and Functions
1.3.2.1 Creation Routines

1.3.3 Local attributes

2 - Inheritance, Using Objects, Clients and Suppliers
2.1 Inheriting from Other Classes
2.2 Using an Object - the Dot (.) Operator
2.3 Clients and Suppliers
2.4 Export Status

2.4.1 Multiple Exports

3 - Copying, Cloning and Equality
3.0 Introduction
3.1 Copying Objects

3.1.1 Shallow Copy
3.1.2 Deep copy

3.2 Cloning Objects - Deep and Shallow
3.3 Object Equality - Deep and Shallow

4 - Control Flow Constructs - Conditional, Iteration, and Multi-Branch
4.1 Looping
4.2 Conditional Constructs
4.3 Multi-Branch

5 - Inheritance and Feature Adaptation
5.0 Introduction
5.1 Selecting
5.2 Renaming
5.3 Redefining

5.3.1 Feature Signature
5.4 Changing the Export Status of Inherited Features

Eiffel: An Advanced Introduction Page 1

5.5 Undefinition
5.5.1 Semantic Constraints on Undefinition

5.5.1.1 Frozen Features

6 - Genericity
6.1 Unconstrained Genericity

6.1.1 Multiple Paramaterization
6.2 Constrained Genericity

7 - Using Eiffel: Examples and Tutorials
7.0 Overview
7.1 Class VEHICLE
7.2 Contract Programming

7.2.1 Preconditions
7.2.2 Post conditions

7.2.2.1 Old Expressions
7.2.3 Invariants

7.2.3.1 Looping Revisited - Variants and Invariants
7.2.4 A Note on Efficiency

7.3 The New VEHICLE class
7.4 Exceptions

7.4.1 Handling Exceptions - Rescue clauses
7.4.2 Retry Commands

7.5 LAND_VEHICLE and WATER_VEHICLE
7.6 Repeated Inheritance
7.7 HYDRO_LAND_VEHICLE

8 - Eiffel's Role in Analysis and Design and Final Words Concerning Eiffel's Future
8.0 Introduction
8.1 Deferring Classes and Features
8.2 Explicit Creation
8.3 What Do I Tell My Clients?
8.4 The Future of Eiffel

Eiffel: An Advanced Introduction Page 2

Introduction
Welcome to Eiffel

Eiffel is a pure object-oriented programming language designed with the explicit
intent to produce high quality, reliable software. It is pure in its nature in that every entity
is an object declared of an explicitly stated class type. It adheres to some of the long
proven and time tested programming practices that have made languages like Modula-2 a
successful engineering advancement.

Eiffel promises to be the next step toward a better understanding and more
importantly, efficient use of the object-oriented practices that have evolved thus far. This
paper intends to familiarize the reader with Eiffel's concepts and its sometimes unique
approach to constructs. This is not intended to be an introduction to the object-oriented
programming paradigm in general. Familiarity with programming (procedural, hybrid
object-oriented/procedural, or pure object-oriented) is very helpful, as the material
presented is in such a form that certain concepts must bee understood on the reader's part
prior to reading this.

Without any more delay, we present the Eiffel programming language...

Eiffel: An Advanced Introduction Page 3

Chapter 1:

Basic Concepts and Syntax

1.0 Classes and Objects
1.1 References
1.2.1 Declaring Expanded Objects

1.2 Expanded Types
1.3 Features

1.3.1 Attributes - Variables and Constants
1.3.1.1 Unique Attributes
1.3.1.2 Constants

1.3.2 Routines - Procedures and Functions
1.3.2.1 Creation Routines

1.3.3 Local attributes

Eiffel: An Advanced Introduction Page 4

1.0 Classes and Objects

A class is essentially an extremely modular abstract data type template through
which objects are produced. That is, a class is a structure with a set of operations
(routines) and data entities associated with it. In Eiffel, every entity is an instance of a
class- an object. Even the INTEGERs, and REALs that come as part of the standard data
types are actual classes. This means that one could possibly inherit from an INTEGER,
and make a new class, NEW_INTEGER if so desired.

The difference between a class and an object is similar to that of a type and a
variable in traditional languages. There are two types of objects that exist in Eiffel:
references and expanded objects. These may be thought of a a "pointer to" an object, and
the object itself, respectively. We will now examine these objects more closely.

1.1 References

The default type of objects declared in Eiffel are references (essentially pointers
without the associated dangers). This is accomplished by invoking a creation routine on
the new object, as the following example demonstrates:

x : SOMECLASS;
!!x.make; -- call the a SOMECLASS creation routine
x.some_routine; -- some_routine is a member of SOMECLASS

First, x is declared as an instance of SOMECLASS. Entity declarations in Eiffel are
similar to most procedural languages: an identifier followed by a colon (:) followed by a
class name.

The next line uses the double-exclamation (!!) operator on x to instantiate it
(allocate space for its existence). make is a creation routine defined in SOMECLASS that
performs object initialization (its declaration is not shown here). Additionally, it may also
take other actions to ready the object for use. In the make routine, no explicit call by the
routine can be made to allocate space for x. The !! operator takes care of making sure that
space is made available while the make routine can perform initialization safely.

An attempt to reference an object prior to calling a creation (or any other) routine
on it will result in an exception. In the above example, x.some_routine can only be called
after !!x.make.

Before !!x.make was called, x looked like this:

Eiffel: An Advanced Introduction Page 5

Voidx

At this point in time, x had been declared, but since it was of reference type, the
automatic default initialization sets x to Void. This is similar to NIL or NULL in Modula-2
and C/C++ respectively.

After, the !!x.make statement, x now looks like:

x internal

structure of

SOMECLASS

1.2 Expanded Types

If a class is defined so that all instances of it are expanded, then an object declared
of that class type is ready to be used as soon as it is declared. For example, as soon as an
object of type INTEGER is declared, it may be used, since INTEGER is an expanded
class. Expanded objects (declared of expanded classes) do not require the !! operator to be
called prior to usage. It is implicitly called automatically when the object is declared. This
gives the flexibility of choice between references to objects and objects themselves
(pointers to variables, or just variables).

To declare a class such that all instances of it (objects) are expanded, use the
expanded keyword before the class declaration:

expanded class INTEGER
feature
 ...
end --INTEGER

If we want to instantiate an object of the INTEGER class, we simply declare it as
follows:

x : INTEGER; -- At this point, x has a default value of 0
x := 1; -- x now contains the value 1.

Eiffel: An Advanced Introduction Page 6

Part of the automatic initialization causes the object x to contain the value 0. In
Eiffel, all entities are initialized to a default value. The corresponding default values for the
basic types are:

INTEGER = 0
REAL = 0.0
DOUBLE = 0.0
CHARACTER = Null_char
BOOLEAN = False
reference = Void

The REFERENCE type above is not an actual class type. Rather it denotes a class
whose type is not of any of the above listed. That is, if a class is defined and it is not
preceded by the expanded keyword, all objects of that class type are references. Hence at
the instant of declaration, the reference itself is set to Void by default.

Getting back to expanded types: graphically, if we wanted to represent x which is
an expanded INTEGER, we could do it as such:

x = 0

The above graphic represents x at the point of declaration.

1.2.1 Declaring Expanded Objects

There may come a time when a reference to an object is not needed, and the object
itself is more appropriate but not available through the class itself (via expanded
keyword). In this case, the object itself may be declared as expanded. The effect is the
same as if the class itself had been declared as expanded as described above. In the case of
expanded objects, we may or may not know if the class itself was declared as expanded or
not. We may know however, that we wish for the object to be expanded. If this is the
case, we may do the following.

x : expanded SOMECLASS

In this case x is of type SOMECLASS, but instead of being a reference that must
be initialized (with the !! operator), all memory necessary for SOMECLASS is allocated
upon declaration. Each attribute of SOMECLASS is then automatically initialized to its
respective default value.

Eiffel: An Advanced Introduction Page 7

1.3 Features

Features are the data an object may store and operations that may be performed on
an object. There are two types of features in Eiffel: attributes and routines. The term
feature in Eiffel refers to the data and operations collectively. Features allow one to
describe what a class has or can do; that is, it supports the 'has-a' or 'can-do' relation. A
CAR for instance, will 'have-a' engine. A COMPUTER 'has-a' CPU. Also, a CAR 'can'
drive_forward. A COMPUTER 'can' compute.

1.3.1 Attributes - Variables and Constants

An attribute is an object whose declaration is found within a class (aggregation).
An attribute may be a referenced class or an expanded class, such as an INTEGER. The
following is an example of an attribute feature list:

feature
 count : INTEGER;
 precision : DOUBLE;
 last_key : CHARACTER;
 icon_selected : BOOLEAN;

1.3.1.1 Unique Attributes

Eiffel provides no mechanism for implementing enumerated types. Instead it
provides a capability to simulate the effects of enumerated types while still strongly
holding on to its object-oriented nature. This capability is manifested in the unique
keyword. An example is deserved:

class FSM
feature
 state_1, state_2, state_3 : INTEGER is unique;
 ...
end

The only entity types that may be declared as unique are INTEGERs.

Unique INTEGERs are guaranteed to be different from all other INTEGERs
declared as unique within that class. Here, state_1, state_2, and state_3 are unique
because they will each be assigned different INTEGER values. Unique attributes are
essentially constants whose value is chosen by the compiler. What this means for the
reader is that in essence the functionality of enumerations (assigning INTEGER values to

Eiffel: An Advanced Introduction Page 8

meaningful identifiers) has been implemented, yet the pure object-oriented structure
remains in tact.

Any unique attributes in a class will be assigned numerical values such that each
successive declaration is one greater than its predecessor and each entity is also positive.
In the case above, if state_1 was assigned the value 1, then state_2 and state_3 would be
assigned 2 and 3 respectively. It could be possible that state_1 was assigned the value 5, in
which cast state_2 and state_3 would be assigned 6 and 7 respectively.

1.3.1.2 Constants

In Eiffel constants are always declared with an associated type. The only types
whose objects can be declared as constants are:

INTEGER
REAL
DOUBLE
BOOLEAN
CHARACTER
ARRAY

These are the basic types available in most traditional languages. We will now
show how to declare an entity as a constant.

feature
 Max : INTEGER is 100;
 Pi : REAL is 3.14;
 Better_pi : DOUBLE is 3.14159;
 Default_save_mode : BOOLEAN is False;
 Menu_option : CHARACTER is 'M';

1.3.2 Routines - Procedures and Functions

Routines are functions and procedures belonging to a class that provide algorithms
utilized by that class. They may facilitate the input and/or output of data to the class or
calculate values based on the state of the object. As with attributes, routines may be
declared following the feature keyword.

For example, the following class converts a Celsius temperature to Fahrenheit. It
utilizes a procedure set_temperature to set the initial temperature, and a function convert
to return the converted value.

Eiffel: An Advanced Introduction Page 9

class CONVERTER
feature
 temperature : DOUBLE;
 conversion_factor : DOUBLE is (5/9);
 set_temperature (c : DOUBLE) is
 do
 temperature := c;
 end -- set_temperature

 convert : DOUBLE is
 do
 Result := temperature * conversion_factor + 32;
 end -- convert
end -- converter

There are four different types of features in class CONVERTER. The first,
temperature, is a an instance of type DOUBLE. It is a variable attribute whose value may
be changed during program execution.

Second, conversion_factor is an instance of class DOUBLE, and is initialized with
a value of (5/9). Using the keyword is causes conversion_factor to be a constant
attribute, as described above.

Third, set_temperature is a routine that does not return a value. It takes one
parameter, c, which is of type DOUBLE. The keyword is indicates the identifier is about
to be assigned meaning, and the do...end pair states that this is a routine.

Finally, convert is a function that has no parameters and returns a value of type
DOUBLE. It assigns the converted temperature to the keyword Result. Result is the
pass-back mechanism (an object) for Eiffel. Whatever its value is upon function
termination is what is returned to the calling routine.

1.3.2.1 Creation Routines

As noted in an earlier section, objects that are references need to be initialized with
a creation routine from that class. A routine is designated as a creation routine by placing
it in a list following the creation keyword. This routine may then be called on an object
along with the (!!) operator to provide initialization. In the example below, make is
designated as a creation routine.

Eiffel: An Advanced Introduction Page 10

class CONVERTER
creation make;
feature
 temperature : DOUBLE;

 make is
 do
 temperature := 98.6;
 end -- make
 ...
end

In Eiffel, creation routines are not treated any differently than any other routine.
That is, it may be called during creation of an object, or it may be called at any time during
the life of that object. In the text given above we may call make at any time on an object of
class CONVERTER if we wanted to set the temperature feature to 98.6 degrees. This will
not allocate space for a new object of class CONVERTER. Only the (!!) creation operator
will do this. We may now declare an instance of class CONVERTER, widget for instance,
and create it as follows:

...
widget : CONVERTER;
!!widget.make;
...

By default, since CONVERTER is not defined as an expanded class and widget is
not declared as an expanded version of CONVERTER, widget is a reference to a
CONVERTER object. Prior to using widget, it is created (using the !! operator) and
initialized with the call to the make routine.

1.3.3 Local attributes

Routines and functions may sometimes need local (and temporary) space to help
aide in calculations, or for some other reason. Local variables are nothing new to
programming languages, nor to Eiffel. Local variables are in fact objects (as are all
variables). A local entity may be declared as follows:

Eiffel: An Advanced Introduction Page 11

 ...
 convert : DOUBLE is
 local
 loc : DOUBLE
 do
 loc := temperature * conversion_factor + 32;
 Result := loc;
 end -- convert
 ...

In this case, loc is a local variable in the convert function. It is only in existence
when the function is executing. It does not retain a value in-between calls to convert.
If instead of local variables, local constants are required, the same syntax and semantics
should be applied as those for declaring constants as described in section 1.4.1.3.

Eiffel: An Advanced Introduction Page 12

Chapter 2:

Inheritance,
Using Objects,

Clients and Suppliers

2.1 Inheriting from Other Classes
2.2 Using an Object - the Dot (.) Operator
2.3 Clients and Suppliers
2.4 Export Status

2.4.1 Multiple Exports

Eiffel: An Advanced Introduction Page 13

2.1 Inheriting from Other Classes

Being an object-oriented language, Eiffel supports the inheritance mechanism.
Specifically, multiple inheritance is fully supported. A class may inherit features from one
or more parent classes, declared in the inherit clause of a class definition. The following
example demonstrates the syntax of Eiffel inheritance:

class CHILD
 inherit
 PARENT_1;
 PARENT_2;

 feature
 ... -- CHILD's own features

 end --CHILD

Here, class CHILD inherits from PARENT_1, and PARENT_2. Any features
from those two classes become part of class CHILD, in addition to any features defined in
CHILD. Problems may arise, though when features with the same name are inherited from
PARENT_1 and PARENT_2. The possible ambiguities with inheritance can all be
resolved through selection, redefinition, renaming, and undefining. These topics will be
covered in detail in chapter 5 which is titled Inheritance and Feature Adaptation.

2.2 Using an Object - the Dot (.) Operator

Once an object has been created, the dot (.) operator is used to invoke a routine,
or access an attribute. Regardless of the type of the object (reference or expanded), the
dot operator is used consistently. In traditional languages that require one to explicitly use
the dot operator for expanded classes (or equivalents), and another operator (^. or ->)
with reference objects (or equivalents), this may cause a great deal of time to change, if it
has been decided to switch from an expanded object to a reference or vice versa. Eiffel's
consistent use of the dot operator only is a beneficial feature for both program writing
ease and for readability and understandability of concepts rather than implementation
details.

We now present the following example to better describe the use of the dot
operator:

c : CONVERTER;
!!c.make();
c.SetValue(32);

Eiffel: An Advanced Introduction Page 14

Here, the creation operator (!!) along with the call to the creation routine make,
creates and initializes c as an object of type CONVERTER. Then set_temperature sets c's
temperature feature to 32 as described by the actual INTEGER parameter. The dot
operator associates set_temperature with a particular instance of CONVERTER, here c.
Any other CONVERTER that may exist remains unaffected.

2.3 Clients and Suppliers

The relationship of inheritance described in section 21 above is known as the 'is-a'
relation. For instance, a CAR 'is-a' VEHICLE (CAR inherits from VEHICLE) or a PEN
'is-a' WRITING_IMPLEMENT (PEN inherits from WRITING_IMPLEMENT).

Another relation existing (among others) in the object-oriented paradigm, is the
'has-a' relation, which describes aggregation. For example, a PERSON 'has-a' HEAD, or a
DIGITAL_CLOCK 'has-a' DISPLAY. In Eiffel, the 'has-a' relation is implemented simply
by stating that in a particular class, one of the features is an attribute.

class DIGITAL_CLOCK
feature
 display : DISPLAY;
...
end

Here, since DIGITAL_CLOCK is using DISPLAY through its display feature, it
can be said that DIGITAL_CLOCK is a client of DISPLAY. Conversely, DISPLAY is a
supplier of DIGITAL_CLOCK. With this simple concept in mind, we take you to the next
section which concerns the export status of features.

2.4 Export Status

There may be times when we do not want to allow just any client to use all of the
features of a class. Some clients should be able to use all of the available features, others
should be able to use only a select few. In Eiffel, we are able to describe which clients are
allowed to access which features (via the dot '.' operator). This is accomplished with a
selectable export status mechanism as described below:

class ACCOUNT
feature
 balance : INTEGER;
 ...
end --ACCOUNT

Eiffel: An Advanced Introduction Page 15

If we were to let this class stand as-is, we could change the balance feature as we
wish without penalty. This means that we could set the balance to hold a million dollars,
and no one would argue the fact (except maybe the bank holding the account!).

We need a way to say that we do not wish for anyone to be able to access balance
directly. This may be done as follows:

class ACCOUNT
feature {NONE}
 balance : INTEGER;
 ...
end --ACCOUNT

Now, no class is able to access balance, since it is exported to the NONE class
only. No objects may be instantiated of type NONE, hence no objects will ever be able to
use it. The {NONE} appearing after the feature reserved word states that all of the
following features are available to objects who are of type NONE.

This seems a little too restrictive for this case. What if the bank needed to access
your balance in order to make a deposit, or withdrawal. In this case, we can export the
balance feature to the class BANK as follows:

class ACCOUNT
feature {BANK}
 balance : INTEGER;
 ...
end --ACCOUNT

Above, only clients of ACCOUNT who are of declared to be of class BANK or
who inherit from BANK may directly access balance. This restrictive exportation of
balance enables only those classes who can be 'trusted' to use balance. We would no
export balance to just anyone, but we don't want to enable everyone to have free access
to it.

Based on this declaration, the following may be written:

Eiffel: An Advanced Introduction Page 16

class BANK
feature
 presidential_account : ACCOUNT;
 ...
 deposit (amount : INTEGER) is
 do
 presidential_account := presidential_account + amount;
 end;
end

The following will show what can not be written. Since ROBBERS is a client of
ACCOUNT, and the feature balance has not been exported to clients of type ROBBERS,
the following will not be allowed:

class ROBBERS
feature
 hacking_account : ACCOUNT ...
 wipe_account is
 do
 hacking_account.balance := 0; --illegal!!
 end
end

The ability to selectively declare who is able to access a feature or set of features
of a class, is called selective exporting. Eiffel, provides an easy to learn and remember
syntax for selectively exporting features or groups features.

2.4.1 Multiple Exports

Instead of exporting to only a single class the balance feature of our ACCOUNT,
we may wish for a group of classes to be able to access this feature. In this case, we can
export balance to a group of clients as in:

class ACCOUNT
feature {BANK, IRS}
 balance : INTEGER;
 ...
end --ACCOUNT

Now, if BANK or if IRS objects are clients of ACCOUNT, they will have access
to the balance feature. That is:

Eiffel: An Advanced Introduction Page 17

class IRS
feature
 your_account : ACCOUNT;
 check_for_fraud is
 do
 if your_account.balance > 1000000 then
 schedule_audit;
 end;
 end; -- check_for_fraud
end --IRS

Since the IRS class has been listed as a client who is able to whom balance was
exported, the above IRS class is legal. IRS is permitted to change balance in
your_account as it sees fit. So care must be taken when exporting a feature which is an
attribute to another class. Trust must be instilled in the client class, here IRS, such that
IRS will be not tamper destructively with the balance feature. (Yes, trust in the IRS is
difficult believe, but sometimes necessary!)

Eiffel: An Advanced Introduction Page 18

Chapter 3:

Copying, Cloning and Equality

3.0 Introduction
3.1 Copying Objects

3.1.1 Shallow Copy
3.1.2 Deep copy

3.2 Cloning Objects - Deep and Shallow
3.3 Object Equality - Deep and Shallow

Eiffel: An Advanced Introduction Page 19

3.0 Introduction

Eiffel provides several features that allow objects to be reproduced, replicated and
compared for equality. We will discuss these capabilities in this chapter. Most of the
features introduced thus far in previous sections of this paper are not unique to the Eiffel
language. However, Eiffel separates itself from other languages in its ability to deeply
copy, clone, and compare objects. We will explain in detail why this statement holds true.

3.1 Copying Objects

To copy an object means to replicate the contents of the source object in the target
object. In order to be correct, the target object must already be in existence (created).
Copying to a target reference that is Void will produce an exception. Eiffel provides two
ways to copy an object: deep and shallow copying. Each will be discussed in turn.

3.1.1 Shallow Copy

We will discuss the effects of shallow copying with an example. Assume we have
two entities which reference objects of class TEDDY_BEAR:

ysize = 5

name = "George" name = "Jake"

size = 4x

The result of

x.copy(y)

which is the shallow copy feature available to all objects, would be:

size = 4

name = "Jake"
y size = 4

name = "Jake"
x

Shallow copy makes no attempt to traverse the structure (other references) of the
object. The effects of the copy are isolated to the immediate object being referenced.
Shallow copying essentially performs a field-by-field transfer of all features that are
attributes. In the above case, size and name. Note that there are probably routines and

Eiffel: An Advanced Introduction Page 20

functions available to TEDDY_BEAR that perform various operations. These routines
and functions are not copied after a shallow copy (or deep copy for that matter).

3.1.2 Deep copy

Deep copying traverses the entire structure of the object being copied. That is, if
we were to deep copy a linked list of 100 elements, each element (all 100 of them!) would
be copied onto the destination (which must already have 100 nodes itself).

This feature of Eiffel is where the language begins to separate itself from other
traditional and even other object-oriented languages. The ability to traverse an object and
copy all of its data to another object is a very useful capability that saves a programmer a
tremendous amount of time had the programmer had to write the traversal procedure him
or herself.

To better illustrate how deep copying works, consider the situation below where x
and y are objects of type LINKED_LIST:

base

count = 2

is_empty = False

item = 3

next

item = 99

next Voidx

base

count = 2

is_empty = False

item = 84

next

item = 23

next Voidy

If we now wrote

x.deep_copy(y)

our objects would now look like:

Eiffel: An Advanced Introduction Page 21

base

count = 2

is_empty = False

item = 84

next

item = 23

next Voidx

base

count = 2

is_empty = False

item = 84

next

item = 23

next Voidy

3.2 Cloning Objects - Deep and Shallow

The semantics of cloning objects are similar to that of copying with the exception
that instead of copying an object into an already existing object, a new target is created
(cloned) from the source. The features available to all classes to perform this are clone and
deep_clone which perform shallow and deep clones respectively. If the target happens to
be pointing to an already existing structure, that structure will be lost, and the new clone
of the source will be referenced by the target.

base

count = 2

is_empty = False

item = 3

next

item = 99

next Voidx

base

count = 2

is_empty = False

item = 84

next

item = 23

next Voidy

Using the example from the previous section concerning copying, if we were to
write x.deep_clone (y) then the result of this would be:

Eiffel: An Advanced Introduction Page 22

base

count = 2

is_empty = False

item = 3

next

item = 99

next Void

x

base

count = 2

is_empty = False

item = 84

next

item = 23

next Voidy

base

count = 2

is_empty = False

item = 84

next

item = 23

next Void

no longer able
to be reached

On the other hand, if we were to write x.clone (y) which is a shallow clone, then
the results would differ from that of a deep clone. Observe the new x and y references
after a shallow clone:

base

count = 2

is_empty = False

item = 3

next

item = 99

next Void

y

base

count = 2

is_empty = False

x

base

count = 2

is_empty = False

no longer able
to be reached

item = 84

next

item = 23

next Void

Since the only portion of y that was cloned is the immediate object referenced by y,
the result is shown above. In essence, we have created a new header that references the
already existing linked list which y is referencing.

3.3 Object Equality - Deep and Shallow

Eiffel: An Advanced Introduction Page 23

A mechanism for comparing objects for equality is provided. Again, the semantics
of shallow and deep equality are comparable to those of the copy or clone feature
described above. In the case of equality, both objects being compared (which may be
Void) are compared on a field-by-field basis. The features available to all classes for this
are equal and deep_equal.

An example is deserved:

x

base

count = 2

is_empty = False

item = 84

next

item = 23

next Voidy

base

count = 2

is_empty = False

Here, if we were to perform a deep or shallow equal (comparison), the result of
both of these operations would be that in fact x and y are equal (both deep and shallow).
They are shallow equal because the immediate objects referenced by x and y are field-by-
field equivalent. That is: x's base equals y's base, x's count equals y's count, and x's
is_empty equals y's is_empty. The shallow equal stops there.

Deep equal goes the distance of traversing each objects in the entire link for field-
by-field equality.

x

base

count = 2

is_empty = False

item = 84

next

item = 23

next Voidy

base

count = 2

is_empty = False

This illustration used with the shallow equal section also qualifies for deep equal.
That is x is said to be deep equal to y as well as being shallow equal..

Eiffel: An Advanced Introduction Page 24

Chapter 4:

Control Flow Constructs -
Conditional, Iteration, and Multi-Branch

4.1 Looping
4.2 Conditional Constructs
4.3 Multi-Branch

Eiffel: An Advanced Introduction Page 25

4.1 Looping

For simplicity, there is only one iterative construct in Eiffel, and that is the loop
construct. One might ask if it is possible to "get away" with only one looping construct;
after all the FOR, WHILE, and REPEAT loops served us well in previous languages.
Eiffel's looping construct is generic enough to be able to construct a loop that behaves in
the same fashion as each of the above loops. The advantage of only one looping construct
is that once it is learned, that is it! There are no variations that allow a programmer to
dangerously change the nature of a loop. This promotes a simple and easy to learn
construct that gives all of the benefits of each of the above loops. A simple example of the
loop construct is as follows:

from
 --initialization
until
 done -- BOOLEAN condition
loop
 -- executable statements
end

The from clause is mandatory, and it specifies initializing statements. In this
example, no initialization is performed.

A second mandatory clause is until; it causes the loop to stop executing when it's
expression evaluates to True. More than one expression may be supplied, in which case
each one is separated with a semicolon ";"

The loop...end is the body of the loop to be iterated. All actions that are to be
executed during the iteration are placed in here.

It would be best if we illustrated how to mimic the behavior of the FOR, WHILE
and REPEAT loops using Eiffel's loop construct. We will first start with the FOR loop
which is characterized by a fixed, pre-determined number of iterations. We may construct
a loop that acts like a for loop as follows:

from
 i := 1
until
 i = 10
loop
 io.put_int (i);
 io.new_line;
 i := i + 1;
end

Eiffel: An Advanced Introduction Page 26

The way we achieve a FOR loop mimic is by manually incrementing the counter
variable i so that the effect of automatic incrementation is constructed. It is not much
more effort to include this manual increment statement while preserving the consistency
and generality of the loop construct.

To program a WHILE loop:

from
 node := first;
until
 node = Void;
loop
 io.put_string (node.text);
 node := node.next;
end;

This loop is similar to saying that WHILE node is not Void... execute the loop
body. The effect of a traditional WHILE loop- testing for loop termination prior to the
initial loop execution and all subsequent iterations of the loop body, is done.

We may perform similar actions when a REPEAT loop is desired. There is a slight
difference, though and that is we must ensure that the until clause will evaluate to False
on the first iteration so that in effect the loop will be guaranteed to execute at least once.
We can achieve this as follows:

from
 done := False
until
 done and pages = 10;
loop
 done := True;
 printer.output_next;
 pages := pages + 1;
end

Since the done expression (a BOOLEAN variable) initially evaluates to False, the
until clause will initially evaluate to False hence guaranteeing at least one execution of the
loop body.

4.2 Conditional Constructs

Eiffel: An Advanced Introduction Page 27

Like other high-level languages, Eiffel has the if...elseif...end construct. It is fully
bracketed (each if must have a closing end). An example of this is as follows:

...
if x > 10 then
 ... statements ...
elseif x > 5 then
 ... elsif statements ...
elseif x > 0 then
 ... more elsif statements ...
else
 ... else statements ...
end

Since the functionality of this (and most other) if statements is fairly trivial, no
other mention will be made hereafter.

4.3 Multi-Branch

Instead of coding extensive if...elseif statements, Eiffel supports a multi-branch
construct, inspect..when. This construct mimicks the CASE or SWITCH statement of
most other languages. Its usefulness is comparable to that of the traditional constructs
mentioned above.

inspect input_character;
when 'y' then
 ... statements
when 'n' then
 ... statements
else
 ... if no match for input_character is found
end

Here, the appropriate statements are executed depending on the value of
input_character. In this case, if input_character is neither 'y' nor 'n', then the statements
in the else clause are executed.

The following example shows how a multi-branch instruction can be combined
with unique attributes to imitate a CASE statement that might be based upon the value of
an enumerated variable:

...
State : INTEGER;

Eiffel: An Advanced Introduction Page 28

State_1, State_2, State_3 : INTEGER is unique;
...
inspect State
when State_1 then
 some_action;
when State_2 then
 some_other_action
when State_3 then
 another_action;
else
 no_action;
end;

This example analyzes state, and takes the appropriate action depending on its
value. If state is some other value, then the else clause is executed. Again, the effects of
the inspect construct are trivial and will not be discussed any further.

Eiffel: An Advanced Introduction Page 29

Chapter 5:

Inheritance and Feature Adaptation

5.0 Introduction
5.1 Selecting
5.2 Renaming
5.3 Redefining

5.3.1 Feature Signature
5.4 Changing the Export Status of Inherited Features
5.5 Undefinition

5.5.1 Semantic Constraints on Undefinition
5.5.1.1 Frozen Features

Eiffel: An Advanced Introduction Page 30

5.0 Introduction

Perhaps the most potent contribution to software reusability and adaptability is the
notion of inheritance. Using this powerful facility, software construction becomes a simple
task of adapting previously written, and more importantly, previously tested code. It is
almost paradoxical, though in that this important feature of the object paradigm is almost
never fully recognized in most programming languages that claim to be object oriented.
Some may offer a single inheritance mechanism, others offer multiple inheritance, but do
not provide facilities to deal effectively with such ambiguities as name collisions, and
repeated inheritance.

Eiffel, on the other hand, is very unique in these respects. The language provides
mechanisms to enable all of the benefits of multiple inheritance to be used to their fullest
consequences. Eiffel allows a descendant class to rename, redefine, undefine, select, effect
(in the case of deferred features), and change the export status of virtually all inherited
features. Of course, there are semantic restrictions placed on the new class when
attempting to adapt an inherited feature in an ambiguous, or perhaps unsafe manner.

5.1 Selecting

To start our journey into the vast combinations of feature adaptations, we will take
a look at the selection mechanism. For a given class C which inherits from at least two
classes, say A and B, there exists a possibility that A and B will both have a feature named
f for instance. If C inherits from A and B, we have what is called a name collision or clash.
The problem of this ambiguity may be more prominently displayed in this example:

class A
feature
 f : INTEGER;
end

class B
feature
 f:: REAL;
end

class C
 inherit A;
 B; -- Illegal!
 end
end

Eiffel: An Advanced Introduction Page 31

The question is then, how to resolve the two inherited features with the same name
f, from A and B. The select clause offers one solution. By modifying the text of C:

class C
 inherit
 A select f;
 B
 end;
feature
 ...
end

we explicitly state that we wish to allow f to be inherited from A and not from B, thus
resolving the clash. Feature f from B is not inherited in class C, although if the select
clause were to be placed in B's inherit clause as in:

class C
inherit
 A;
 B select f;
end;
feature
...
end

the opposite would hold true. That is, f would be inherited from B, and not from A.

Without a select clause, one could not tell whether the run-time environment
would dynamically bind f in C to A's or B's version. If the compiler does not permit this
ambiguity, then it must report to the programmer that such an inheritance situation is a
violation of the language. Clearly, there may very well be a reason to inherit in this
manner; a simple naming duplication should not prevent one from attempting inheritance.

5.2 Renaming

In some contexts, it may be desirable for a descendant class to inherit two features
identically named f from two different classes A and B. In this case, selecting just one f
from either A or B will not sufficiently enable one to acquire both versions of f. Recall that
selection enables only one version of f to be inherited from any set of parents.

However, we can rename one version of f to g for example, thusly resolving a
name clash, if any, and enabling two versions of f to be acquired, one of which is under a
different name. The following revision of class C describes this situation:

Eiffel: An Advanced Introduction Page 32

class C
inherit
 A
 rename f as g;
 B;
end;
feature
...
end

In this situation, A's version of f has been renamed to g. This has dual purpose.
First it resolves the name clash of the two versions of f from A and B. Second it allows
both versions of f to be inherited in C, A's version under a different name, giving greater
control to the programmer concerning how features should be adapted according to how
he/she sees fit.

One can also use this facility in the absence of a name collision. For instance, if a
feature is not descriptive enough to match its new surroundings, it may be renamed to
reflect its new role in the system.

class EMPLOYEE
inherit
 PERSON
 rename occupation as company_division
 end;
feature
...
end

In the above context, since we know that an EMPLOYEE's occupation is working
for the company of which EMPLOYEE refers, it is possible to rename occupation as
company_division and still keep all of the semantics intact.

This poses one to question the validity of other features inherited from PERSON
which reference occupation. That is, if a feature from PERSON depends on the
occupation field, will it still be a valid feature since occupation doesn't exist anymore?
Consider:

class A
feature
 x, y : INTEGER;
 set_x (new : INTEGER) is
 do x := new end;
end

Eiffel: An Advanced Introduction Page 33

class C
inherit
 A
 rename x as x1
 end
end -- C

Now, if we create an instance of class C, and attempt to call the set_x routine, is
this legal? The answer is yes, this is perfectly legal. The fact that x has been renamed to x1
does not affect the routine set_x (although it should be stated that set_x should be itself
renamed to set_x1 for consistency on the programmer's part. The compiler does not
require you to rename all references to a renamed feature). Although, if another routine
say double_x1 which doubles the value of x1 is to be written in C's context, it must refer
to x1 and not x. The effect of renaming x to x1 also makes the identifier x available to C.
That is, C itself may declare a feature x that is totally different than the original x from A.

We have seen thus far the two conventions of selecting and renaming features to
adapt them to their new environment. Eiffel provides another mechanism to adapt a
feature to its new environment.

5.3 Redefining

A situation commonly encountered in software development is when a feature does
not necessarily conflict with another feature's name, but it might be suitable just to
enhance or specialize a feature to reflect an algorithmic improvement or other benefit of
such nature. This is where redefinition enters the scene. Redefining an inherited feature
allows one to properly adapt it to its new environment. This form of software Darwinism
is one of the most attractive capabilities of the object paradigm.

Before we give actual examples of redefinition, it should be said, though that there
is a considerable constraint placed on feature redefinition that the selecting and renaming
clauses did not impose. This constraint is that the new signature of a feature f must
conform to its original signature. It now seems appropriate to discuss the exact meaning of
the signature of a feature.

5.3.1 Feature Signature

The signature of a feature f is the pair (A,R) where A is the sequence of argument
types of a routine or function (empty for entities); R (empty for routines) is the return type
for a function, or just the entity type for entities. The following examples make this more
clear:

Eiffel: An Advanced Introduction Page 34

Feature Signature
variable_attribue (entity)
 x : INTEGER (<>, <INTEGER>)
 y : REAL (<>, <REAL>)

function_without_arguments
 day_of_year : INTEGER (<>, <INTEGER>)

function_with_arguments
 func(x : INTEGER; r : REAL) : REAL (<INTEGER, REAL>,<REAL>)
 func(a : SOME_CLASS; x : INTEGER) (<CLASS,INTEGER>,CLASS)

procedure_with_arguments
 proc(a : CLASS; r : REAL; x : INTEGER)(<CLASS,REAL,INTEGER>,<>)
 proc(x, y : INTEGER) (<INTEGER, INTEGER>, <>)

Simply put, the signature of a feature is the sequence of all types of arguments, if
any, and the return type (in the case of a function); or just the attribute type in the case of
an entity.

What does this have to do with redefinition? As mentioned above, there is a
constraint placed on a class that wishes to redefine an inherited feature. That is, the new
redefined feature's signature must conform to the signature of the feature which is being
redefined. An example is deserved:

class A
feature
 set_all(x, y : INTEGER; r : REAL) is
 do ... end
end
class B inherit
 A
 redefine set_all
 end;
feature
 set_all(i, j : INTEGER; s : REAL) is
 do ... end;
end

Here we have the case of class B redefining set_all such that its routine body is
algorithmically different from that of A's version of set_all. Notice that the signature of
set_all defined in B conforms to that of the signature of set_all in A:

Eiffel: An Advanced Introduction Page 35

Feature Signature
set_all(x, y : INTEGER; r : REAL) (<INTEGER,INTEGER,REAL>,<>)
set_all(i, j : INTEGER; s : REAL) (<INTEGER,INTEGER,REAL>,<>)

What is the difference between conforming signatures and matching signatures? A
signature S is said to conform to a signature P if the following holds true:

Signature Conformance
1. The number of types in the argument sequence of both signatures match exactly.
2. Each type in S's argument sequence is a descendant of the corresponding type in
 P's sequence. Remember that a type is also a descendant of itself so that
 corresponding types in the sequences may be identical.

What this means is that the number of types in both the argument and return type
sequences of P and S must be exactly the same. The second rule states that a redefined
feature is not required to use the exact same types in its arguments and return types; it
may use a descendant of any or all of the types, as it sees fit.

Getting back to our example from above, observe the following:

class A
feature
 set_all(x, y : INTEGER; r : REAL) is
 do ... end
end --A

class NEW_INTEGER
inherit
 INTEGER end; - You CAN inherit from INTEGERs!!
feature
...
end --NEW_INTEGER

class B
inherit
 A
 redefine set_all
 end;
feature
 set_all(i, j : NEW_INTEGER; s : REAL) is
 do ... end
end --B

Eiffel: An Advanced Introduction Page 36

Is this legal? Absolutely! Since the signature of set_all in B does indeed conform
to that of set_all in A, this is legal. NEW_INTEGER was defined as a descendant of
INTEGER, making INTEGER an heir of NEW_INTEGER. The new signatures

Feature Signature
set_all(x,y:INTEGER;r:REAL) (<INTEGER,INTEGER,REAL>,<>)
set_all(i,j:NEW_INTEGER; s:REAL)
(<NEW_INTEGER,NEW_INTEGER,REAL>,<>)

do not match, but they do conform. That is, B's set_all conforms to A's set_all. It is
obviously impossible for the opposite to be true. A's set_all signature does not conform to
that of B's set_all signature.

5.4 Changing the Export Status of Inherited Features

Recall from section 2.4 that we could explicitly export a particular feature (or
features) to a certain class or classes. For instance:

class VEHICLE
feature {DRIVER}
 identification : INTEGER;
end

declares that the feature identification is available only to clients who are either
descendants of class DRIVER, or are themselves of class DRIVER. The question then
arises as to what happens to this rule when we do the following:

class LAND_VEHICLE
inherit
 VEHICLE
end

Does identification lose its restrictive export status for a more general one (i.e. available to
ANY class)?

Since we did not explicitly redeclare the export status of identification when we
inherited from VEHICLE, the status of this feature remains the same.

However, we could have explicitly changed the export status of this, and any other
inherited features for that matter, with the export clause:

Eiffel: An Advanced Introduction Page 37

class LAND_VEHICLE
inherit
 VEHICLE
 export {DMV_PEOPLE} identification
 end;

 end;

This states that any class wishing to use LAND_VEHICLE as a client, can only
access identification directly if it is an heir of DMV_PEOPLE (of course, DMV_PEOPLE
classes themselves may access identification). There is no restriction placed upon
descendants of a class who wish to redeclare the export status of a feature. That is,
referring to LAND_VEHICLE above, there is no requirement to newly export
identification to a class that is related to DRIVER. The previous export status of a feature
imposes no restrictions upon the descendant classes wishing to modify it.

We could also have declared a group of classes that we wish to export
identification to, instead of just DMV_PEOPLE:

class LAND_VEHICLE
inherit
 VEHICLE
 export {DMV_PEOPLE, MECHANIC, FBI}

identification
 end;
end

In this case, when DMV_PEOPLE, MECHANIC, or FBI are clients of
LAND_VEHICLE, they have unrestricted access to identification. The initial export
status of a feature imposes no limitations when redeclaring its export status. We could
have just as easily exported identification to NONE, or ANY, or any combination of
classes in-between.

For syntactical ease, Eiffel provides a mechanism (a keyword) that allows one to
export all features of an inherited class to one class, or group of classes. When using the
keyword all, you may declare that all features from a particular class are now made
available to a certain client, or group of clients:

Eiffel: An Advanced Introduction Page 38

class FEATURES_A_PLENTY
inherit
 FEATURES_GALORE
 export {LUCKY_CLASS} all
 end
feature {NONE}
 private_data : INTEGER;
end

Assume that FEATURES_A_PLENTY is inheriting many features from
FEATURES_GALORE. The export status of every feature from FEATURES_GALORE
is now made exclusively available to LUCKY_CLASS and all of its descendants. The
feature private_data has been declared in FEATURES_A_PLENTY, and is not subject to
the export clause of FEATURES_GALORE. No clients are able to directly access
private_data since it is exported to NONE.

5.5 Undefinition

A rather interesting part of Eiffel's feature adaptation capabilities is the ability to
undefine a feature. That is, to effectively ignore its existence in an inherit clause. This
poses some semantic questions that will be explored later. For now, consider:

class NEW_CLASS
inherit
 OLD_CLASS
 undefine redundant_routine;
 end
end

The redundant_routine which would have been inherited from OLD_CLASS no longer
exists in NEW_CLASS. By undefining it, we also free its identifier; that is, we may
declare a feature redundant_routine in NEW_CLASS if desired.

5.5.1 Semantic Constraints on Undefinition

Undefining a feature may interfere (unintentionally) with a dependency between
the undefined feature, and another feature. Observe:

Eiffel: An Advanced Introduction Page 39

class DEPENDENT
feature
 small_routine(n : INTEGER) is
 do ... end;
 big_routine(arguments...) is
 do
 ...
 small_routine(x); --call small_routine

 ...
 end;

 end

This class appears to be perfectly normal in its organization, and may be a class
that is commonly used. If we try to undefine small_routine in a new descendant class as
such:

class NEW_DEPENDENT
inherit
 DEPENDENT
 undefine small_routine end
end

we would be halted in our footsteps by our compiler. Clearly the fact that big_routine
requiring small_routine to execute properly is enough to prevent us from undefining
small_routine.

There are two more constraints placed upon undefinition clauses. The first is
straight-forward: you may not undefine a feature that is an attribute. That is, only routines
and functions may be undefined.

5.5.1.1 Frozen Features

The next constraint concerns frozen features which may only be routines or
functions. Any frozen feature of an heir may not be undefined, redefined or renamed in a
descendant:

Eiffel: An Advanced Introduction Page 40

class THERMOMETER
feature
 frozen decrease_temperature is

 do ... end;
end

class THERMISTOR
inherit
 THERMOMETER
 undefine decrease_temperature end; --Illegal!
end

THERMISTOR's attempt to undefine decrease_temperature is not allowed. This
semantically makes sense because any feature that is declared frozen should not be able to
be undefined, redefined, or renamed.

The benefit of undefinition becomes more clear in an ambiguous multiple
inheritance scenario:

class A
feature
 f : INTEGER;
end;

class B feature
 f(arg1, arg2 : REAL) is
 do ... end;
end

class C inherit
 A;
 B end; -- invalid!!
end;

Recall from section 4.1 of this chapter that selection enabled us to select which
version of f, either from A or B we wish to inherit in C. If we modify C as follows:

class C
inherit
 A;
 B
 undefine f end;
end;

Eiffel: An Advanced Introduction Page 41

it now becomes possible to inherit f from A, and not from B. How is this different from
selecting B's version of f with a select clause?

class C
inherit
 A
 select f end;
 B;
end;

Eiffel: An Advanced Introduction Page 42

Chapter 6:

Genericity

Section Outline
6.1 Unconstrained Genericity
6.2 Constrained Genericity

Eiffel: An Advanced Introduction Page 43

6.0 Overview

Genericity is usually applied in the context of container classes. A data structure
such as a STACK, QUEUE or TREE can be categorized as a container class in that their
main function is to store other objects. In conventional programming, it has been
notoriously difficult to write a stack ADT, and be able to apply its abstract operations,
push, pop, etc., to a wide variety of data structures. Languages with weak typing rules,
such as C allow low-level work arounds such as type casts to circumvent their own
limitations. A second approach taken is to work on an even lower level using bytes (or
words) to transfer a data structure into or out of a container piece by piece. The end result
of these concoctions is a working, but extremely unstable, and unadaptable container
structure.

6.1 Unconstrained Genericity

A generic class is a class that accepts type paramaterization. For example, a
STACK class may be declared to accept only INTEGERs, VEHICLES, or
DMV_PEOPLE. If this is the case, it is said to be generically constrained. This topic is
covered in the next section. For now, we will focus on unconstrained genericity, a simpler
and more general form of genericity.

To declare a class as generic, we present this simple example which declares a
stack that may be declared to accept objects of any type:

class STACK [T]
feature
...
end

The only new syntax introduced in this example is the generic parameter [T] after
the class STACK declaration. The square brackets simply introduce STACK as generic,
and T is the formal generic parameter of each instance of STACK.

Since the STACK was declared to be paramaterizable by a class, we must pass as
an actual parameter, a class type, rather than an object entity when instantiating this stack.
That is, we must pass the name of a class when declaring a STACK, instead of the name
of an object entity. This parameter, TOKEN and SEM below, is called the actual generic
parameter. Observe:

Eiffel: An Advanced Introduction Page 44

class LUNCH_COUNTER
feature
 tray_stack : STACK[TRAY];
 napkin_dispenser : STACK[NAPKIN]
 ...
end;

We have now declared two STACKs. The first, tray_stack, accepts objects of type
TRAY, the second, napkin_dispenser, accepts napkins of type NAPKIN. The next
obvious question, then is how to use this information when we are writing the stack's
internal operations like push and pop. Observe:

class STACK [T]
feature
 push(element : T) is
 do
 storage(pos) := element;
 pos := pos + 1;
 end;
end

Viola! We are able to use T anywhere in the context of STACK's body for our
purposes.

This implementation is not realistic though, in that we do not have an entity called
storage, but it could be implemented in such a manner if chosen. Similarly, pop, top, and
the rest of a STACK's operations are implemented in the same manner. What would an
actual use of an unconstrained class look like?

class LUNCH_COUNTER
feature
 tray_stack : STACK[TRAY];
 napkin_dispenser : STACK[NAPKIN]
 ...
 init is
 do
 ...
 napkin_dispenser.pop(
 end;
end;

We now have the capability to create stacks that will accept objects of any given
type. This genericity is called unconstrained because of its unrestrictive nature. It should
be noted though, that if we declared a new class type:

Eiffel: An Advanced Introduction Page 45

class FANCY_TRAY
inherit
 TRAY end;
end;

then all entities declared as TRAY would have every right to take part in the tray_stack
activities. That is, the following is legal:

class LUNCH_COUNTER
feature
 tray_stack : STACK[TRAY]
 ...
 init is
 do
 ...
 tray_stack.push(new_tray)
 ...
 end;
end

Do not think that because STACK is unconstrained, that we are allowed to
arbitrarily push objects of any type on to tray_stack. The fact is that we are able to push
any object declared as type TRAY, or any of its descendants onto tray_stack. Remember,
Eiffel's type system is based entirely on classes. The fact that the STACK class is
generically unconstrained allows us only to declare a single STACK that holds any single
type and all its descendants, not a stack that holds all types simultaneously.

Is this dangerous? Not at all. As stated before, older programming languages
would mimic this action by type-casting any foreign data structure that was to be placed
onto the stack. Eiffel has an extremely strong, and tight typing system. All objects that are
placed onto this stack, or any other generic structure you create, retain their identity for
the duration of the system's life. If we were to place TRAYs and NEW_TRAYs onto
tray_stack:

tray_stack : STACK [TRAY]
t : TRAY;
new_t : NEW_TRAY;
...
tray_stack.push(t);
tray_stack.push(new_t);

then the objects t and new_t, still retain their identities. That is, t is still a TRAY, and
new_t is still a NEW_TRAY.

Eiffel: An Advanced Introduction Page 46

Eiffel provides no facilities to allow a programmer to type cast an object to force a
potentially dangerous conformance. These dangerous practices are no longer needed as
Eiffel provides this mechanism to safely harness this benefit of the object paradigm's full
potential.

6.1.1 Multiple Paramaterization

If one could find a use for, one could also declare a class that is multiply
parameterized as in:

class MULT_PARAM [T, P]
feature
...
end;

This simply requires a declaration of MULT_PARAM to provide two type parameters,
such as:

some_entity : MULT_PARAM [VEHICLE, APPLE]

A potential use of this ability might be with a container structure that holds several
types of objects. A home entertainment cabinet for instance, holds VCR tapes, cassettes,
CD's, Laser Discs, etc.

6.2 Constrained Genericity

Up until now, we have witnessed the ability to declare a generic structure that can
be parameterized by another class of any type. A simpler as well as necessary version of
generic class are constrained generic classes. A constrained generic class declares that a
class conforming to a particular type is the only candidate for instantiation. For example:

class BIN_TREE [T -> COMPARABLE]
...
end

this class declares that in order for a BIN_TREE to be declared, the actual generic
parameter provided must conform to the COMPARABLE class. The new syntax of the ->
after the formal parameter T states that BIN_TREE is now generically constrained to
accept entities who conform to the COMPARABLE type.

Eiffel: An Advanced Introduction Page 47

As the reader probably knows, binary trees are structures characterized by quick
access to its elements. But, the reason why binary trees have this ability is because its
elements are in a sorted order. This implies that its elements are arranged in such a way
that given any two elements from the tree, we can compare them (or a characteristic of
them) and determine which one is ordered before or after the other. We would not be able
to put a objects such as ORANGEs on a binary tree, unless of course there was some
characteristic that would enable us to determine if ORANGE A is greater or less than
ORANGE B.

Constrained genericity serves the purpose, as displayed above, of guaranteeing that
an actual generic parameter has certain characteristics that are required for the semantics
of the generic class to remain valid. If we were to declare a class such as:

class ELEMENTS
inherit
 COMPARABLE end;
end;

then we would be able to also declare:

class AVL
feature
 tree : BIN_TREE [ELEMENTS] end;
end

This creates an entity called tree that accepts ELEMENTS as elements. The
specific features of class COMPARABLE that are required for a BIN_TREE to work
properly are the actual comparison routines which BIN_TREE utilizes when determining
where elements are to be placed in the tree. Without these, BIN_TREE would not be able
to execute properly.

Using the genericity mechanism, it is now possible to create completely (or
partially) generic data structures with total safety, reliability and abstraction.

Eiffel: An Advanced Introduction Page 48

Advanced Topics
Chapter 7:

Using Eiffel: Examples and Tutorials

7.0 Overview
7.1 Class VEHICLE
7.2 Contract Programming

7.2.1 Preconditions
7.2.2 Post conditions

7.2.2.1 Old Expressions
7.2.3 Invariants

7.2.3.1 Looping Revisited - Variants and Invariants
7.2.4 A Note on Efficiency

7.3 The New VEHICLE class
7.4 Exceptions

7.4.1 Handling Exceptions - Rescue clauses
7.4.2 Retry Commands

7.5 LAND_VEHICLE and WATER_VEHICLE
7.6 Repeated Inheritance
7.7 HYDRO_LAND_VEHICLE

Eiffel: An Advanced Introduction Page 49

7.0 Overview

The preceding chapters have shown how to use Eiffel in a select number of specific
cases. This chapter will take us through select stages of the software life cycle of a small
group of related classes. A class called VEHICLE and some of its descendants will be the
focus of our attention.

We will apply the principles we have learned in the previous chapters to create a
small hierarchy of classes. We will also cover materials not mentioned in previous chapters
as we are building our system. The hierarchy for the classes to be described is presented
below:

VEHICLE

HYDRO_LAND_

WATER_VEHICLE

 VEHICLE

LAND_VEHICLE

7.1 Class VEHICLE

In this section we will informally describe the requirements for a class called
VEHICLE. The specification is given below and is only meant as a starting point for the
reader. It is by no means a technical specification.

• The class must provide a facility that enables each
instance to be uniquely identifiable.

• Attributes:
Color
Number of passengers

• Routines:

Eiffel: An Advanced Introduction Page 50

- Routines to set and retrieve the above attributes
- A constructor routine is also required. It must accept a valid number of
 passengers that the vehicle may hold as argument.

Based on the above information, several implementations of this VEHICLE class
may manifest from different individuals' interpretations. Here is our implementation:

class VEHICLE

creation start;

feature {NONE}
 color, num_passengers : INTEGER
 -- "private" data exported to NONE

feature
 Red, Blue, Green : INTEGER is unique;

-- constants available to all clients

 start (new_num_passengers : INTEGER) is
 require
 new_num_passengers >= 1;
 do
 color := Red; --default
 num_passengers := new_num_passengers; --default;
 io.put_string ("Hi!. I'm a new VEHICLE");
 io.new_line;
 ensure
 color = Red;
 num_passengers = new_num_passengers;
 end; --start

 set_color(new_color : INTEGER) is
 do
 color := new_color;
 end --set_color

 set_horse_power(new_power : INTEGER) is
 do
 horse_power := new_power;
 end --set_horse_power

 get_color : INTEGER is
 do
 Result := color;

Eiffel: An Advanced Introduction Page 51

 end --get_color

 get_horse_power : INTEGER is
 do
 Result := horse_power;
 end --get_horse_power

 get_id : INTEGER is
 do
 Result := object_id;
 end --get_id

end --VEHICLE

The first question that might pop into your head probably concerns the object_id
attribute in get_id. Where did it come from? The answer is it was inherited from class
ANY. Recall that all user-defined classes implicitly inherit from ANY. This field is
designed specifically for the purpose of identifying objects, even if of the same class,
uniquely. This attribute is indeed unique for each object in the system at any given time.

We have now fulfilled the specifications of the VEHICLE class given earlier. We
have all of the required attributes, as well as routines to change these attributes and
examine them.

7.2 Contract Programming

While these routines and attributes do indeed fulfill the requirements of the
specification given, the class is not entirely safe. That is, a client at this point in time is
allowed to pass non-sensible arguments to all of the routines without consequence from
our class. We need restrictions placed upon this class to ensure that any clients using our
class will not be allowed to tamper with it, yet be able to fully utilize all of its features.

Eiffel embodies a type of programming; contract programming, as it is called,
provides a premise that allows clients and suppliers to fully recognize and understand
certain requirements that they must meet, and guarantees that they are entitled to. These
conditions are enforced through assertions, or conditions that a class must meet if it wants
to interact with other classes. These rules of behavior manifest in preconditions, post
conditions, and invariants.

7.2.1 Preconditions

Eiffel: An Advanced Introduction Page 52

A precondition is a requirement placed on the client of a class. The precondition
itself is specified by the supplying class, and must be met by any clients. An example might
be that the pop operation for a stack will require a non-empty stack:

class STACK [T]
feature
 is_empty : BOOLEAN;
 pop : T is
 require
 non_empty_stack : not is_empty;
 do
 ...
 end --pop
end --STACK

A copying routine may require that the object to be copied is not Void:

class ANY
...
feature
 copy(other : like Current) is
 require
 non_void_other : not other = Void;
 do
 ...
 end -- copy
end -- ANY

The syntax for a precondition might seem slightly confusing at first. The basic
syntax is the keyword require followed by one or more assertions. An assertion is a
possible identifier followed by a colon ":" and then a Boolean expression. If more
assertions are needed, a semicolon ";" is required:

...
feature
 remove_leaf is
 require
 non_empty_tree : not is_empty;
 non_void_tree : not tree = Void;
 do
 ...
 end --remove_leaf

Eiffel: An Advanced Introduction Page 53

Semantically, these two preconditions must both be met in order for the assertion
to be met. Since they both must be met, it is equivalent to ANDing these two expressions
in the body of our routine remove_leaf:

if (not is_empty) AND (not tree = Void) then
 precondition_met
 ... --rest of routine
else
 precondition_not_met
end;

The difference, though is that if we were to code the precondition in the body of
remove_leaf as above, we would also be responsible for handling precondition_not_met.
That is, we would have to devise a mechanism for alerting the caller of remove_leaf that
our precondition was not met, and an appropriate action must be taken. Fortunately, Eiffel
provides this capability for us.

When a precondition, or any assertion for that matter, is violated, an exception is
generated in the class where the assertion is declared. We will discuss how to handle
exceptions in a later section.

7.2.2 Post conditions

Assume that the caller of remove_leaf has met the preconditions. It is now safe to
assume that the caller will expect nothing less than the removal of a leaf as the routine
implies. A post condition guarantees this. More generally, it guarantees that once a
precondition (if any) is met, then the routine will promise to fulfill a requirement which its
client expects. We may now write remove_leaf as:

feature
 remove_leaf is
 local
 original_size : INTEGER;
 require
 non_empty_tree : not is_empty;
 non_void_tree : not tree = Void;
 do
 original_size := size;
 ...
 ensure
 one_less_element : size = original_size - 1;
 end --remove_leaf

Eiffel: An Advanced Introduction Page 54

Assuming that original_size stores the size of the tree at routine entry, and size is
the number of elements at the time of the end of the routine, the post condition states that
exactly one element was removed from the tree. The new size of the tree is exactly one
less than it was before entering the routine, implying that an element was removed, as
remove_leaf states.

7.2.2.1 Old Expressions

This doesn't mean outdated expressions! An old expression is denoted with the
keyword old followed by an identifier or expression as in:

old size;
old arg1 + size;
old identification;

An old expression may only appear in the post condition of a routine. It denotes
the value of its identifier upon routine entry. Above, old size refers to the value of size,
when we entered the routine whose post condition this expression appears in. The
usefulness of this may be shown by slightly modifying the remove_leaf routine:

class SOME_CLASS
feature
 Remove_leaf is
 require
 non_empty_tree : not is_empty;
 non_void_tree : not tree = Void;
 do
 ...
 ensure
 one_less_element : size = old size - 1;
 end --remove_leaf
end -- SOME_CLASS

This eliminates the need to declare an extra local variable, original_size as we had
it, for the explicit purpose of temporarily storing the value of size at routine entry. An
additional benefit of this keyword is the fact that it promotes readability. It is easier to
read old size than go through the motions of determining exactly what original_size
means.

7.2.3 Invariants

Eiffel: An Advanced Introduction Page 55

As computer scientists, we learn early how to formally specify the behavior of an
algorithm. One of these mechanisms is the invariant, or a condition that must always hold
true no matter what (actually, the invariant is allowed to be violated at certain critical
times, but it must be restored).

Eiffel provides the ability to specify a series of invariants. This is done through the
use of the invariant keyword. Syntactically, it must appear as the last construct in a class
declaration:

class FIXED_DATA_STRUCTURE [T]
feature
...
invariant
 size >= 0;
 size <= 99;
end

This allows us to formally specify that at any given moment during the system's
execution, the size attribute of an object declared as FIXED_DATA_STRUCTURE must
be within 0 and 99 inclusively.

Another syntactical note is that the invariant clause may supply a descriptive
identifier before its actual BOOLEAN expressions to further readability:

class FIXED_DATA_STRUCTURE [T]
feature
...
invariant
 stack_not_empty: size >= 0;
 no_overflow: size <= 99;
end

7.2.3.1 Looping Revisited - Variants and Invariants

There are two optional clauses of the loop construct, which was introduced in
section 4.1, the invariant and the variant . These clauses provide support for Eiffel's
contract programming ties.

The invariant clause states that upon each iteration of the loop body, the
BOOLEAN expressions in this clause must hold true. This is useful from both a design as
well as a implementation perspective. From a design point of view, invariants help specify
loop correctness- conditions that must hold true at all times. From an implementation
point of view these expressions, if they happen to evaluate to False will enable a

Eiffel: An Advanced Introduction Page 56

programmer to easily handle this breach with Eiffel's exception handling mechanisms
(discussed in section 7.4.1).

To illustrate the use of invariants and variants, and how they work, we present this
simple loop which outputs written pages to a printer:

from
 num_pages := pages_to_be_printed.
until
 num_pages = 0;
invariant
 printer.on_line;
variant
 num_pages;
loop
 ...
 printer.output_next;
 ...
end

The loop begins with initialization, denoted by the from keyword. Here
num_pages is set to the number of pages to be printed, num_pages_to_be_printed. Next,
the stopping condition, denoted with the until keyword, is tested. If it evaluates to true
(the number of pages that are to be printed is zero), then the loop body is not executed.
The stopping condition will be evaluated prior to each iteration of the loop body.

The new clauses introduced here are the invariant and variant . The invariant
clause states that prior to each iteration of the loop, the BOOLEAN expression(s) here
must evaluate to True. If during any test of the invariant , the expression evaluates to
False, then an exception will be raised, and it may be handled as described later. Prior to
the first iteration of the loop body, the invariant is tested for the above conditions.

The variant on the other hand is a little different. The type of its enclosing
expression(s) is INTEGER. Its expressions are evaluated once, prior to the first execution
of the loop body, and tested prior to each iteration (including the first iteration). In the
above text, the variant is num_pages which is the number of pages to be printed. If for
instance it is initially evaluated to be 3, then prior to the next iterations, it is automatically
decremented to 2 and then to 1 and so on.. This guarantees that the loop will terminate at
some finite point in time due to the following rule: if the variant ever reaches a negative
value (by its automatic decrementing) then an exception is raised, and the loop will
terminate.

The invariant and variant are language mechanisms that allow easy specification
(in source code!) of loop correctness. The benefits of this can be found in just about every
situation where a looping construct is called for.

Eiffel: An Advanced Introduction Page 57

7.2.4 A Note on Efficiency

At this point one begins to realize that Eiffel's assertions may cause more harm
than good in certain circumstances. Notably system performance, which is often a major
factor in graphic-intensive or real-time applications, may be muffled due to the overhead
of assertions. In Eiffel: The Language which is the formal reference for the Eiffel
language, it describes several user-selectable possibilities for run-time assertion
monitoring. One of them being no assertion checking of any kind. This means that no
classes will be monitored for assertions. The assertions include preconditions, post
conditions, and invariants.

It is also possible to define for a class C that a certain level of assertion monitoring
be done, and for another class D, a different or no monitoring be done. This empowers the
developer to develop a class with assertion monitoring turned on, and once it has been
fully tested and can be guaranteed within a reasonable degree, to work, assertion
monitoring may be shut off.

7.3 The New VEHICLE class

Now that we have an understanding of the role of assertions, it is now time to
modify our VEHICLE class to support assertions. This will tighten the security around
objects of type VEHICLE by not allowing dangerous arguments to be passed into
routines.

class VEHICLE

creation start;

feature {NONE}
 color, num_passengers : INTEGER
 -- "private" data exported to NONE

feature
 Red, Blue, Green : INTEGER is unique;

-- constants available to all clients

 start (new_num_passengers : INTEGER) is
 require
 new_num_passengers >= 1;
 do
 color := Red; --default

Eiffel: An Advanced Introduction Page 58

 num_passengers := new_num_passengers; --default;
 io.put_string ("Hi!. I'm a new VEHICLE");
 io.new_line;
 ensure
 color = Red;
 num_passengers = new_num_passengers;
 end; --start

 set_color(new_color : INTEGER) is
 require
 new_color >= Red;
 new_color <= Green;
 do
 color := new_color;
 end --set_color

 set_num_passengers(new_num_passengers : INTEGER) is
 require
 new_num_passengers >= 0;
 do
 num_passengers := new_num_passengers;
 end --set_num_passengers

 get_color is
 do
 Result := color;
 end --get_color

 get_num_passengers is
 do
 Result := num_passengers;
 end --get_num_passengers

 get_id is
 do
 Result := object_id;
 end --get_id

 invariant
 last_attrib >= 0;

end --VEHICLE

The new VEHICLE class is now much safer than its original version. This is
because each routine has been fitted with a precondition that mandates that all arguments

Eiffel: An Advanced Introduction Page 59

be within reasonable bounds. For instance, any client who wishes to change the color of a
VEHICLE object must pass as argument a value that is within the Red to Green range.
Also, a change in the number of passengers via the set_num_passengers routine can not
specify a negative number of passengers. We could also have required that one not
attempt to set a ridiculously high number of passengers by specifying a limit to the
new_num_passengers argument. This additional constraint may be added if the reader
wishes to do so. We have chosen not to do so.

Now that we have the appropriate constraints in place in our routines and our
class, we must now deal with the situation where one of these conditions is violated.
Consider:

class DRIVER
feature
 car : VEHICLE;
 some_routine(some_arg : SOME_TYPE) is
 do
 ...
 car.set_color(-2); --this is invalid!!
 ...
 end --some_routine
end --DRIVER

The call to set_color with the -2 argument is clearly a violation of set_color's
precondition. There is no dispute about this. The question is then, what happens now?

7.4 Exceptions

"If a routine executes a component and that component fails, this will prevent the
routine's execution from proceeding as planned; such an event is called an exception"
[Meyer, 1992]. Exceptions in Eiffel are essentially messages that tell a routine that a
failure to meet a requirement has occurred. The exception message itself is generated in
the routine where the violation occurred. Set_color's precondition was violated when
some_routine attempted to pass a negative argument. Since it was set_color's precondition
that was violated, set_color will receive the exception message initially. It is up to the
implementor of set_color to decide how to handle the exception.

7.4.1 Handling Exceptions - Rescue clauses

It is possible to specify in Eiffel, how a routine is to handle an exception, should it
ever be passed an exception message. This is done through the rescue clause which begins
with the keyword rescue. A routine which has a rescue clause is allowed to specify

Eiffel: An Advanced Introduction Page 60

appropriate actions that should be taken to handle the exception. A sample of the rescue
clause in action is now given:

feature some_feature(some_arg : SOME_TYPE) is
require
 some_arg >= 0;

do
 some_attribute := some_arg;
ensure
 some_attribute = some_arg;
rescue
 error_code_attribute := 1;
 --raise internal error flag for debugging
end;

Notice the rescue clause at the bottom of the routine. This is the only place a
rescue clause may appear- as the last clause of a routine. The clause here states that if the
routine body

do
 some_attribute := some_arg;

fails to execute properly, or if the post-condition

ensure
 some_attribute = some_arg;

is not met, appropriate action should be taken. That action being the internal flag
error_code_attribute be set to some_arg. The author could also have chosen to handle an
above exception differently as seen fit.

There is generally no right or wrong way to handle exceptions. The actions taken
in a rescue clause should be based upon how severe the exception is, and how the
programmer wishes to react to an exception.

7.4.2 Retry Commands

Another possible venue concerning handling exceptions is to attempt to return the
object to a stable state, and possibly re-execute the routine body. We will demonstrate this
with an analogy- making a telephone call. If after dialing a telephone, we get a busy signal,
it is not necessary at all to give up attempting to complete this task, swallow our losses,
and continue with life. In fact it is probably easier just to wait a few minutes and try again
later.

Eiffel: An Advanced Introduction Page 61

The retry command helps support Eiffel's close ties with contract programming. If
a routine is unable to meet its post conditions, it may not be enough to accept losses and
notify the callers of that routine. It could be plausible to execute the routine once again in
an attempt to meet the post-condition.

To see how a retry command is actually used, we present this example:

class PHONE_LINE
feature
 dial(number : STRING) is
 do
 modem.call(number)
 ensure
 modem.is_connected;
 rescue
 time_out; -- wait a random period of time
 retry ;
 end;
end;

It should be noted that the only place a retry command can be found is in a rescue
clause.

The presence of a rescue clause with or without a retry statement does not imply
that a post-condition is required. It is not necessary to have a post-condition in a routine,
even if a rescue clause may be needed:

feature
 SOME_FEATURE is
 do
 ...
 rescue
 -- some action
 end -- SOME_FEATURE
...

7.5 LAND_VEHICLE and WATER_VEHICLE

This section will introduce two new classes LAND_VEHICLE and
WATER_VEHICLE both descendants of class VEHICLE as presented above. We will
give the text for LAND_VEHICLE in a moment; WATER_VEHICLE will soon follow.

Eiffel: An Advanced Introduction Page 62

The basis of this section is to allow the reader to witness and participate in the
inheritance mechanism used in a tangible example. At this point only single inheritance will
be employed; multiple will be used in a later section when we develop a
HYDRO_LAND_VEHICLE based upon WATER_VEHICLE and LAND_VEHICLE.

The specifications for our LAND_VEHICLE is as follows:

• The class must provide a facility that enables each instance to be uniquely identifiable.
• Attributes:

Color
Number of passengers
Number of Wheels

• Routines:
- Routines to set and retrieve the above attributes
- A constructor routine is also required. It must accept a new Engine Type

attribute
 as argument.

The first thing that the reader will notice is the similarity between this specification
and the specification we already have for the VEHICLE class. In fact a good portion of
software utilities, data structures and algorithms are patterned after each other (not
necessarily to the degree that LAND_VEHICLE and VEHICLE are similar).

This similarity puts us in a perfect position to use inheritance. Since most of the
specification of LAND_VEHICLE has already been implemented in VEHICLE, we can
inherit from VEHICLE and use the features previously described to adapt a new
LAND_VEHICLE class. We see this class being implemented as such (again,
individual interpretation is left up to the reader).

class LAND_VEHICLE

creation start;

inherit
 VEHICLE
 redefine start;
 end;

feature {NONE}
 num_wheels : INTEGER;

feature
 start (new_num_passengers : INTEGER) is
 require

Eiffel: An Advanced Introduction Page 63

 new_num_passengers >= 1;
 do
 num_wheels := 4;
 color := Red;
 num_passengers := new_num_passengers;
 io.put_string ("Hi! I'm a new LAND_VEHICLE");
 io.new_line;
 ensure
 num_wheels = 4;
 color = Red;
 num_passengers = new_num_passengers;
 end; --start

 set_num_wheels (new_num_wheels : INTEGER) is
 require
 new_num_wheels % 2 = 0; --even number of wheels
 new_num_wheels >= 2; --at least two wheels
 do
 num_wheels := new_num_wheels;
 ensure
 num_wheels = new_num_wheels;
 end; --set_num_wheels

 get_num_wheels : INTEGER is
 do
 Result := num_wheels;
 ensure
 Result = num_wheels;
 end; --get_num_wheels;
end --LAND_VEHICLE;

The new features introduced here are num_wheels which is visible to no clients,
get_num_wheels and set_num_wheels, both visible to all clients. This implementation
fulfills our requirement for the LAND_VEHICLE specification. The features not directly
implemented in this class, such as color have been inherited from VEHICLE. Notice the
smaller size of the LAND_VEHICLE class as compared to VEHICLE. Yet, in terms of
functionality, LAND_VEHICLE is more advanced and useful. This is the major benefit of
object-oriented programming- reuse. The ability to use existing code reduces largely the
cost of future projects implemented. In order to take full advantage of this capability, it is
necessary that a language provide mechanisms that capture these abilities and provide a
safe and easily readable syntax for the reader (programmer) to use. Eiffel does just that.

We now continue our venture in developing a small hierarchy of classes by giving
the (informal) specification of WATER_VEHICLE:

Eiffel: An Advanced Introduction Page 64

• The class must provide a facility that enables each instance to be uniquely identifiable.
• Attributes:

Color
Number of passengers
Weight capacity

• Routines:
- Routines to set and retrieve the above attributes
- A constructor routine is also required. It must accept a new and valid number of

 passengers as an argument

The text for this new class is given below:

class WATER_VEHICLE

creation start;

inherit
 VEHICLE
 redefine start;
 end;

feature {NONE}
 capacity : INTEGER;

feature
 start (new_num_passengers) is
 require
 new_num_passengers >= 1;
 do
 num_passengers := new_num_passengers;
 color := Red;
 capacity := 500;
 io.putstring ("Hi! I'm a new WATER_VEHICLE");
 ensure
 num_passengers = new_num_passengers;
 color = Red;
 capacity = 500;
 end; --start

 set_capacity (new_capacity : INTEGER) is
 require
 new_capacity > 0;
 do
 capacity := new_capacity;
 ensure

Eiffel: An Advanced Introduction Page 65

 capacity = new_capacity;
 end; --set_capacity

 get_capacity : INTEGER is
 do
 Result := capacity;
 ensure
 Result = capacity;
 end; --get_capacity
end --LAND_VEHICLE

We have thus far constructed three of the four classes we wish to describe. It is
now left to describe and implement the fourth class, HYDRO_LAND_VEHICLE. As the
reader has probably already figured out, this class will inherit from WATER_VEHICLE
and LAND_VEHICLE. This may give rise to some questions concerning the features from
VEHICLE that are implicitly inherited twice (repeated inheritance) through
WATER_VEHICLE and LAND_VEHICLE. We will now discuss this situation.

7.6 Repeated Inheritance

A class which utilized multiple inheritance may inherit, implicitly, from a particular
parent more than once (through different routes). Consider:

DISPLAY

DIGITAL ANALOG

STOP_WATCH

Here, STOP_WATCH inherits from DIGITAL and ANALOG, each of which
inherit from DISPLAY. What happens to the features of DISPLAY that exist both in
DIGITAL and ANALOG? Are two copies inherited in STOP_WATCH; or is just one
copy inherited?

 The answer is that Eiffel will resolve any repeated inheritance ambiguities by only
allowing one copy of all features to end up in a descendant class. In the above case, all of
the features of DISPLAY that are inherited through DIGITAL and ANALOG are only
inherited once in STOP_WATCH. For instance, if DISPLAY provided an am_pm feature,

Eiffel: An Advanced Introduction Page 66

only one such feature would wind up in STOP_WATCH even though it could potentially
be duplicated via DIGITAL and ANALOG.

7.7 HYDRO_LAND_VEHICLE

Referring to our VEHICLE classes, a similar situation has arisen since it is now
time to write our HYDRO_LAND_VEHICLE. Since HYDRO_LAND_VEHICLE will
inherit through LAND_VEHICLE and WATER_VEHICLE, what happens to the features
of VEHICLE that could possibly be duplicated via LAND_VEHICLE and
WATER_VEHICLE? The repeated inheritance discussion above should give the reader an
answer.

One question that might enter one's mind is what happens to the start feature. That
is, it was redefined in LAND_VEHICLE and WATER_VEHICLE, does this mean that it
will be inherited twice since it was redefined? The answer is: we have encountered a name
clash.

Since start was redefined in LAND_VEHICLE and WATER_VEHICLE, it no
longer comes from VEHICLE, it now comes from both of its descendants, in two
versions. Recall from chapter 5 that when two features with the same name, here start, is
inherited from two classes, a name collision, or clash occurs. Eiffel provides several
options for this situation. We have chosen the following:

class HYDRO_LAND_VEHICLE
creation start;
inherit
 LAND_VEHICLE
 undefine start;
 end;
 WATER_VEHICLE
 undefine start;
 end;

feature
 start is
 do
 io.putstring("Hi! I'm a new HYDRO_LAND_VEHICLE!");
 io.newline;
 end; --start
end --HYDRO_LAND_VEHICLE

Our choice was to undefine both of the start features inherited from our ancestors.
We then were able to totally free up the name start in our new class, and use it as we
choose. We have decided to let it keep its reputation as a creation routine.

Eiffel: An Advanced Introduction Page 67

We now have a fully functioning classification for vehicles that can travel both on
land and water. Notice that it took virtually no extra implementation on our part because
the capabilities were already created in our ancestor classes. We just built on what they
have provided and created an entirely new classification. This is one of the main foci of the
object-oriented paradigm- reusability.

With these last words, we come to an end of this section. In the next chapter, we
will discuss Eiffel's advanced mechanisms that make the language suitable for analysis and
design. With this, Eiffel can provide a smooth and seamless transition all the way through
implementation.

Chapter 8:

Eiffel's Role in Analysis and Design
Final Words Concerning Eiffel's Future

8.0 Introduction
8.1 Deferring Classes and Features
8.2 Explicit Creation
8.3 What Do I Tell My Clients?
8.4 The Future of Eiffel

Eiffel: An Advanced Introduction Page 68

8.0 Introduction

Writing software is becoming more and more an action of sitting down and
thinking out a problem through and through with less time being spent on actually writing
the software. This emphasis on analysis and design is being promoted by the object-
oriented paradigm as reflected by its radically different metric estimates. In a book entitled
"Object-oriented Software Construction" by Bertrand Meyer, it is estimated that up to
70% of software costs can come from maintenance. That is, once a product is actually
"complete", it must be cleaned up and continuously updated, modified, etc. If the
underlying system has not been properly and thoroughly documented, analyzed, and
designed extensively, the post-release period can become critically costly.

Emphasis is now being emphatically placed more and more on initial efforts. This
new attitude has dual benefit: (1) objects created for project i can be reused more readily
in projects i+1... thus reducing the costs of future projects, and (2) the potentially 70%
cost of maintenance is dramatically reduced and placed in earlier stages of the software
cycle where less risk and more flexibility concerning a design is enabled.

Eiffel is suitable as a PDL (Program Design Language). PDL's are languages that
are used to describe software without being concerned with a particular implementation. It
is almost a blessing and a curse that Eiffel is this suitable. It is a blessing because when
software that needs to be implemented, is modeled or described using Eiffel, the
implementation is not even needed. It has already been done in the modeling! On the other
hand, using Eiffel as a PDL might be too tempting to some designers in that the
mechanisms provided by Eiffel, especially concerning its extensive feature adaptation
mechanisms, do not appear in most other languages. How do we implement a model when
languages do not support our notations?

8.1 Deferring Classes and Features

The first step Eiffel takes towards being a suitable PDL is its ability to capture the
existing knowledge of an object or group of object without actually having to fully
implement it. We can create a partially completed class that reflects our existing
knowledge of the system and be able to inherit more and more specialized classes that
better reflect our information. This may be done as follows:

deferred class FILE_PROCESSOR
feature {NONE}
 file_to_be_processed : FILE;
feature {ANY}
 process is
 deferred
 end; --process
end -- FILE_PROCESSOR

Eiffel: An Advanced Introduction Page 69

This class might reflect the fact that we know that we are going to process files,
but we are not quite sure how this will be done and on exactly what kinds of files. Let's
say that later on during analysis, we determine that we will be processing vector graphics
files to determine how many lines appear in a file. The existence of this new knowledge
should not be left in the minds of a select few analysis personnel. It should be documented.

class VECTOR_PROCESSOR
inherit
 FILE_PROCESSOR
 rename file_to_be_processed as vector_file;
 end;
feature
 process is
 do
 ...
 -- class text left out
 end; -- process
end --VECTOR_PROCESSOR

This new class allows us to say that new information has been gathered concerning
the FILE_PROCESSOR classification. In essence we are giving form as well as function
to our predecessor which manifests in VECTOR_PROCESSOR.

One might question why we did not have to redefine our process routine. It
existed before in FILE_PROCESSOR, but we also declared it in
VECTOR_PROCESSOR. Is this legal? Since it was indeed declared in
FILE_PROCESSOR, but not defined, that is implemented, we could not redefine
something which has no definition. When we inherit a feature which itself is deferred from
a deferred class, we are effecting it, not redefining it. Giving meaning to routines that can
only be partially defined in previous classes is an attractive capability that Eiffel provides.

In order to qualify as a deferred class, at least one feature of that class must be
deferred. In which case, the class header must start with the deferred keyword. Deferred
classes can not be instantiated. That is, no objects can be created of that type. They can be
declared of a deferred class, but not created.

8.2 Explicit Creation

What happens though, when we know that a class is deferred, but we need to
declare an entity of that type somewhere else. For instance, if we are developing a file
management system, one of the classes might contain special services that process various
files- graphics, texts, comma-delimited, etc. Consider:

Eiffel: An Advanced Introduction Page 70

class FILE_UTILITIES
feature
 process : FILE_PROCESSOR:
 ...
end --FILE_UTILITIES

Since we know that we need a file processing class in our utilities, we know that a
declaration of this type (or similar) will appear at some stage of the development process.
Can we do this? Yes. Eiffel permits entities to be declared of a deferred class, but not
instantiated. How, then can we instantiate a class of a type other than that of which it is
declared? The answer is explicit creation. Observe: if somewhere in our FILE_UTILITIES
we find out that we will be needing services from the VECTOR_PROCESSOR class, we
may instantiate the process entity of the VECTOR_PROCESSING class as follows:

! VECTOR_PROCESSOR ! process_file

This means that even though process was declared to be a FILE_PROCESSOR, it
may be created (instantiated) as a VECTOR_PROCESSOR. This mechanism provides
tremendous flexibility with respect to supporting an initial analysis and being able to
actually use a class, even though its description might be deferred. Explicit creations may
only instantiate an entity as a type which is a descendant of its actual declared type.
Above, since VECTOR_PROCESSOR is a descendant of FILE_PROCESSOR, no error
will be generated by a compiler.

8.3 What Do I Tell My Clients?

During the course of reading this, one might observe a property of Eiffel that
might seem disturbing at first. In most traditional languages, it is customary to write two
distinct files when implementing a class. A definition (header), and an implementation
module. The definition module is what is given to a client who wishes to use the software
one might have implemented in the implementation module. How does Eiffel provide a
programmer with the capability to describe for a client what features are available? It
doesn't!

The language itself provides no mechanism for accomplishing this. And rightfully
so, as we will demonstrate. In the official description of Eiffel, "Eiffel: The Language"
(ETL for short) by Bertrand Meyer, it is suggested that a language processing tool be
provided to accomplish this. This tool should be given a full class text; its job is to output
a flat form of that class. In this flat form, only the essentials of a class are provided. These
include the class name, whether it is deferred or expanded, all features and to whom they
are available, preconditions, post conditions of all routines, and any class invariants that

Eiffel: An Advanced Introduction Page 71

may exist. This flat form includes all of the inherited features of the class plus the features
introduced by that class.

A second form called the flat-short form will output similar results as the flat
form, but it will only do this for features that the class itself introduces, excluding inherited
features.

These forms, whose formats are fully documented in ETL, make it easy for a
programmer to concern him or herself with the implementation details of the system to be
constructed while eliminating the hassle of writing essentially redundant information about
a class.

8.4 The Future of Eiffel

In this chapter we have shown how Eiffel may be used during analysis and design,
and how it provides mechanisms for smoothly transitioning to implementation. This last
chapter has now come to an end as has this paper. We hope that we have successfully
shown Eiffel's importance and its advancements concerning software engineering. The
efforts put forth by those who are supporting Eiffel currently should not go unmentioned.
We have reserved a place for this group here.

The group of people who are responsible for the future of Eiffel are collectively
known as NICE (I am sure they really are nice, too!). NICE is the Non-profit International
Consortium for Eiffel. It is a group solely devoted to the technical aspects of Eiffel as
opposed to its commercial aspects. Right now, faithful followers of Eiffel (the authors
included) hope that this consortium will do everything in its power to keep Eiffel as
concise, simple and powerful as it is now, so that it will not fall prey to the inundation of
redundant additions by organizations and the like that have corroded more recent
languages.

The future of Eiffel is open and bright. If the right people are put in positions
where important decisions concerning the language can be made intelligently and wisely,
then Eiffel should (we hope) solve the problems of the software industry with one swift
swoop.

Its infinite possibilities will nonetheless be the attention of the authors for the near
and far future. We hope the reader will participate with us, and its many followers, in this
exciting endeavor...

Eiffel: An Advanced Introduction Page 72

